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Abstract

Learning dialogue strategies using the reinforcementniagr
framework is problematic due to its expensive computatioast.

In this paper we propose an algorithm that reduces a stéitsrac
space to one which includes only valid state-actions. We per
formed experiments on full and reduced spaces using thiee sy
tems (with 5, 9 and 20 slots) in the travel domain using a siteal
environment. The task was to learn multi-goal dialoguetagias
optimizing single and multiple confirmations. Average fesus-

ing strategies learnt on reduced spaces reveal the foliphéme-
fits against full spaces: 1) less computer memony{ reduction),

2) faster learningd3% faster convergence) and better performance
(8.4% less time steps arid 7% higher reward).

Index Terms: reinforcement learning, spoken dialogue systems.

1. Introduction

The main task of a Spoken Dialogue Manager (SDM) in goal-
oriented dialogue systems is to control the dialogue flowben
user and system with the following aims: successful, efficéand
natural conversations. More specifically, an SDM has thievel
ing subtasks: a) to gather information from the user, b) aoifyl
information explicitly or implicitly, c) to resolve ambigfies that
arise due to speech recognition (ASR) errors or incomplgte-s
ifications, d) to suggest subsequent dialogue goals, e¥¢o adf-
sistance upon request or when necessary, f) to providenatiees
when the information is not available, g) to provide additibcon-
straints, h) to interact with other components in order toeee or
provide information, and i) to control the degree of initiat[1].

The design of SDMs is typically hand-crafted by system devel
opers, based on their intuition about the proper dialogue fs
a consequence, dialogue strategies designed by humansoaee p
to errors, labour-intensive and non-portable. This malesis
automatic design an attractive alternative. Levin anddei@ni
[2], pioneered the idea of dialogue design as an optimiagtiob-
lem using Markov Decision Processes (MDPs) and reinforoéme
learning [3]. However, the search space grows exponentaH
cording to the state variables taken into account, makiaggetsk of
dialogue optimization difficult, even for simple dialogustgems.

Previous research efforts have investigated how to learn un
goal dialogue strategies for optimizing confirmation [4-®jtia-
tive [4] and database queries [6]. They have mostly adogted t
formalism of MDPs [2,4-7], Partially Observable MDPs [8hca
function approximation [9,10], using either real [4] or silated
environments [5-9]. However, little attention has beenatied to
the problem of learning on reduced state-action spaces, theét
aim of faster learning and reduced computational demands.

In this paper we investigate how to reduce state-actionespac
for learning multi-goal dialogue strategies. For such psgwe
propose thesapReduction algorithm, which aims to formalize
the idea of avoiding unnecessary learning by using priomno
edge that reduces the search space to only valid statessctio

2. Spoken Dialogue Management Using
Mar kov Decision Processes

Informally, the idea of spoken dialogue management as an opt
mization problem consists of taking the best action for yw#u-
ation in a conversation by following an optimal dialogueattgy.
The reinforcement learning paradigm is particularly afipggor
this scenario, where an agent takes optimal actions foy esrar-
ation in the environment described by a Markov Decision Esec
(MDP), or any other formalism (POMDP, SMDP or POSMDP).
Formally, an MDP is defined as a 4-tupteS, A, T, R > charac-
terized as follows:S is a set of states of the environmeritjs the
set of actions[T" is a transition probability function that observes
the next stata’ given the current stateand actiom: according to
the probability distributionP(s’|s, a); and R is the reward func-
tion that specifies the rewards given to the agent for chgosn
tion a when the environment makes a transition fremo s’.

Under this formalism, a sequence of statesctionsa and
rewardsr within a dialogue (or episode) receives a total expected
reward expressed & = Z;‘F:O vri+k+1, Where the discount rate
0 < v < 1 makes future rewards less valuable than immediate
rewards. Thus, the solution for an MDP is to learn a dialogrs-s
egy (or policy) that maximize®, which optimizes the interaction
with its environment by choosing optimal actions. The expéc
value of the reward can be computed recursively by valuetioms
V™ (s) or action-value function§™ (s) as described in [2], where
the optimal policy is expressed as$(s) = arg max, Q@*(s,a),
and can be learnt by either dynamic programming methods-or re
inforcement learning methods.

