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Abstract––The analysis of scenarios in which a number of
microphones record the activity of speakers, such as in a round-
table meeting, presents a number of computational challenges.
For example, if each participant wears a microphone, it can
receive speech from both the microphone's wearer (local speech)
and from other participants (crosstalk). The recorded audio can
be broadly classified in four ways: local speech, crosstalk plus
local speech, crosstalk alone and silence. We describe two exper-
iments related to the automatic classification of audio into these
four classes. The first experiment attempted to optimise a set of
acoustic features for use with a Gaussian mixture model (GMM)
classifier. A large set of potential acoustic features were consid-
ered, some of which have been employed in previous studies. The
best-performing features were found to be kurtosis, ‘fundamen-
talness’ and cross-correlation metrics. The second experiment
used these features to train an ergodic hidden Markov model
classifier. Tests performed on a large corpus of recorded meet-
ings show classification accuracies of up to 96%, and automatic
speech recognition performance close to that obtained using
ground truth segmentation. 

I. INTRODUCTION

Morgan et al. [1] have referred to processing spoken lan-
guage in meetings as a nearly “automatic speech recognition-
complete” problem:  most problems in spoken language
processing can be investigated in the context of meetings.
Meetings are characterised by multiple interacting partici-
pants, whose speech is conversational and overlapping.  A
number of laboratories have explored the recognition and
understanding of meetings using audio and audio-visual
recordings, in particular the International Computer Science
Institute (ICSI; e.g., [2]) and Carnegie Mellon University’s
Interactive Systems Laboratories (e.g., [3]).  Such recordings
are typically made in an instrumented meeting room,
equipped with sensors such as microphones (close-talking
and distant), video cameras, and video projector capture.  For
instance, the meetings recorded at ICSI took place in a con-
ference room with up to 12 participants seated around a long
narrow table. Audio was acquired from head mounted micro-
phones (one per participant), desktop omnidirectional micro-

phones and two inexpensive microphones as might be found
on a palmtop computer (see [2]). 

To automatically transcribe what was said in a meeting is a
difficult task, since speech in meetings is typically informal
and spontaneous, with phenomena such as backchannels,
overlap and incomplete sentences being frequently observed.
Shriberg et al. [4] have demonstrated that speakers overlap
frequently in multi-party conversations such as meetings. In
an analysis of the ICSI meetings corpus they reported that 6-
14% of words spoken were overlapped by another speaker
(not including backchannels, such as “uh-huh”). In automatic
speech recognition (ASR) experiments, they showed that the
word error rate (WER) of overlapped segments was 9% abso-
lute higher than for non-overlapped segments in the case of
headset microphones (with a WER increase of over 30%
absolute for lapel microphones). Further, they were able to
demonstrate that this increase in WER mainly occurred
because crosstalk (non-local speech received by a local
microphone) was recognized as local speech. The accurate
identification of speaker activity and overlap is a useful fea-
ture in itself: for instance patterns of speaker interaction can
provide valuable information about the structure of the meet-
ing [5].

Since each participant in a meeting is recorded on a sepa-
rate microphone, speech activity detection could be carried
out using a simple energy threshold (e.g, [6]). However, this
is impractical for a number of reasons. Firstly, it is common
for speech from a microphone’s owner to be contaminated by
speech from another participant sitting close by. Such cross-
talk is a major problem when lapel microphones are used but
it is still a significant problem with head-mounted micro-
phones. Secondly, the participants in such meetings are usu-
ally untrained in the use of microphones and breath and
contact noise are frequently observed. Finally, it is common
for a channel to exhibit a significant drop in energy during a
single speaker turn if that participant moves their head to
address a neighbour, thus altering the mouth-microphone cou-
pling.

