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ABSTRACT

In this paper we propose a discriminative approach to acoustic
space dimensionality selection based on maximum entropy mod-
elling. We form a set of constraints by composing the acoustic
space with the space of phone classes, and use a continuous fea-
ture formulation of maximum entropy modelling to select an opti-
mal feature set. The suggested approach has two steps: (1) the se-
lection of the best acoustic space that efficiently and economically
represents the acoustic data and its variability; (2) the combina-
tion of selected acoustic features in the maximum entropy frame-
work to estimate the posterior probabilities over the phonetic labels
given the acoustic input. Specific contributions of this paper in-
clude a parameter estimation algorithm (generalized improved iter-
ative scaling) that enables the use of negative features, the param-
eterization of constraint functions using Gaussian mixture models,
and experimental results using the TIMIT database.

1. INTRODUCTION

The maximum entropy (MaxEnt) principle encourages us to choose
the most unbiased distribution that is simultaneously consistent
with a set of constraints. Typically, the available information about
the system is incomplete, and there is an infinite number of possi-
ble probability distributions that satisfy the constraints. E. T. Jaynes
suggested maximizing Shannon’s entropy criterion subject to the
given constraints to choose a suitable distribution as follows [1]:

When we make inferences based on incomplete in-
formation, we should draw them from that probabil-
ity distribution that has the maximum entropy per-
mitted by the information we do have.

Recently, MaxEnt has been used in the field of Natural Lan-
guage Processing (NLP) as a principled way to combine multiple
sources in a probabilistic framework [2]. In speech recognition,
MaxEnt has been applied to language modelling [3], but there
has been relatively little work in acoustic modelling: Likhodo-
dev and Gao [4] developed a direct model for speech recognition
whose parameters were estimated by MaxEnt, and Macherey and
Ney [5] discriminatively estimated the parameters of a Gaussian
model based speech recognizer using MaxEnt.

In this paper, we propose a general methodology for discrimi-
nant dimensionality reduction. By discriminant analysis we mean
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that the training samples are labelled according their class mem-
bership. Hence, it is a supervised machine learning approach,
which is developed for a continuous feature space. The acous-
tic space is represented by a large number of acoustic features
that have been developed specifically for speech recognition. This
large number of acoustic features is searched to find a set of fea-
tures that are optimal in terms of phoneme class separation. The
selected acoustic features are combined in the MaxEnt framework
to estimate the posterior probabilities over the phonetic labels given
the acoustic input. The MaxEnt constraints will be defined as the
expectations of the transformed acoustic features collected from
the acoustic space. An important consequence of this approach is
that it is possible to infer optimal feature sets on a per-class basis,
while ensuring the comparability of distributions between classes
by summing over the full acoustic feature space.

In the next section, a mathematical treatment for the principle
of Maximum Entropy is presented and in section 3 we introduce
the parameter estimation procedure. Section 4 discusses how to
define and implement the acoustic constraints. In addition, the
process of dimensionality reduction and selection in the MaxEnt
framework is reviewed in section 5. Section 6 introduces the ex-
perimental work and preliminary results on the TIMIT database.
We conclude and discuss further work in section 7.

2. THE MAXIMUM ENTROPY PRINCIPLE

Let y be a discrete variable representing the possible output classes
in a classification problem, and x be an observation affecting the
states of the system. The constrained optimization problem in hand
is to maximize the conditional Shannon entropy:

arg max
p∈C

S(p) = −
X

x

p̃(x)
X

y

pΛ(y | x) ln pΛ(y | x) (1)

subject to

C1 pΛ(y | x) ≥ 0 for all y, x. and
P
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pΛ(y | x) = 1 for all x.
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P

x
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pΛ(y | x)gi(x, y) =

P

x,y
p̃(x, y)gi(x, y) = p̃(gi) for i = 1, 2, . . . , n.

Where S(p) is the expectation of the conditional entropy of the
model with respect to the training database, p̃(x) is the observed
marginal probability, and Λ = {λi} is the set of parameters to
be optimized. Constraint C1 represents the direct constraint from
probability theory. Constraint C2 represents the integration of the
available prior knowledge on the random variables x, y in terms of



the characterizing constraints gi(x, y), which have expected value
p̃(gi).

The maximum entropy problem formalism results in a proba-
bility distribution, which is the log linear or exponential model:

pΛ(y | x) =
1

ZΛ(x)
exp

“

X

i

λigi(x, y)
”

(2)

Where

• λi is the Lagrange multiplier (weighting factor) associated
to the function gi(x, y).

• ZΛ(x) (Zustandsumme) is a normalization coefficient re-
sulting from the natural constraints over the probabilities
summation, commonly called the partition function, and
given by

ZΛ(x) =
X

y

exp
“

X

i

λigi(x, y)
”

The entropy is a concave function of the mean values of the
characterizing constraints p̃(gi) [6]. Hence, the MaxEnt solution
is unique given the empirical mean values of the constraints. Prac-
tically this means that the solution is not sensitive to the initial val-
ues of the model parameters and the constructed model is unique
for a given database in the statistical learning procedure.

