
A Hybrid MaxEnt/HMM based ASR System

Yasser Hifny∗, Steve Renals, Neil D. Lawrence

Department of Computer Science,
The University of Sheffield , 211 Portobello Street,

Sheffield S1 4DP, UK.
{y.hifny, n.lawrence}@dcs.shef.ac.uk, s.renals@ed.ac.uk

Abstract
The aim of this work is to develop a practical framework, which
extends the classical Hidden Markov Models (HMM) for con-
tinuous speech recognition based on the Maximum Entropy
(MaxEnt) principle. The MaxEnt models can estimate the pos-
terior probabilities directly as with Hybrid NN/HMM connec-
tionist speech recognition systems. In particular, a new acoustic
modelling based on discriminative MaxEnt models is formu-
lated and is being developed to replace the generative Gaus-
sian Mixture Models (GMM) commonly used to model acoustic
variability. Initial experimental results using the TIMIT phone
task are reported.

1. Introduction
The research in the acoustic modelling has many directions to
enhance the acoustic frame scoring and to replace the Gaussian
Mixture Models generative models. The generative models es-
timate the likelihoods but lack the discrimination since they do
not give direct estimates of posterior probabilities of the classes
given the acoustics. One of the most useful methods to over-
come this problem was to replace GMM likelihoods by Neural
Networks (NN) acoustic classifier [1, 2].

The maximum entropy (MaxEnt) principle encourages us
to choose the most unbiased distribution that is simultaneously
consistent with a set of constraints. Typically, the available in-
formation about the system is incomplete, and there is an in-
finite number of possible probability distributions that satisfy
the constraints. E. T. Jaynes suggested maximizing Shannon’s
entropy criterion subject to the given constraints to choose a
suitable distribution as follows [3]:

When we make inferences based on incomplete
information, we should draw them from that
probability distribution that has the maximum en-
tropy permitted by the information we do have.

MaxEnt has been used in the field of Natural Language Pro-
cessing (NLP) as a principled way to combine multiple sources
in a probabilistic framework [4]. In speech recognition, Max-
Ent has been applied to language modelling [5], but there has
been relatively little work in acoustic modelling: Likhododev
and Gao [6] developed a rank based direct model for speech
recognition whose parameters were estimated by MaxEnt, and
Macherey and Ney [7] discriminatively estimated the parame-
ters of a Gaussian model based speech recognizer using Max-
Ent. In a previous work, we evaluated the importance of acous-
tic features using MaxEnt incremental acoustic space dimen-
sionality selection and combination[8].
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In this paper, a high dimensional acoustic space is con-
structed by a large number of acoustic constraints. This aims
to simplify the acoustic classification problem as the high di-
mensional spaces are more likely to be linearly separable than
low dimensional spaces. The new constraints constructed from
this high dimensional feature space are combined in the MaxEnt
framework to estimate the posterior probabilities over the pho-
netic labels given the acoustic input. Integrating these posterior
probabilities with the HMM systems will lead to the a form of
hybrid MaxEnt/HMM acoustic modelling.

In the next section, a mathematical treatment for the prin-
ciple of MaxEnt is presented and in section 3 we introduce
the parameter optimization procedure for the MaxEnt models.
Section 4 discusses how to define and implement the acoustic
constraints. Section 5 discusses the sparse MaxEnt modelling
for better generalization performance. In Section 6, the Hy-
brid MaxEnt/HMM system is described. Section 7 introduces
the experimental work and preliminary results on the TIMIT
database. We conclude and discuss further work in section 8.

2. The Maximum Entropy Principle
Let s be a discrete variable representing the possible output
classes/states in a classification problem, and o be an observa-
tion affecting the states of the system. The constrained opti-
mization problem at hand is to maximize the conditional Shan-
non entropy:

arg max
p∈C

H(p) = −
∑

o

p̃(o)
∑

s

pΛ(s | o) ln pΛ(s | o) (1)

subject to

C1 pΛ(s | o) ≥ 0 for all s, o. and
∑

s pΛ(s | o) = 1 for all o.

C2
∑

o p(o)
∑

s pΛ(s | o)gi(o, s) =∑
o,s p̃(o, s)gi(o, s) = p̃(gi) for i = 1, 2, . . . , n.