In this paper we are concerned with developing a method
for detecting speech and crosstalk in multiparty meetings.
Specifically, we describe a classifier which labels segments of
a signal as being either local or non-local speech, and will
also determine whether the local speech has been contami-
nated by crosstalk.  This task is more challenging than classi-
cal speech detection since it is necessary to determine
whether one or more speakers are active concurrently in addi-
tion to detecting each incidence of speech activity.
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Previous approaches to the detection of crosstalk in audio
recordings have included the application of higher-order sta-
tistics, signal processing techniques and statistical pattern rec-
ognition.  LeBlanc and de Leon [7] addressed the problem of
discriminating overlapped speech from non-overlapped
speech using the signal kurtosis. They demonstrated that the
kurtosis of overlapped speech is generally less than the kurto-
sis of isolated utterances, since – in accordance with the cen-
tral limit theorem – mixtures of speech signals will tend
towards a Gaussian distribution. This statistical property has
also been used to identify reliable frames for speaker identifi-
cation in the presence of an interfering talker [8].

A variety of approaches based on the periodicity of speech
have been proposed for the detection of crosstalk and the sep-
aration of multiple speakers (e.g., [9]). Morgan et al. [10] pro-
posed a harmonic enhancement and suppression system for
separating two speakers. The pitch estimate of the ‘stronger
talker’ is derived from the overlapping speech signal and the
stronger talker’s speech is recovered by enhancing its har-
monic frequencies and formants. The weaker talker’s speech
is then obtained from the residual signal created when the
harmonics and formants of the stronger talker are suppressed.
However, this system fails when three or more speakers are
active: it is only able to extract the stronger talker’s speech.

Changes to the harmonic structure of a signal can also be
used to detect crosstalk. Krishnamachari et al. [11] proposed
that such changes could be quantified by the ratio of peaks to
valleys within the autocorrelation of the signal spectrum – the
so-called spectral autocorrelation peak valley ratio (SAPVR).
For single speaker speech, a strongly periodic autocorrelation
function is produced due to the harmonic structure of the
spectrum. However, when more than one speaker is active
simultaneously, the autocorrelation function becomes flatter
due to the overlapping harmonic series. 

In statistical pattern recognition approaches, examples of
clean and overlapping speech are used to train a classifier. For
example, Zissman et al. [12] trained a Gaussian classifier
using mel-frequency cepstral coefficients (MFCCs) to label a
signal as being target-only, jammer-only or two-speaker (tar-
get plus jammer). Although 80% correct detection was
recorded, their system never encountered silence or more than
two simultaneous speakers. 

These approaches attempt to identify or separate regions of
speech in which only two speakers are active simultaneously
but are insufficient for meeting scenarios where a large
number of participants are each recorded on an individual
channel which, due to the microphone characteristics, can
contain significant crosstalk. To deal with speech detection in
this multi-channel environment, Pfau et al. [13] proposed a
speech / nonspeech detector using an ergodic hidden Markov
model (eHMM). The eHMM consisted of two states – speech
and nonspeech – and a number of intermediate states which
enforced time constraints on transitions. Each state was
trained using features such as critical band loudness values,
energy and zero crossing rate. To process a meeting, the
eHMM created a preliminary speech / nonspeech hypothesis
for each channel. For regions in which more than one channel
was hypothesised as active, the short-time cross-correlation
was computed between all active channel pairs to assess their

similarity. For each pair which exhibited high similarity (i.e.,
the same speaker was active in both channels), the channel
with the lower energy was assumed to be crosstalk. Any
remaining regions for which two or more channels were
labelled as speech were presumed to correspond to overlap-
ping speakers. 

In contrast to previous approaches which exhibit channel-,
speaker- or environment-dependencies, we present a method
that achieves a reliable classification regardless of the room
in which the meeting is recorded, the identities of the individ-
ual speakers and the overall number of participants.  This
approach is based on the principles used by [13] but contains
novel enhancements. The number of classification categories
for each channel is increased from two (speech / nonspeech)
to the four shown in Table 1. These additional classes
increase the flexibility of the system and more closely guide
future analysis (such as enhancement of crosstalk-contami-
nated speech).  Additionally, we have investigated a range of
possible acoustic features for the eHMM (including cross-
correlation) to determine which combination provides the
optimum classification performance for each channel classifi-
cation. We have evaluated our approach on the same data set.
We also report ASR results using our multichannel speech
activity detector as a preprocessing stage.

II. ACOUSTIC FEATURES

Some features were drawn from previous speech activity
and crosstalk detection work; additionally, we identified a
number of other features which are suited to analysing the
differences between isolated and overlapping speech. Each
feature was calculated over a 16 ms Hamming window with a
frame shift of 10 ms, unless otherwise stated.