A main limitation in dialogue optimization is the expensive
computational cost due to the fact that state-action spgams
exponentially. As an example, consider an MDP where thestat
S are formed by combinations of slo@ and state variable®
as shown in figure 1.a, and the system actidnare formed by
combinations of slot§) and single actionsgl® (see fig. 1.b). Thus,
the size of the state space would [is¢ = |V|!/?! and the size of
the state-action space would [ x A| = |[V[19! % (|Q| * | A®%]).
For a small-scale dialogue system withslots, 5 state variables
and6 single actions, the search spac@.i3 million state-actions,
and the growth is exponential assuming no constraints.at all
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Figure 1: Scheme used to generate search spaces for multi-goal25'

dialogue systems, where sapReduction constraints eacle spa

3. ThesapReduction Algorithm

Figure 1 illustrates a proposed scheme in order to genetatte s
action spaces (or search spaces) for learning multi-gaédglie
strategies, where thenp Reduction algorithm applies reduction
to each space. Under this scheme, this algorithm generates r
duced search spaces with constraints at three levels diilgriy:
states, actions and partitions. Whilst the first and seceveld are
used for uni-goal spoken dialogue systems, the third levesed
for multi-goal dialogue systems. This algorithm makes thikév-
ing assumptions: 1) staté&sare combinations of slot§ and state
variablesV (see fig. 1.a), 2) actiond are combinations of slots
Q@ and single actionsA® (see fig. 1.b), and 3) the dialogue de-
sign is specified in partitions roughly equivalent to dialegjoals,
where the merge of partitions form a composite search spzaee (
fig. 1.c). In this way, stateS are reduced using theReduction
step, actionsA for each state are reduced using thReduction
step, and the search spaces for each partiidn are merged us-
ing thepReduction step. This is more formally described in the
algorithm shown in figure 2 (see next subsections for d@tails

3.1. ThesReduction Step

The full state spacé& consists of all combinations of slo€ and
state variable¥” (see fig. 1.a), including valid and invalid combi-
nations. Thus, the task of this step is to avoid invalid caratons.
The space reduction is driven by the assumption that a tetsiiot
requires the non-terminal slots to be confirmed, where ajlyia
transaction is performed. In addition, this step adds & stéth
skipped slots in case of an unwanted dialogue goal (see fiyure
lines 10-16). Notice that all slots require confirmation,iathis
not the case for “yes/no” slots, in this case we assume ttddt su
slots can be considered confirmed if they were collected thith
highest ASR confidence level. Also, notice that fig. 1.a shomes
state-variable per slot but it may have a vector of statates.

01Algorithm sapReductior®, O, D, Q, V, A%) returnS A
02input: partitions (P), optional partitionsQ), dependent partitiongX),

03. slots per partition(), state variables\(), single actions 4°)
04. initialize variablesS,S A

05. for each partitiorp; € P do

06. S; < sReductiorg;, 0, Q;, V)

07. SA; «— aReduction§;, Q;, V, A®)

08. endfor

09. SA «— pReductionf A, P, D, Q)

10function sReductiong; , O, Q, V) returnS

11. initialize variableS

12.  for each sloy; € Q do

13. S« combinations of substate$ slotg; and variabled/;

14. whereg,, require the non-terminal slots to be confirmed
15.  endfor

16. S < S U state with skipped slots;{.s) if partition p; € O

17 function aReduction§, Q, V, A®) returnS A

18. initialize variables4, S A
19. for each state; € S do
20. for each sloy; € s; do
21. for eacha; € A® do
22. A — AU (g4, ar), under the conditions of figure 3
23. A — AU (qj,{9}), if ¢; = qn and slots confirmed
24, end for
end for
SA — SAU (s; — A), reinitialize A

27: end for

28function pReductionf A, P, D, Q) returnC

29. initialize variable” — SAg, M

30. for each partitiorp; € P Vi > 0 do

31. history «— sequences of confirmed & skipped slots upia

32. for each state; € C'do

33. for each state, € SA; do

34. M — MU (sj + sg — As;), if slots of s, unfilled
. M — MU (sj + s — As,,), if s; € history

36. end for

37. end for

38. C «— M, reinitialize M

39. endfor

Figure 2:The sapReduction Algorithm.

