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1 Introduction

When automatically recognising or synthesising speech by computer, we are
forced to make a number of assumptions of statistical independence in order
to make certain problems tractable. This paper gives a few examples of how
phonetic knowledge is already usefully informing these decisions about inde-
pendence, and a few examples of where it isn’t, yet. Temporal integration –
how information from a region of speech is related, and is gathered together
during perception – is an important aspect of this.

Automatic speech recognition (ASR) and synthesis by computer usually in-
volve the use of various statistical models. For ASR these are models of how
acoustic patterns group into larger units (usually phones), how those phones
group into words and how words form sentences. For speech synthesis, we
need to predict various things, such as: pronunciations for words; durations
for phones; where to place phrase breaks and pitch accents; and so on.

In building such models, deciding what factors are dependent and what are
independent (in a statistical sense) is crucial. Modelling dependency means
a model with more parameters, so the more things we can assume to be in-
dependent, the better (so long as those assumptions are close enough to the
truth).

1.1 The importance of making statistical independence assumptions

It may not be obvious that we need to make these strong independence as-
sumptions at all. This paper uses two examples (a model of word sequences
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and a multivariate Gaussian probability density function) to try to convince
you that, more often than not we do not have a large enough corpus of data
from which to learn its parameters.

In speech recognition (and other applications) we need to estimate the prob-
ability of a word sequence (e.g. a sentence), W where W = {w1, w2, . . . , wL}.
One way to estimate this would be to count how many times W occurs in a
large corpus, and divide by the total number of sentences. That would work,
except that the chance of actually finding any occurrences of W in a finite-
size corpus are very small. We have to make an independence assumption,
P (W ) ≈

∏

i

P (wi|context of wi), where the context of wi which matters is only

the identity of the preceding two words. Then, we can estimate P (wi|wi−1,
wi−2) by counting how many times {wi−2, wi−1, wi} occurs and dividing it by
the number of times {wi−2, wi−1} occurs. We are much more likely to find ex-
amples of {wi−2, wi−1, wi} than we are to find W . We made an independence
assumption – albeit one with only a weak linguistic motivation – which af-
fected the structure of the model; model parameters were then learned from
from data. Without the independence assumption, the model would have too
many parameters to be reliably estimated from a finite-size corpus.

The multivariate Gaussian probability density function is used to model the
distribution of observations generated by HMM states. One parameter of this
distribution is the square covariance matrix, Σ, containing variances along the
diagonal and covariances elsewhere. If the dimension of Σ is large, e.g. 12 Mel-
scale cepstral coefficients (MFCCs) + energy + first and second derivatives
making a total dimension of 39 by 39, then the number of elements of Σ can
quickly become too large to learn from data. If we can assume that there is
no covariance between elements of the observation vectors, then Σ becomes
diagonal, so the number of parameters is drastically reduced. Making some
independence assumptions again results in a model with fewer parameters.

Making the right decision about which factors or model parameters can be
assumed to be independent is very important. Phonetics and phonology should
inform the model, not the values of its parameters. The way a model represents
and uses (in)dependence is part of the structure of the model, and not a feature
of the particular values its parameters take. Therefore, we need to think about
ways of altering the model structure itself, and not about how to estimate its
parameters. We can almost always get better values for parameters (which
generally means parameters that increase the probability of the data, given
the model) by estimating them from data than by specifying them using expert
knowledge.
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2 Some phonetics that mainstream systems already use

Although mainstream speech recognition and synthesis systems use only a
small proportion of available phonetic knowledge, there is some phonetics
in all systems. This section gives a few examples of where using phonetic
knowledge in the right way – by using it to make decisions about the type or
structure of a model – has made a difference:

2.1 Speech Recognition

Most HMM-based speech recognition systems use context-dependent models
of phones, where models of a given phone in similar contexts share some
parameters. One way to decide which parameters to share is to use a decision
tree, with questions about the phonological or phonetic features of the context
(Young, Evermann, Kershaw, Moore, Odell, Ollason, Valtchev & Woodland,
2002) . Exactly where in the tree each question goes is determined using data.
Phonetic knowledge informs the structure/type of the model (the questions
about features), but not the values of its parameters (the order in which the
questions are asked).

It is widely accepted, e.g. Wester, Kessens and Strik (2000) , that adding
some pronunciation variants to the lexicon of a speech recogniser can improve
accuracy, but adding too many variants increases confusability to the point
where accuracy goes down. Knowing which words to add variants for and
which or how many variants to add requires some phonological knowledge:
adding phonologically well-motivated variants can increase accuracy.

2.2 Speech synthesis

Concatenative synthesis is the best method we have for producing synthetic
speech. Almost all major commercial synthesisers (e.g. AT&T, Nuance, Rhetor-
ical Systems) use the unit selection technique in which units of variable size
are selected from a database of several hours of speech, and concatenated to
produce the desired output. Synthesis then involves selecting the best possible
unit sequence; this is typically done so as to minimise two costs: the join cost

which measures how well two successive units can be joined, and the target

cost which measures how closely certain properties (e.g. F0, duration, stress)
of the units from the database match the values predicted by the system.
Phonological knowledge is used in the target cost, but not currently in the
join cost.
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Tailoring the pronunciation dictionary to the particular speaker is essential for
high-quality synthesis, but manually re-writing a dictionary is expensive and
time-consuming. One elegant solution to this is the Keyword Lexicon (Fitt
& Isard, 1999) in which a single underlying lexicon is transformed into an
accent-specific one using a relatively simple set of mappings and rules. This
is a nice example of phonetic knowledge – Wells’ keyvowel idea (1982) – in-
forming the model. The phonetic knowledge is used to construct a compact
set of “meta-parameters” (the rules and their settings). There are indepen-
dence assumptions: it is assumed that certain groups of words all use exactly
the same vowel (e.g. “bath”, “path”, . . . ). A keyword lexicon is downloadable
from http://www.cstr.ed.ac.uk/projects/unisyn/.