A. MFCC, Energy and Zero Crossing Rate

Similar to [13], MFCC features for 20 critical bands up to
8 kHz were extracted. MFCC vectors are used since they
encode the spectral shape of the signal (a property which
should change significantly between the four channel classifi-
cations in Table 1). The short-time log energy and zero cross-
ing rate (ZCR) were also computed. 

B. Kurtosis

Kurtosis is the fourth order moment of a signal divided by
the square of its second order moment. It has been shown that
the kurtosis of overlapping speech is generally less than the

Label Description

S Local channel (‘speaker alone’)

SC Local channel speaker concurrent with one or more 
other speakers (‘speaker plus crosstalk’)

C One or more non-local speakers (‘crosstalk’)

SIL No speakers (‘silence’)

Table 1: The four broad categorisations of audio used in the present study.
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kurtosis of isolated speech utterances [7]. Here, a 160 ms
window, centred on the same points as the 16 ms window,
was used to allow a more accurate estimate of the short-time
signal kurtosis. The frequency-domain kurtosis (i.e. the kurto-
sis of the magnitude spectrum) was also computed using a 16
ms window.

C. Fundamentalness

Kawahara et al. [14] describe an approach to estimating
the ‘fundamentalness’ of an harmonic. Their technique is
based on amplitude modulation (AM) and frequency
modulation (FM) extracted from the output of a bandpass
filter analysis.

When centered at different frequencies, the analysing filter
will encompass a different number of harmonic components.
Fundamentalness is defined as having maximum value when
the FM and AM modulation magnitudes are minimum, which
corresponds to the situation when the minimum number of
components are present in the response area of the filter (usu-
ally just the fundamental component; see Fig. 1(a)). Although
this technique was developed to analyse isolated speech (see
[14], p. 196, eqns 13-19), the concept that a single fundamen-
tal produces high fundamentalness is useful here: if more than
one fundamental is present (see Fig. 1(b)), interference of the
two components introduces modulation, thus decreasing the
fundamentalness measure. Such an effect will arise when two
or more speakers are active simultaneously, giving rise to
overlapping harmonic series. Here, we compute the maxi-
mum value of the fundamentalness measure for centre fre-
quencies between 50 Hz and 500 Hz. 

D. Spectral Autocorrelation Peak-Valley Ratio

Spectral Autocorrelation Peak-Valley Ratio (SAPVR) [11]
is computed from the autocorrelation of the signal spectrum
obtained from a short-time Fourier transform. The measure is
the ratio of peaks to valleys within the spectral autocorrela-
tion. Specifically, the metric used here is based on SAPVR-5
[15].

E. Pitch Prediction Feature

The pitch prediction feature (PPF) was developed for the
task of discriminating between single speaker speech and two
speaker speech [16]. The first stage computes 12-th order lin-
ear prediction filter coefficients (LPCs) which are then used
to calculate the LP residual (error signal). The residual is

smoothed using a Gaussian shaped filter after which an auto-
correlation analysis identifies periodicities between 50 Hz
and 500 Hz. Potential pitch peaks are extracted by applying a
threshold to this function. The final PPF measure is defined as
the standard deviation of the distance between successive
peaks. If a frame contains a single speaker, a regular sequence
of peaks will occur in the LP residual which correspond to
glottal closures. Therefore, the standard deviation of the inter-
peak differences will be small. Conversely, if the frame con-
tains two speakers of different fundamental frequency, glottal
closures of both speakers will be evident in the residual and
the standard deviation of the inter-peak differences will be
higher. In order to allow direct comparison between our
approach and that of [16], a 30 ms window was used.

F. Features Derived From Genetic Programming

A genetic programming (GP) approach (see [17] for a
review) was also used to identify frame-based features that
could be useful for signal classification. The GP engine’s
function set included standard MATLAB functions such as
fft, min, max, abs, kurtosis, and additional functions
such as autocorr (time-domain autocorrelation) and nor-
malize (which scaled a vector to have zero mean and unit
variance). A population of 1000 individuals was used, with a
mutation rate of 0.5% and crossover rate of 90%. 