3.2. TheaReduction Step

The full action spacel consists of all combinations of slofand
single actionsA® (see fig. 1.b), which includes valid and invalid
combinations. Thus, the task of this step is to avoid invalid
tions per state. Figure 3 illustrates the conditions usegkt®rate
valid combinations, where the presence of circles reptessiu
combinations and the absence invalid combinations. Intiaali
we clustered sets of circles that must satisfy a conditioor. if-
stance, to validate actidg4, re) in figure 3(a) the conditiomtsc
(non-terminal slots confirmed) must be satisfied, see fig(liaes
17-27). Also, further ad-hoc reductions are possible.

3.3. ThepReduction Step

There is indeed exponential grow in search spaces if we as-
sume no boundary across dialogue goals, but this yieldhereo
ent dialogues by allowing sequences of slots from diffediat
logue goals. In this step we propose to generate multipleelsea
spaces according to the partitions specified in the dialdgsen,
roughly equivalent to dialogue goals. This step assumesothe
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Figure 3:Conditioned combinations of slo and single actions Table 1:Sizes of full and reduced composite state-action spaces.

A? representing valid system actiors which occur in the pres- -
. ; o . : Experi- | Full | Reduced| Full Reduced| % of SA
ence of a circle that satisfy a condition given by its cluster ment (S) (s) (S4) (S4) Reduction
Expl | 3126 630 93722 5636 93.98
lowing assumptions: 1) partitions may be optional by onlgvai Exp2 | 3255 663 95979 5760 93.99
: Exp3 | 4125 957 110097 6672 93.93

ing skipped slots (with state variabi¢, 2) partitions may be de-
pendent or independent (e.g., a partition with dependeanyoc-
cur if and only if the dependent partition has its slots conéid), ! )
and 3) a dialogue goal might be specified with more than orte par 4-2- The Random Simulated Environment

tion. Thus, the task of this step is to merge multiple seapattes e ysed a slot-based confidence level model with the follgwin
into a composite reduced one. Figure 1.c illustrates tigip by distribution: 0 < I < 0.6, 0.6 < m < 0.8, and0.8 < h < 1:

using an incremental merge of search spaces per partitioi,, where averages were computed for multiple filled slots. Eme r
which takes into account the history of dependent and skippe gom simulated user model consisted of the following featued
slots; see figure 2 for a more formal description (lines 28-39 percentage of coherent In-Vocabulary (IV) responses, dhepte-
ment consisted of random IV responses plus out-of-vocapula
4. Experiments and Results responses; b) two sets of responses for each kind of slet (ter
) minal and non-terminal), the second set aimed to refill ths la
4.1. Experimental Setup two slots before the user accepted a terminal slot; c) cobere

responses of single and multiple slots used the followirggridi
), bution: 0 < single < 0.7 and0.7 < multiple < 1; d) cor-
rect confirmations used the following distributiof:< [ < 0.5,
0.5 < m < 0.7, and0.7 < h < 0.9; and e) finish the con-
versation if the ratio of number of user responses and numwiber
slots in the syster 4. Finally, two simulated users were utilized,
one for learning and one for test, wifli% and80% of coherent
fresponses respectively. In this way, the policies werentesith
well-behaved users and tested with more difficult ones.

The aim of our experiments was to investigate the performarfic
full andreduced search spaces (using the proposed algorithm
specifically in the optimization of single and multiple canfa-
tions for goal-oriented mixed-initiative dialogue systeriVe per-
formed three experiments in the travel domain (denoted a1t
“Exp2” and “Exp3”), with a similar structure to the DARPA Cem
municator systems [11]; using 1, 2 and 5 dialogue goals stingi
of 5, 9 and 20 slots respectively. Because of a large number o
dialogues is required to learn the optimal dialogue stiategve
utilized a simulated environment in order to control the antaf
randomness in ASR confidence levels and user responses. 4.3. Results