It should be noticed that in the absence of any constraint except
the natural constraint, the maximum entropy formalism results in
the flat uniform distribution:

pΛ(y | x) = 1/n. (3)

This result explains the basic philosophy behind maximizing the
entropy as the uniform distribution is the most unbiased distribu-
tion. Integrating constraints results in reduction of the entropy but
the output distribution is the most unbiased distribution consistent
with constraints.

Consider a maximum entropy problem with two constraints
µ and σ2 of a continuous random variable whose probability den-

sity function is square-integrable. In such a case, when the con-
tinuous entropy is maximized, its solution is the normal distribu-
tion. This explains the importance of this distribution and why it
has been frequently used in the application of statistical inference
and why it deserves the adjective “normal”, where this distribu-
tion is the most uncertain and maximizes the entropy [7]. The
strong assumption that the data is normally distributed for the two
constraints µ and σ2 is relaxed by introducing the concept of the
parametric constraints in section 4.

3. PARAMETER ESTIMATION

The purpose of the parameter estimation algorithm is to estimate
the parameters λ1..λn using numerical methods. A modified ver-
sion of the Improved Iterative Scaling (IIS) algorithm [8] was used
to estimate the parameters. It was suggested to us by John Lafferty
[9] to support constraints that may take negative values, which
was a restriction of the original algorithm. Further details about
the mathematical derivation are reported in [10]. The basic idea
behind the IIS algorithm is to make use of an auxiliary function,
which bounds the change in divergence from below after each it-
eration.

The Generalized Improved Iterative Scaling (GIIS) algorithm
proceeds as follows:

1. Let p0
Λ(y | x)=1/n, which is the uniform model, where

λi = 0.0. i = 1, 2, . . . , n

2. Solve the following equation using Newton’s method:
p̃(gi) =
X

x

p̃(x)
X

y

pt
Λ(y | x)gi(x, y) exp

`

δt+1
i si(x, y)M(x, y)

´

3. Update the parameters: λt+1
i = λt

i + δt+1
i

4. If a valid termination condition is achieved then stop else
go to step 2.

Where Mi(x, y) =
P

i
|gi(x, y)| and si(x, y) is the sign of gi(x, y).

Solving the equation in step 2 for each iteration, results in the value
of Maximum Likelihood (ML) step δt+1

i towards obtaining the
MaxEnt global solution. When si(x, y) is positive, step 2 corre-
sponds to the IIS algorithm. Furthermore, it can be shown that the
equation has a unique solution by directly checking its convexity.

4. PARAMETRIC CONSTRAINTS

The description of the constraining characterizing functions is an
optional implementation issue in which the prior knowledge for
different applications is integrated. The characterizing functions
are expected to have different values for different classes and ob-
servations. Hence, the estimated posterior probabilities will have
a meaning over classes. Here we introduce the idea of parametric
constraints to enable the flexible modelling for constraints based
on continuous observations.

These parametric constraints aim to model the high variability
of the observed acoustic features and overcome the strong assump-
tion that the data distribution is Gaussian if we used the acoustic
features directly. The form of the parametric constraints is op-
tional: in this work we have used finite GMMs, which are a flexi-
ble model with a strong and rich history in speech recognition. The
GMMs are estimated per acoustic feature per label using the EM
algorithm [11]. The resulting conditional mixtures will estimate
the soft log likelihood score for an acoustic feature, which will
take the role of MaxEnt constraints over labels classes per event.
The GMMs constraints have the following form:

gi(x, y) = gi(x, y; θ) = Pθ(x | y) (4)

Where

• x is the observed continuous random variable. In acoustic
space, it represents the acoustic features values per frame.

• y is a discrete random variable represents output classes.

• Pθ(x | y) is the likelihood score for conditional GMMs.
The Gaussian mixture is defined as a convex combination of

Gaussian densities. A Gaussian density in a d-dimensional space,
characterized by its mean µ ∈ Rd and d x d covariance matrix Σ
is defined

φθ(x | y) =
1

√
2π

dp

det (Σy)
e−

1

2
(x−µy)T Σ−1

y (x−µy) (5)

where θ denotes the parameters µ and Σ. A k component GMM is
then defined as:

Pθ(x | y) =
k

X

j=1

qjφθj(x | y) (6)

with
Pk

j=1 qj = 1 and for j ∈ {1, . . . , k} : qj ≥ 0.