Individuals were evaluated by training and testing a Gaus-
sian classifier on the features derived from each expression
tree, using a subset of the data described in section IV. Suc-
cessive generations were obtained using fitness-proportional
selection. The GP engine identified several successful fea-
tures, of which three were included in the feature selection
process:
GP1: rms(zerocross(abs(diff(x))))
GP2: max(autocorr(normalize(x)))
GP3: min(log10(abs(diff(x))))
where diff calculates differences between adjacent ele-
ments of x and zerocross returns 1 at the points at which
the input either changes sign or is zero and returns 0 other-
wise. Interestingly, GP discovered several features based on
spectral autocorrelation (see section II-D) but these were
never ranked highly.

G. Cross-Channel Correlation

Other features were extracted using cross-channel correla-
tion. For each channel i, the maximum of the cross-channel
correlation Cij(t) at time t between channel i and each other
channel j was computed:

(1)

where τ is the correlation lag, xi is the signal from channel i,
xj is the signal from channel j, P is the window size and w is a
Hamming window. From this set of correlation values for
channel i, the unnormalised and normalised minimum, maxi-
mum and mean values were extracted and used as individual
features.

log f

Fig. 1.  Schematic illustration of the fundamentalness metric. (a) For single
speaker speech, the analysing filter can isolate the fundamental component.
The lack of modulation in the filter output gives rise to a high
fundamentalness value. (b) For dual-speaker speech, harmonics from both
speakers fall within the response area of the analysing filter. The resulting
output of the filter is modulated, giving rise to a lower fundamentalness
measure. After [14], Fig. 11 with permission from Elsevier.
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Two forms of normalisation were used. In the first, the fea-
ture set for channel i was divided by the frame energy of
channel i. The second was based on spherical normalisation,
in which the cross correlation Cij is divided by the square root
of the autocorrelations for channels i and j plus some non-
zero constant to prevent information loss. Spherical normali-
sation converts the cross-channel correlation Cij(t) to a cosine
metric based solely on the angle between the vectors [xi(t) ...
xi(t-P+1)]T and [xj(t-τ) ... xj(t-τ-P+1)]T. On this scale the
value of the normalised cross correlation of two identical sig-
nals would be one, while different signals would yield a value
less than one. A full derivation may be found in [18].

III. STATISTICAL FRAMEWORK

The crosstalk classifier consists of a four state eHMM in
which each state corresponds to one of the four categories
given in Table 1.

The probability density function p(x) of each state is mod-
elled by a Gaussian mixture model (GMM):

(2)

where X is the multi-dimensional feature vector and G is the
number of Gaussian densities Φi, each of which has a mean
vector µi, covariance matrix Σi and mixing coefficient pi. For
simplicity, we assume a diagonal covariance matrix. For each
state labelled S, C, SC and SIL the value of G was 20, 5, 20
and 4 respectively, determined by tests on a development set.
Each GMM was trained using the expectation-maximisation
(EM) algorithm (e.g., [19]).

The likelihood of each state k having generated the data Xt
at time frame t is combined with transition probabilities to
determine the mostly likely state St:

. (3)

The transition probabilities were computed directly from
labels in the training set.

During classification of multi-channel meeting data, each
channel is classified by a different eHMM in parallel (see Fig.
2). This allows a set of transition constraints to be dynami-
cally applied, such that only legal combinations of channel

classifications are possible. For example, it is illegal for more
than one channel to be classified as S (speaker alone): if more
than one speaker is active the correct classification would be
SC (speaker plus crosstalk) for channels containing active
speakers. Such constraints are applied in two stages. The first
stage determines the likelihood of each cross-channel classifi-
cation combination from the legal combinations. In other
words, we define an eHMM state space in which the observa-
tions correspond to the per-channel eHMM states. When con-
sidering m observations (audio channels), the state space
contains all permutations of:
• S (m-1)C
• qSC nC
• mSIL
where 2 ≤ q ≤ m and n = m-q. For example, a legal combina-
tion for a four channel meeting could be ‘S C C C’.

The second stage reduces the size of the state space. If at
least one channel is classified as non-silence by the initial
GMM classifier, it is assumed that none of the other channels
can be silent because crosstalk will occur. Furthermore, it was
observed empirically on a validation set that speaker-alone
GMM classification had a significantly higher accuracy than
the other three categories. Hence, if any GMM-based frame
classification was speaker-alone, the eHMM state space was
limited to those states including a speaker-alone label.