Where H(p) is the expectation of the conditional entropy of the
model with respect to the training database, p̃(o) is the observed
marginal probability, and Λ = {λi} is the set of parameters
to be optimized. Constraint C1 represents the direct constraint
from probability theory. Constraint C2 represents the integra-
tion of the available prior knowledge on the random variables
o, s in terms of the characterizing constraints gi(o, s), which
have expected value p̃(gi).

The maximum entropy formalism results in a probability
distribution, which is the log linear or exponential model:

pΛ(s | o) =
1

ZΛ(o)
exp

( ∑
i

λigi(o, s)
)

(2)

where



• λi is the Lagrange multiplier (weighting factor) associ-
ated to the function gi(o, s).

• ZΛ(o) (Zustandsumme) is a normalization coefficient re-
sulting from the natural constraints over the probabilities
summation, commonly called the partition function, and
given by

ZΛ(o) =
∑

s

exp
( ∑

i

λigi(o, s)
)

The entropy is a concave function of the mean values of
the characterizing constraints p̃(gi) [9]. Hence, the MaxEnt so-
lution is unique given the empirical mean values of the con-
straints. Practically this means that the solution is not sensitive
to the initial values of the model parameters and the constructed
model is unique for a given database in the statistical learning
procedure.

It should be noted that in the absence of any constraint other
than the natural constraint, the maximum entropy formalism re-
sults in the flat uniform distribution:

pΛ(s | o) = 1/n. (3)

This result explains the basic philosophy behind maximizing
the entropy as the uniform distribution produces the most un-
biased distribution. Integrating constraints results in reduction
of the entropy but the output distribution is the most unbiased
distribution consistent with constraints.

Consider a maximum entropy problem with two constraints
µ and σ2 of a continuous random variable whose probability
density function is square-integrable. In such a case, when the
continuous entropy is maximized, its solution is the normal dis-
tribution. This explains the importance of this distribution and
why it has been frequently used in the application of statisti-
cal inference and why it deserves the adjective “normal”, where
this distribution is the most uncertain and maximizes the en-
tropy [10]. The strong assumption that the data is normally
distributed for the two constraints µ and σ2 is relaxed by in-
troducing the concept of the parametric constraints in section
4.

3. MaxEnt Optimization
The MaxEnt model estimates the posterior probability of the
states given the acoustic observations. Hence, these models
are trained by discriminative methods directly. We train the
MaxEnt models using the Conditional Maximum Likelihood
(CML) criterion, equation (4), which maximizes the likeli-
hood of the empirical model estimated from the training data,
D = {(ot, st)}T

t=1, with respect to the hypothesized MaxEnt
model. The optimal parameters, Λ∗ estimated by maximizing
CML criterion imply minimization of the cross entropy between
the data model and the hypothesized MaxEnt model.

Λ∗ = arg max
Λ

Lp̃(Λ) (4)

3.1. Parameter Estimation

The purpose of the parameter estimation algorithm is to esti-
mate the parameters λ1..λn using numerical methods. A mod-
ified version of the Improved Iterative Scaling (IIS) algorithm
[11] was used to estimate the parameters. It was suggested to us
by John Lafferty [12] to support constraints that may take neg-
ative values, which was a restriction of the original algorithm.
Further details about the mathematical derivation are reported

in [13]. The basic idea behind the IIS algorithm is to make use
of an auxiliary function, which bounds the change in divergence
from below after each iteration.

The Generalized Improved Iterative Scaling (GIIS) algo-
rithm proceeds as follows:

1. Let p0
Λ(s | o)=1/n, which is the uniform model, where

λi = 0.0. i = 1, 2, . . . , n

2. Solve the following equation using Newton’s method:
p̃(gi) =∑
o,s

p̃(o)pt
Λ(s | o)gi(o, s) exp

(
δt+1

i si(o, s)M(o, s)
)

3. Update the parameters: λt+1
i = λt

i + δt+1
i

4. If a valid termination condition is achieved then stop else
go to step 2.

where M(o, s) =
∑

i |gi(o, s)| and si(o, s) is the sign of
gi(o, s). Solving the equation in step 2 for each iteration, re-
sults in the value of Maximum Likelihood (ML) step δt+1

i to-
wards obtaining the MaxEnt global solution. When si(o, s) is
positive, step 2 corresponds to the IIS algorithm. Furthermore,
it can be shown that the equation has a unique solution by di-
rectly checking its convexity.