3 Some phonetics that mainstream systems don’t use . . . yet

3.1 Automatic speech recognition

Long-range dependency (and even local coarticulation) sounds like bad news
for ASR - indeed it is for conventional HMMs of phones - but I would argue
that it need not be bad news if we see it as an additional source of informa-
tion. If human speech perception involves temporal integration, then shouldn’t
automatic speech recognition too?

Using phonological or phonetic features directly for recognition has been pro-
posed and shown to have some potential. These features (high, low, round,
etc.) can be detected in speech (King & Taylor, 2000) . Coleman’s work (2003),
in this volume, demonstrates that evidence can be found in the acoustic sig-
nal that correlates with phonological contrasts, but does not show the reverse:
that this acoustic evidence can be used to infer the values of phonological fea-
tures. Detecting features is only a first step towards speech recognition. What
is missing is a new type of model that can group features into larger units
and account for the observed behaviour of features: asynchrony, spreading,
assimilation and so on.

The idea that the speech signal is the result of a number of production mech-
anisms, with varying degrees of dependence on one another, is attractive for
ASR because we can build a factored model that accounts for this. In such a
model, speech is modelled as the output of a number of underlying processes
(factors), which may optionally be independent of one another. Phonological
features are one factorial system, but we can also define factors acoustically
(e.g. frequency bands) or infer factors from the data, as in models such as the
factorial HMM (Ghahramani & Jordan, 1997) . Whether such models perform
better than non-factorial models – e.g. HMMs – remains to be seen.
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Hawkins’ suggestion that a “speech signal sounds as if it comes from a sin-
gle talker when it is perceptually coherent, meaning that its properties reflect
details of vocal-tract dynamics” (Ogden, Hawkins, House, Huckvale, Local,
Carter, Dankovičová & Heid) could include pronunciation consistency within
speakers as represented in the phonemic transcriptions of words in the lexicon
of a typical ASR system. Although adding pronunciation variation to the lex-
icon can be beneficial, there is still the problem of confusability. The greatest
source of variation is across speakers; within the speech of a single speaker,
there is far less variation, so there is a source of information that current
systems are not using – pronunciation consistency within speakers. So, yes,
variants are needed, but which ones are needed probably depends mainly on
the speaker’s accent, and on the styles of speech being recognised. A recogniser
which uses this information ought to be more accurate than one that doesn’t.

Almost all current ASR systems have models for a manually specified set of
phones – that is, a phonetically well-motivated unit. Bacchiani & Ostendorf
(1999) showed that a unit inventory can be learned entirely from data. Perhaps
a combination of these two approaches would be better than either individ-
ually. How to use phonetic or phonological knowledge without going as far
as specifying exactly what inventory of units to use is an open question. The
choice of unit clearly depends on the acoustic model being used. HMMs and
phones appear to be well matched, but for other models phones may not be
the best choice.

3.2 Speech synthesis

Current unit selection speech synthesis systems achieve highly intelligible and
moderately natural speech. Getting more natural-sounding speech is the next
challenge, and this might mean paying more attention to a number of linguis-
tic phenomena, including phonetic detail. For example, whilst perceptually-
important fine phonetic detail may be of secondary importance for intelli-
gibility, it may be much more important for naturalness. Without a proven
experimental paradigm for measuring naturalness, it’s impossible to know for
sure. Current evaluation methods for synthetic speech are good at measur-
ing intelligibility, but less good at measuring naturalness; this is an area of
ongoing research.

Current systems use purely acoustic (spectral) measures for computing join

cost, reasoning that if the spectral discontinuity is small, the perceptual promi-
nence of the join will also be small. However, it is becoming apparent from
recent work (e.g. Donovan, 2001; Vepa, King & Taylor, 2001) that no sin-
gle spectral measure works well in all situations. Perhaps we need a measure
which pays attention to features with more linguistic basis, like phonological
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features or articulation?

No current systems explicitly pay attention to long-term phonetic effects such
as long-range coarticulation (West, 1999) or the phonetic detail which Hawkins
would argue gives perceptual coherence to the speech signal (Hawkins, 2003, in
this volume). We could incorporate this into the target cost, but may then need
a much larger database of speech to select from in order to find well-matched
candidate units.

4 Conclusions

I have argued that, for phonetics to bring real benefits to automatic speech
recognition and synthesis, the way in which phonetic knowledge is applied
is crucial. We need to use such knowledge at a high level. If speech really is
the product of numerous underlying process, then we would expect factorial
models to be better than HMMs for ASR. If the systematic phonetic detail
that gives speech its perceptual coherence aids listeners’ comprehension, then
synthesis systems that select units with appropriate phonetic detail should
achieve higher intelligibility, and presumably naturalness.
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