When considering the discrimination results of a classifier
over two classes, it is unlikely that a perfect separation
between the two groups will occur, hence a decision boundary
is necessary. A receiver operating characteristic (ROC) curve
shows the discriminatory power of a classifier for a range of
decision boundary values: each point on the ROC represents a
different decision boundary value. We base our feature selec-
tion approach on the area under the ROC curve (AUROC) for
a particular classifier. Rather than consider all possible fea-
ture subsets, we use the sequential forward selection (SFS)
algorithm (e.g., [20]). This approach computes the AUROC
for GMM classifiers trained on each individual feature. The
feature with the highest AUROC is retained and GMMs are
retrained using all two-feature sets which include the winning
feature. Again, the feature set resulting in the highest
AUROC is selected. This process continues until the gain in
the AUROC is less than a threshold value (1% in our case) at
which point the algorithm terminates and the current feature
set is selected.  In our experiments, the SFS algorithm always
terminated with fewer than 6 features for all crosstalk catego-
ries.

... ... ...

Dynamic
Transition
Constraints...

Feature
Extraction Multistream eHMM Classification

S S S C C C C C C SC SC SC

C C C C C C C C C SC SC SC

Fig. 2.  Schematic of the classification process. For each channel of the meeting, the features identified in section IV are extracted and input to that channel’s
ergodic HMM. Each channel is classified in parallel to allow dynamic transition constraints to be applied. The output of this process is a sequence of
classification labels for each channel.
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IV. CORPUS

Experiments were conducted using data from the ICSI
meeting corpus [2]. The training data consisted of one million
frames per channel classification of conversational speech
extracted at random from four ICSI meetings (bro012,
bmr006, bed008, bed010). For each channel, a label file spec-
ifying the four different crosstalk categories (see Table 1) was
automatically created from the existing ASR word-level tran-
scriptions. For the feature selection experiments, the test data
consisted of 15000 frames per channel classification
extracted at random from one ICSI meeting (bmr001).

Note that frames were labelled as crosstalk (C) or speaker
plus crosstalk (SC) on the basis of comparisons between
word-level alignments generated by ASR for each channel. In
practice, the audibility of the crosstalk was sometimes so low
that, upon listening, the frames appeared to be silent.

V. FEATURE SELECTION EXPERIMENTS

Before describing the selected feature sets, it is insightful
to examine the performance of the individual features on each
crosstalk classification category. Table 2 shows the true posi-
tive rate for each GMM feature-category classifier. These per-
formance values are taken from the ROC operating point at
which the false negative rate (1 - true positive rate) and false
positive rate are equal.

It is interesting to note that although some features have a
high accuracy for one or more classification categories (e.g.,
maximum normalised cross-correlation), some features per-
form relatively poorly on all categories (e.g., SAPVR). The
poor performance of the zero crossing rate (ZCR) feature is
most likely explained by the varying degree of background
noise in each channel. Also, a number of meeting participants
were inexperienced in the use of head-mounted microphones
and frequently generated breath noise. Such breath noise
causes high ZCR values irrespective of whether the micro-
phone wearer is speaking or not.

Surprisingly, two features previously described in the liter-
ature and expected to perform well – PPF and SAPVR – both
gave mediocre results. However, we note that Lewis and
Ramachandran [16] only evaluated the PPF on synthetic mix-
tures of utterances drawn from the TIMIT database. Our
results suggest that the PPF is not robust for real acoustic
mixtures which contain a substantial noise floor, such as the
recordings used here. Similarly, Krishnamachari et al. report
good performance for the SAPVR when evaluated on mix-
tures of TIMIT sentences in which no background noise was
present [11] but its performance on our noisy data is poor.
Note, though, that the SAPVR was developed as a measure
for determining which portions of a target utterance, when
mixed with corrupting speech, remain usable for tasks such as
speaker identification. In other words, this measure deter-
mines when a target speaker is dominating a segment of
speaker plus crosstalk (SC). This is a different task to the one
presented here, in which the goal is to distinguish between
single speaker speech and multiple speaker speech. 