3.2. Efficient MaxEnt Training

In this work, the MaxEnt constraints are the acoustic match-
ing scores evaluated using a large number of Gaussian Models.
These constraints are defined as parametric or generative con-
straints as described in section 4 and they are expected to cover
the whole acoustic space with a suitable resolution. Hence, the
constraints have positive values and this will lead to efficient
update equations. By dividing the constraint values gi(o, s) by
the Mi(o, s), the new Mi(o, s) will equal 1 for each observa-
tion. This may be interpreted as calculating a score similar to a
posterior probability over the constraints scores. Hence, solving
the GIIS equation will reduce to

δt+1
i = log

p̃(gi)∑
o p̃(o)

∑
s pt

Λ(s | o)gi(o, s)
(5)

Although equation (5) does not take the full GIIS step towards
the global solution, it is very efficient since it does not imply
root finding using the Newton Raphson method. Hence, it was
chosen for parallel computing facilities as it is very simple. In-
deed, this equation is a special case of Generalized Iterative
Scaling (GIS) developed by Darroach and Ratliff,[14], where
maxT M(o, s) = 1.

4. Parametric Constraints
The description of the constraining characterizing functions is
an optional implementation issue in which the prior knowledge
for different applications is integrated. These parametric con-
straints aim to model the high variability of the observed acous-
tic features and overcome the strong assumption that the data
distribution is Gaussian if we used the acoustic features directly.
The form of the parametric constraints is optional: in this work
we have used finite GMMs, which are a flexible model with a
strong and rich history in speech recognition.

The diagonal GMMs are estimated per state using the EM
algorithm [15]. The mixture weights are then ignored as they
are not related to discrimination. Hence, the resulting GM mod-
els will estimate the likelihood score for an observation, which



will take the role of MaxEnt constraints over labels classes per
event. The GM constraints have the following form:

gi(o, s) = gi(o, s; θ) = pi(o | θ) = Ni(µ, Σ) (6)

where

• o is the observed continuous random variable. In acous-
tic space, it represents the acoustic features values per
frame.

• s is a discrete random variable representing output
classes or states.

• pi(o | θ) is the likelihood score for the GM parametric
constraint.

5. Sparse MaxEnt Models
In the MaxEnt solution, the Lagrange multipliers, which may
be interpreted as the importance of each acoustic constraint per
each state, are the outcome of the training procedure. In order
to model the variability of the high dimensional acoustic space,
large number of parametric constraints (GM) are usually uti-
lized during the training procedure. Training a large number
of parameters will lead to the overfitting phenomenon and poor
generalization.

One way to handle this problem is to use a greedy method-
ology to evaluate the importance of the constraints [8]. In this
work, we add a penalty term to the CML criterion in order to
control the model complexity as usually done in the Regular-
ization framework as shown in equation (7).

Λ∗ = arg max
Λ

Lp̃(Λ) − βΩ(Λ) (7)

The Ω(Λ) is usually explained as imposing a prior distri-
bution over the model parameters in the Bayesian framework.
Weight decay regularizer form, Ω(Λ)2 = sumn‖λi‖2, is com-
monly used to control the complexity and it implies zero mean
gaussian priors over the model parameters in the Bayesian set-
ting [16]. However, the gaussian prior does not lead to a sparse
solution as the parameter values do not approach zero after the
training procedure. Also, the gaussian prior implies that the
MaxEnt parameters can be either positive or negative.

We utilize the MaxEnt models as a combination stage for
the parametric constraints scores. Hence, it may be desirable
to ensure that λi >= 0 for this special case as the positive
weighted summations of the constraints are only useful to com-
pute the posterior probability. The Lasso regularizer, where
q = 1, Ω(Λ)1 = sumn‖λi‖ is often used to increase the spare-
ness of the model. This prior implies an independent double
exponential (or Laplace) distribution for each parameter, with
density β

2
exp(−β|λi|) [17]. When λi >= 0, the double expo-

nential distribution will be an exponential distribution.
Adding the complexity term to the CML criterion will lead

to a minor modification to the original update equation (5) re-
sulting in the new regularized equation (8). This definitely
maintains the convexity of the objective function.