5. DISCRIMINATIVE CONSTRAINT SELECTION AND
COMBINATION

In the MaxEnt solution, the Lagrange multipliers, which may be
interpreted as the importance of each constraint, are the outcome
of the training procedure. In many cases, the number of the avail-
able constraints may be large. Hence, the estimation of the MaxEnt
model parameters may be computationally intensive or impracti-
cal. Obtaining the MaxEnt solution in incremental steps is a practi-
cal way to evaluate the importance of the evaluated constraints. In
particular, this methodology may be considered as dimensionality
reduction and selection. Unfortunately, evaluating the importance
of every constraint by building a MaxEnt model incrementally will
invalidate the previous estimate of the model parameters. Thus all
the model parameters must be re-estimated at each step, which is
computationally intensive.

Della Pietra et al [8] developed an efficient solution to the
problem in which the Lagrange multipliers of the constraints are
kept fixed while evaluating a given constraint. This yields a great
computational saving as the problem is reduced to one dimen-
sional optimization problem. This inductive approach is based on
a measure referred to as the constraint gain, where the gain of a
constraint is usually measured in terms of the increase of the log-
likelihood of the training data by adding the evaluated constraint:

Gaingi
(β) = 4Lgi

≈ L(p̂gi
(y | x)) − L(p(y|x))

≈
X

x

p̃(x)logZgi
(x) + βp̃(gi)

(7)

where p̂gi
(y | x) is an approximate MaxEnt model constructed

after adding the constraint gi and β is the estimated Lagrange
multiplier for an evaluated constraint associated with the function
gi(x, y).

6. EXPERIMENTAL WORK

We have performed experiments using the TIMIT database. In
these experiments we have used the TIMIT phone labels as the
classes in the MaxEnt model. The 61 phone classes in TIMIT were
reduced to a set of 39 labels in the standard way. We used the 420
speaker training set, analyzed using a 32ms Hamming window at
a 16 ms fixed frame rate, resulting in 880 564 frames.

We extracted a large number of acoustic features: MFCCs,
PLP, and RASTA-PLP, along with the first and second order deriva-
tive features for each set. This resulted in a total of 117 (39×3)
acoustic features. The set of MaxEnt constraints were then ob-
tained by taking the product of the class and acoustic feature spaces,
resulting in a total of 4563 (39×117) MaxEnt constraints:

gy′(x, y) =



Pθ(x | y) if y′ = y
0 otherwise

The parametric GMMs constraints were estimated for each
acoustic feature (one dimensional GMMs). Each GMM had four
Gaussian components. Incremental constraint selection was ap-
plied to select the best 1600 acoustic constraints. This is approxi-
mately equivalent to the number of constraints in a standard system
with 39 phone classes and 39 acoustic features. In this work we
aimed to find the optimal set of constraints, without requiring an
equal number of acoustic features per phone.
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Fig. 1. The reduction of conditional entropy due to the incremental
integration of the acoustic constraints.

The corpus was sampled to calculate the model expectation
using the training procedure described in section 3. In addition,
at each incremental step the best 20 constraints were selected and
the model parameters re-estimated. As shown in figure 1, integrat-
ing new constraints results in reduction of the conditional entropy.
This implies an increase in the likelihood of the model with re-
spect to the training data. The reduction of the entropy became
insignificant after adding about 1200 constraints, corresponding to
an average 32 features per phone. The silence phone was not in-
cluded in the constraint selection process.

Figure 2 shows the number of acoustic features (constraints)
selected for each phone class. Since 1600 constraints were se-
lected, the expected number of features per class was 40 (2.5%).
Those phones with a high degree of variation were represented by
more features, selected by the discriminative process. For instance,
the unvoiced fricative /s/ was represented by 96 constraints (6% of
the total).

Most of the three types of the acoustic features have been
chosen during the selection process to represent different phone
classes. The PLP features represent approximately about 40% of
the selected constraints. The MFCC constraints represent about
33% of the selected features. The low coefficients (plp01, plp02,
mfcc01, mfcc02 etc..) from the acoustic features are strongly se-
lected during the selection process as shown in figure 3. The same
behaviour is noticed for the low order coefficients of the deriva-
tives of the acoustic features.

7. CONCLUSION

In this paper we present an approach for discriminative feature se-
lection based on MaxEnt modelling, and have demonstrated an ap-
plication to dimensionality reduction in the acoustic space. In this
approach the acoustic observations per class were formulated as
parametric constraints, using GMMs. This aims to relax the strong
assumption that the data is normally distributed if the acoustic fea-
tures are used directly. The MaxEnt principle addresses two fun-
damental questions: What are the important features required to
model the acoustic information? How should these features be
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Fig. 3. Relative usage for different acoustic features during the
selection process.

combined? We have shown that phonetic classes can be mod-
elled with variable length acoustic feature vectors, selected auto-
matically using the discriminative MaxEnt framework. Our future
work will concentrate on optimal and efficient training and the in-
tegration of estimated posterior probabilities of MaxEnt Models
within HMM based systems for continuous speech recognition.
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