Note that the equal error rates presented in Table 2 cannot
be used to estimate the performance of various feature combi-
nations directly due to the nature of the selection process. As
described in Section III, a feature is added to the currently
selected feature set only if it increases the AUROC by more
than 1%. Therefore, this measure relies on the shape of the
ROC curve (i.e., the performance at all operating points)
rather than the performance at the equal error rate point.

A. Feature Selection Using Full Feature Set

The feature sets derived by the SFS algorithm were as fol-
lows:
• local channel speaker alone (S): kurtosis and maximum

normalised cross-channel correlation.
• local channel speaker concurrent with one or more speak-

ers (SC): energy, kurtosis, maximum normalised cross-
channel correlation and mean spherically normalised
cross-channel correlation.

• one or more non-local speakers (C): energy, kurtosis, mean
cross-channel correlation, mean normalised cross-channel
correlation, maximum spherically normalised cross-chan-
nel correlation.

• silence (SIL): energy and mean cross-channel correlation.

Feature S C SC SIL

MFCC 58.98 56.98 54.58 59.86

Energy 72.16 64.56 70.17 71.25

ZCR 55.53 52.18 50.97 54.61

Kurtosis 68.05 66.59 67.50 71.14

Freq. Kurtosis 53.59 53.56 58.46 53.45

Fundamentalness 63.71 63.31 60.43 58.21

SAPVR 52.21 52.12 46.02 51.28

PPF 63.55 60.63 58.39 57.81

GP1 59.58 58.60 62.49 62.19

GP2 72.80 64.94 64.42 56.19

GP3 53.47 50.67 41.43 51.68

Max XC 52.62 55.32 70.84 75.25

Min XC 62.19 57.22 71.05 68.05

Mean XC 55.84 57.33 72.19 75.54

Max Norm XC 78.11 75.07 50.83 56.07

Min Norm XC 60.14 54.08 53.30 51.12

Mean Norm XC 77.61 75.19 50.49 55.21

Max S-Norm XC 55.06 49.95 64.41 67.19

Min S-Norm XC 48.15 51.27 59.35 71.46

Mean S-Norm XC 56.30 53.25 66.28 70.27

Table 2: Individual feature performance for each classification category.
Values indicate the percentage of true positives at equal error rates, with
the best performing feature for each classification category highlighted.
GPn denotes the three genetic programming features described in Section
II.F. XC denotes cross-correlation and S-Norm refers to spherical
normalisation as described in Section II.G. 
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It is interesting to note that some features used in previous
studies (such as MFCCs, SAPVR and PPF) did not perform
well enough to be included in any of the optimal feature sets.

The GMM classification performance for each feature set
is shown in Fig. 3. For equal false positive and false negative
rates, the performance of each classifier is approximately
80%.

B. Feature Selection Excluding Energy Feature

In the second set of experiments, we assumed that the
channel energy is unreliable (as it may be for corpora using
lapel microphones) and removed it from the set of potential
features available to the feature selection process. Using this
reduced set, the features derived by the SFS algorithm were:
• local channel speaker alone (S): kurtosis and maximum

normalised cross-channel correlation.
• local channel speaker concurrent with one or more speak-

ers (SC): kurtosis, fundamentalness, maximum normalised
cross-channel correlation and mean spherically normalised
cross-channel correlation.

• one or more non-local speakers (C): mean cross-channel
correlation and mean spherically normalised cross-channel
correlation.

• silence (SIL): kurtosis, mean cross-channel correlation and
mean spherically normalised cross-channel correlation.
The GMM classification performance for each feature set

is shown in Fig. 3. The removal of log energy has little effect
on the ROC curves, and overall classification performance of
the system remains at approximately 80%. This is most likely
due to the high performance of the cross-correlation features
which dominate the ROC curves. It is also interesting to note
that the fundamentalness feature, which was developed for a
different task but was expected to discriminate well between
single speaker and multiple speaker speech, also contributes
to the feature set for speaker plus crosstalk.