δt+1
i = log

p̃(gi) − β∑
o p̃(o)

∑
s pt

Λ(s | o)gi(o, s)
(8)

Clearly, equation (8) suggests that the unreliable constraints
in terms of their empirical expectations will be forced to zero.
The additional constraint that λi >= 0 is imposed after each
iteration.
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Figure 1: The proposed Hybrid MaxEnt/HMM system for
TIMIT Task.

6. Hybrid MaxEnt/HMM Decoding
Hybrid NN/HMM systems were introduced to decode the
speech signal based on the posterior probability estimation
from neural network classifiers [1]. As the HMM models use
class conditional densities for observation scoring, such systems
compute a scaled likelihood score from the posteriors probabil-
ities over the states as shown in equation (9).

pΛ(o | s) � PΛ(s | o)

P (s)
(9)

where P (s) is estimated from the empirical data and theoreti-
cally, the estimated conditional densities pΛ(o | s) make little
assumptions with respect to the GMM densities.

Here, the MaxEnt modelling is used to estimate the poste-
rior probabilities over the states. These probabilities are asso-
ciated with an HMM state for each phone. A simple bigram
decoder is used to decode a phone task given the acoustic ob-
servations. The proposed system is shown in figure (1).

7. Experimental Work
We have performed experiments using the TIMIT database. In
these experiments we have used the TIMIT phone labels as the
classes in the MaxEnt model. The 61 phone classes in TIMIT
were reduced to a set of 39 labels in the standard way. We
used the 420 speaker training set, analyzed using a 25ms Ham-
ming window at a 10 ms fixed frame rate, resulting in 1,410,069
frames. The MFCCs acoustic feature, along with the first and
second order derivative features are extracted for each frame.
The acoustic features were models with 13000 parametric GM
constraints.

The normalized score over the constraints per frame are
computed and saved in advance for each utterance in the TIMIT
database. The empirical expectations for the MaxEnt con-
straints are then computed. The constraints with small p̃(gi)
are removed from the initial model. The resultant constraint
count was 258911 constraints. Calculating the model expec-
tations over the constraints is the most expensive part of the
training procedure. The MaxEnt model training procedure con-
verged after 10 iterations using the algorithm described in sec-
tion 3. The training frame accuracy was 69% over the training
set and 63% over the test data.



The acoustic frame prior was not modelled during this
work. Hence, the scaled likelihood is approximated pΛ(o |
s) � PΛ(s | o) with the posterior probabilities calculating di-
rectly during the HMM decoding. Each phone was represented
by three states left to right HMM. The three HMM states share
the same scoring for each phone posterior estimated from Max-
Ent model.

A bigram phone model was estimated from the TIMIT
training set. The whole TIMIT test set was used in the ex-
periment. The test data set was decoded using HMM simple
decoder. The Langauge Model (LM) and the Acoustic Model
(AM) scaling factors were fixed to 1 and 6, respectively. The
basic decoding results are summarized in Table 1.

Table 1: Timit decoding results.

Corr Sub Del Ins Acc

72.9 16.9 10.2 6.7 66.2

The reported phone accuracy (66.2%) is comparable to
many published results on TIMIT phone task. However, these
results are still lower those reported by the GMM/HMM HTK
system (72.3%) [18] and the Recurrent Neural Network (RNN)
phone accuracy (75%) [19].

8. Conclusions
In this paper we present an approach to model the acoustic
spaces through for the MaxEnt modelling framework. The work
aims to relax the inaccurate assumptions associated with the
state of art GMM/HMM based systems for continuous speech
recognition. The paper addresses issues related to parameter
estimation and increasing model spareness.

Currently, there is ongoing engineering work to make the
system is more efficient in utilizing the parameters and selecting
discriminative parametric constraints. This may lead to better
recognition performance.
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