Figure 4 shows the partition8, dependent partition®, op- Table 1 shows that the proposed algorithm reduced the ataien
tional partitionsO, and slotsQ used in our experiments. Expl spaces by4%, meaning that we can avoid unnecessary learning
used the first dialogue goal, Exp2 used the first two goals, andvery significantly. However, we must aslCan policies learnt on
Exp3 used the five goals. The MDP was configured as follows: reduced spaces achieve as good performance as those learnt o
The state-action spaces were generated as illustrateduire fig full spaces?” Our results are favourable, and we analyzed them
whilst reduced spaces used thepReduction algorithm, full in both learning and test phases with four kinds of plots @svsh
spaces used only step 3; used deterministic transitions by ob- in figure 5: Average Steps Per Episode (ASPE), Average Reward
serving the next state based on the current state-actien,res Per Episode (ARPE), Average MaxQ values per Episode (AMPE),
sponse and confidence level (see section 4.2); and the réward ~ and Explored Space Per Episode (ESPE). On the one hand, we
tion R consisted of+100 if all slots were confirmed or skipped, used ASPE and ARPE to observe the strategies performance; on

—20 if there was nothing to confirm/apologize, ard otherwise. the other, we used AMPE and ESPE to observe their convergence
Finally, we used the following learning setup: algoritenQ- Results from thdearning phase report no degradation in per-

Learning; step size = 100/(100 + ¢) with ¢t elapsed time-steps; ~ formance, neither in steps per episode nor in average revésd,

discount factory = 0.9; selection strategy: e-greedy (with20% average results from the learning phase report that pslieirnt

exploration); initial Q-values= 0; and convergence- explored on reduced spaces converdsd; faster than policies learnt on full
space> 99.9% and difference in average MaxQ values (Q-values spaces, which is not surprising because each policy usesviis
with maximum value) of last against previoig® episodes< 0. space and the sizes are different. Nevertheless, thig tefialus



Average Steps Per Episode - LEARNING

Average MaxQ Values Per Episode — LEARNING

Average Steps Per Episode — TEST

70
< P
N ' B0 fm i —‘—.——-,é/~-v».:vwsiﬁJ
60 N\, 10
© o Il 1 o
S b Rt PRSI ] % g
3% g 2
[=% o
L 40( 19 1 5
- s =
[
& 30 12 | a
g S e e NEL ol ey Ay s g @
§ s 8 g
n 3 4 0
PO 2
0 3 ’ 4 ’ 5 ’ 6 7 0 ; : - 4 - ) 5 6 7
10 10 10 10 10 10 10 10 10 10
Episodes Episodes Episodes
— Expl-Full—&— Expl-Reduced = = = Exp2-Full —&— Exp2-Reduced ' = = Exp3-Full Exp3-Reduced

Average Reward Per Episode — LEARNING

=
o
=]

Explored Space Per Episode — LEARNING

Average Reward Per Episode - TEST

()
Q
©
[=%
T 2 =
3 3
= 48 =
o S 60 o)
x =3 @
. | & o
© @ 40 @ 40
o 2 o
E 18 <
g 20 20
0 i AN 18
; ; 0 ; ; ; 0 ;
10° 10* 10° 10° 100 10° 10* 10° 10° 10’ 10° 10" 10°
Episodes Episodes Episodes

Figure 5:Performance results (X-axis in log scale) in the learningl &est phases, data points are averages of groups of 1000dgss

the importance of learning dialogue strategies on redupades
by requiring a much lower amount of dialogues for learning.
Finally, results from theestphase reveal that policies learnt
on reduced spaces can obtain higher performance. Averagksre
report8.4% less time steps and 7% higher reward. This means
that policies learnt on full spaces do not always learn optiac-
tions, which may be attributed to the fact that the more idval
state-actions, the more chance to learn non-optimal action

5. Conclusions and Future Work

The contribution of this paper is thexpReduction algorithm,
which generates composite reduced state-action spacesno
mixed-initiative multi-goal dialogue strategies using tkinforce-
ment learning paradigm. We argue that the proposed algocdt:
rived from prior knowledge of valid state-actions is: geéoéo op-
timize confirmation, can be extended to optimize other state
ables and does not require significant development effertrage
results using strategies learnt on reduced spaces reectall liw-
ing benefits against full spaces: 1) less computer menm®t¥ (
reduction), 2) faster learning%% faster convergence) and better
performance §.4% less time steps and 7% higher reward). To
our knowledge, our experiments are the first aiming optitioza
of large-scale dialogue systems (with up to 20 slots), whieee
utility of reduced spaces becomes crucial for more comptek a
larger systems. The last we plan to investigate using lubieal
learning with dialogue simulators learnt from data [7,12].
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