VI. MULTISTREAM EHMM CLASSIFICATION EXPERIMENTS

The previous section identified the subset of features
which were best suited to classifying isolated frames of audio
data. Here, we investigate whether the eHMM framework
shown in Fig. 2 can improve performance by exploiting con-
textual constraints. Each channel classification is represented
by a state within the eHMM which, in turn, is modelled by a
GMM of the form used in the feature selection experiments.
Contextual constraints are embodied in the transition proba-
bilities between states, which were estimated from the train-
ing data. 

To ensure that likelihoods generated by each state of the
eHMM were in the same range, each state employed the
union of the four winning feature sets described in section V-
A. The test data consisted of all the transcribed channels from
27 ICSI meetings.1 The eHMM classification performances
are shown in Fig. 4.

These results show that the speaker alone and crosstalk
alone channel classifications exhibit a high true positive rate
across all meetings. A number of meetings exceed the 90%
true positive rate, with mean true positive rate for speaker
alone being 76.5%, and 94.1% for crosstalk alone. Further-
more, the average false positive rate for the speaker alone
class is only 7% but 50.2% for crosstalk alone. The true posi-
tive rate for the remaining classes (speaker plus crosstalk and
silence) are significantly lower but do exhibit a consistently
small false positive rate. Upon examining the confusion
matrix (a grid showing which and how many classes have
been misclassified), it was discovered that many of the
silence frames were misclassified as crosstalk alone, thus
explaining the low true positive rate for silence and relatively
high false positive rate for crosstalk alone.

Fluctuations in classifier performance can also be seen in
Fig. 4. Transcription notes from the ICSI corpus indicate that
some channels of the meetings on which we achieved lower
performance suffer from poor recording. For example, test
meeting bmr014 (meeting number 13 in Fig. 4) suffered from
‘spikes’ and low gains on some channels which we believe
caused single speaker true positives to fall to 60% (signifi-
cantly lower than the average of 76.5%). Meeting 21 (bro008)
exhibits poor classification performance for all four channel
classifications due to unusually low channel gains during
recording. Other recording issues ranged from fluctuating
channel gains to corrupted audio buffers which also affected
subsequent channel synchronisation.

As stated in the introduction, two applications for such a
classification system are speech recognition pre-processing
and speaker turn analysis. Both of these rely on accurate
detection of local speaker activity, which is largely equivalent
to the speaker alone (S) channel classification since class SC
occurs relatively infrequently (accounting for 2.4% of the
ICSI data). As described above, speaker alone classification
at the frame level can be as high as 96%. However, these
applications require the accurate classification of contiguous
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Fig. 3.  ROC performance curves for each crosstalk category’s optimum
feature set. Diagonal lines indicate equal error rates. Dashed curves indicate
performance when log energy is excluded from the set of potential features.

1.The 27 test meetings were 1. bed004, 2. bed006, 3. bed009, 4. bed011, 5.
bmr001, 6. bmr002, 7. bmr005, 8. bmr007, 9. bmr008, 10. bmr009, 11.
bmr012, 12. bmr013, 13. bmr014, 14. bmr018, 15. bmr024, 16. bmr026, 17.
bro003, 18. bro004, 19. bro005, 20. bro007, 21. bro008, 22. bro011, 23.
bro013, 24. bro015, 25. bro017, 26. bro018, 27. bro026.
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segments of audio, rather than individual frames. To this end,
we have also assessed the ability of the classifier to detect
segments of speaker-alone activity. 

We define a segment to be a contiguous region in which all
frames have the same channel classification. A segment is
deemed to have been correctly identified if a certain propor-
tion of classified frames within the segment boundaries agree
with the manual transcription. Segment-based classification
for the speaker alone class is shown in Fig. 5.

Here it was assumed that a segment was correctly classi-
fied if more than 50% of the constituent frames were cor-
rectly classified. The segment-level performance is similar to
that of the frame-level approach, with a mean recognition rate
of 74% and recognition rates approaching 94% for some
meetings and.

VII. EVALUATION USING ASR

An evaluation of ASR performance using the segments
described above was conducted on a number of ICSI meet-
ings (bmr001, bro018 and bmr018) totalling 2.5 hours of mul-
tichannel speech. On these meetings, the eHMM classifier
has a segment recognition accuracy of between 83% and 92%
for single speaker detection. The ASR system is the publicly
available version of HTK [21] trained on 40 hours of the ICSI
meetings data. On unseen test data, this recogniser has a word
accuracy of approximately 50% without speaker adaptation.
To evaluate the eHMM classifier we compare results of ASR
on the ground truth segments versus ASR on the eHMM seg-
ments. 

It is also interesting to compare ASR performance using
the eHMM segments against those produced by a classical
voice activity detector (VAD) such as [6]. For the purposes of
this evaluation, we do not wish to make the distinction
between voiced and unvoiced speech so only the first stage of
the VAD algorithm is used, which distinguishes between
silence and non-silence. The average energy is measured
(from the training set described above) for each of the two
voice activity classes and is used to determine the appropriate
classification for each test frame based on a normalised Eucli-
dean distance.

Table 3 shows the ASR results on the various segment
types.  The word accuracy achieved using eHMM segments is
close to that obtained using the ground truth segments. In
bmr001 and bro018 there is only a small drop in eHMM ASR
word accuracies compared to the ground truth word accura-
cies (relative factors of 98.50% and 99.29% respectively)
despite lower segment accuracies of 92% and 89%. Bmr018
has a relative factor that is close to the segment accuracy.  The
results indicate that the eHMM classifier is capable of detect-
ing most of the frames required for optimal ASR. In compari-
son, the word accuracy on VAD segments is much lower due
to significantly lower segment accuracy.

Fig. 6 shows the ASR results obtained using the three dif-
ferent types of segment by channel. The inconsistent VAD
ASR results emphasise that an energy based measure for
speaker detection is highly unreliable: some channels can be
so noisy that the VAD classifier labels all frames as speech
activity. For example bmr001 was particularly problematic,
since the whole of channels 0 and 8 were labelled as speech
activity.

VIII. GENERAL DISCUSSION

Two experiments are described in this paper, both relating
to the broad classification of audio data from meeting record-
ings. Our goals were to produce accurate labels correspond-
ing to the number of speakers active at a particular time and
to indicate if the local speaker is active. The first experiment
identified the optimal feature set for each channel classifica-
tion, each of which achieved approximately 80% frame accu-
racy when considering equal true-positive and false-positive
error rates. Several cross-channel correlation measures were
selected in addition to conventional features such as short-
term energy and kurtosis. Additionally, we found that features
which were originally designed for a different purpose can
also play a role in crosstalk analysis (e.g., ‘fundamentalness’
[14]). Furthermore, features which have previously been used
to identify overlapping speakers such as MFCCs, PPF [16]
and SAPVR (e.g., [8]) were rejected.

In the second set of experiments, the optimal feature set
was used to train a number of eHMM classifiers (one per
meeting channel) which operated in parallel. This allowed
transition constraints to be dynamically applied depending on
the previous state and the unconstrained GMM classifica-
tions. This approach improved performance for some classes,
notably speaker alone (S). Indeed, automatic speech recogni-
tion results using the automatically generated speaker alone

Fig. 4.  True positive rate (upper line) and false positive rate (lower line) per
meeting for each channel classification. 
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segments indicate performance equal to that obtained using
the ground truth segments.

To conclude, a multi-channel activity classification system
has been described which can distinguish between the four
activity categories shown in Table 1. Furthermore, the seg-
mentation of speaker alone activity has been shown to be par-
ticularly reliable for speech recognition applications: ASR
performances using the eHMM segments and the transcribed
ground truth segments are extremely similar.
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Seg Seg ASR ASR ASR

Meeting eHMM VAD
Ground 

truth eHMM VAD

bmr001 ~92% ~30% 44.44 
(100)

43.77 
(98.50)

27.91 
(62.80)

bro018 ~89% ~77% 61.75 
(100)

61.31 
(99.29)

51.84 
(83.95)

bmr018 ~83% ~61% 63.97 
(100)

53.90 
(84.20)

49.73 
(77.73)

Table 3: Segment and ASR accuracies (%) on whole meetings. Results in
brackets are as a percentage of the baseline ground truth segments.
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Fig. 6.  ASR performance for meetings bmr001, bro018 and bmr018. Note
that the VAD classifier failed on a number of channels and hence some data
points (channels 0 and 8 from bmr001 and channel 8 from bmr018) are
missing.


