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Abstract

For constructing a speech synthesis system which can achieve
diverse voices, we have been developing a speaker independent
approach of HMM-based speech synthesis in which statistical
average voice models are adapted to a target speaker using a
small amount of speech data. In this paper, we incorporate a
high-quality speech vocoding method STRAIGHT and a pa-
rameter generation algorithm with global variance into the sys-
tem for improving quality of synthetic speech. Furthermore, we
introduce a feature-space speaker adaptive training algorithm
and a gender mixed modeling technique for conducting further
normalization of the average voice model. We build an English
text-to-speech system using these techniques and show the per-
formance of the system.

1. Introduction
Recent concatenative speech synthesis approaches give us high
quality synthetic speech. However, as is well known, these ap-
proaches always require large-scale speech corpora for gener-
ating natural sounding speech and as a consequence, become
an inefficient choice and a major bottleneck when we need to
quickly add new speakers’ voices and construct a speech syn-
thesizer which can simultaneously deal with many speakers’
voices. To eliminate this bottleneck would lead to both cost
reduction for building a new voices and many new applications
for human-computer interfaces using speech input/output. In
order to make such speech synthesis realistically feasible, we
need to develop an approach in which synthetic speech compa-
rable to that of a speaker-dependent system built using a large
amount of speech data can be generated from a small amount of
the speech data.

For this purpose, we have been developing speaker in-
dependent HMM-based speech synthesis in which “average
voice models” are created using hidden semi-Markov models
(HSMMs) and adapted with a small amount of speech data from
the target speaker (e.g. [1, 2]). This speech synthesis method
(Fig. 1) is referred to as “average-voice-based speech synthe-
sis (AVSS).” By using this framework, we can obtain synthetic
speech for a target speaker from even 100 utterances (about 6
minutes). Interestingly, we have shown that synthetic speech
using this approach is perceived as being more natural sound-
ing than that of the speaker-dependent (SD) system by many
listeners because of the data-rich average voice model [3].

However, this system has similar drawbacks to the SD sys-
tem: the synthetic speech has a “buzzy” quality, because the
mel-cepstral vocoder with simple pulse or noise excitation of
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Figure 1: Average-voice-based speech synthesis.

this system is identical to that of the speaker-dependent system.
In order to alleviate the problem, Zen et al. [4] incorporated a
high-quality speech vocoding method, STRAIGHT with mixed
excitation [5], and a parameter generation algorithm consider-
ing global variance (GV) [6] into the speaker dependent HMM
system and drastically improved the quality of synthetic speech.
These improvements made a great contribution to the system in
an open evaluation of corpus-based text-to-speech (TTS) syn-
thesis system, named Blizzard Challenge 2005 [7].

It is important to remember that the amount of speech data
available from the target speaker is very limited in the AVSS
system. To add several new parameters required for a new tech-
nique results in increase of the number of parameters to be es-
timated from the small amount of speech data. Therefore it
would be, strictly speaking, a trade-off problem to additionally
use the mixed excitation system and the parameter generation
algorithm considering GV in the AVSS system. However, fortu-
nately, the number of additional parameters for the mixed exci-
tation system is relatively small, and that for the parameter gen-
eration algorithm considering GV is small enough to directly
estimate from the adaptation data.

Therefore, we have incorporated these promising tech-
niques into the AVSS system to improve the quality of synthetic
speech. We have investigated that these techniques are effective
even under condition of limited amount of speech data, based
on the results of subjective evaluations. In addition to these
techniques, we propose a feature-space speaker adaptive train-
ing (SAT) technique using HSMM and a gender mixed mod-
eling technique for conducting further speaker normalization
of the average voice model. Although we utilized an HSMM-
based model-space SAT algorithm in our conventional system,
an HSMM-based feature-space SAT algorithm is alternatively
used in order to efficiently utilize both mean vectors and covari-
ance matrices of Gaussian probability density functions (pdfs)
for the normalization of the average voice model. Then, in or-
der to reflect gender information of training speakers as a prior
information in the training and adaptation stages, we develop
a gender mixed modeling technique. In these experiments, we



apply the AVSS system using those techniques to U.S. English,
build a new system named “AVSS 2006 ” and compare the sys-
tem with our conventional system. We furthermore compare the
system with the speaker dependent system “Nitech-HTS 2005,”
which was the best system in the Blizzard Challenge 2005, in
order to assess the performance of the AVSS system in the state-
of-the-art TTS systems.

2. Details of the AVSS 2006 system

2.1. Speech Analysis using STRAIGHT

We use the STRAIGHT mel-cepstrum [4], log F0, and aperiod-
icity measures as acoustic features in the same manner as the
speaker dependent system Nitech-HTS 2005. The mel-cepstral
coefficients are obtained by STRAIGHT spectral analysis [5]
in which F0-adaptive spectral smoothing is carried out in the
time-frequency region. The F0 values are estimated using the
following three-stage extraction to reduce error of F0 extraction
such as halving and doubling and to suppress voiced/unvoiced
error. First, using IFAS-based method [8], the system extracted
F0 values for all speech data of each speaker within a common
search range. Then, the F0 range of each speaker was roughly
determined based on a histogram of the extracted F0 values. F0

values were re-extracted in the speaker-specific range using the
IFAS algorithm, fixed-point analysis [9], and ESPS get-F0 [10].
Finally, a median value of the extracted F0 values at each frame
was utilized as an eventual F0 value. The aperiodicity measures
for mixed excitation are based on a ratio between the lower and
upper smoothed spectral envelopes, and averaged on five fre-
quency sub-bands. In addition to these static features, dynamic
and acceleration features of each static feature are used.

2.2. Acoustic Models and Labels

As in the case of our conventional Japanese AVSS system,
we utilize context-dependent multi-stream left-to-right MSD-
HMM/HSMMs [11] in order to simultaneously model the above
acoustic features and duration. Details of the phonetic and lin-
guistic contexts for U.S. English are identical to [12]. In addi-
tion to this phonetic and linguistic information, we added gen-
der information of speakers into the context labels for conduct-
ing the gender-mixed modeling technique in the training proce-
dures described in the next section.

2.3. Speaker Adaptive Training

Using the above HMM/HSMMs, we trained average voice mod-
els from training data consisting of several speakers’ speech.
Training of the average voice model uses the SAT algorithm.
Although we utilized a model-space SAT algorithms [13] using
linear transformations of mean vectors of Gaussian pdfs in our
conventional systems [1, 2], a feature-space SAT algorithm [14]
is used as an alternative algorithm in the AVSS 2006 system to
efficiently utilize both mean vectors and covariance matrices of
the Gaussian pdfs for the speaker normalization of the average
voice model. We can derive the feature-space SAT in the frame-
work of HSMM in a similar way to [1]. Here we assume that
each state of the HSMM has the following an output pdf bi(o)
and a duration pdf pi(d):

bi(o) =N (o; μi,Σi), (1)

pi(d) =N (d; mi, σ
2
i ). (2)

where o and d is an observation vector and a duration at state
i, respectively. The feature-space SAT of the HSMM estimates

the parameters of the Gaussian pdfs as follows:
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where F is number of the training speakers, Tf is total num-
ber of frames of a speaker f , and γd

t (i) is the state occupancy
probability at state i of the HSMM. Note that os = ζos + ε
and d = χd + ν are linearly transformed observation vec-
tor and duration, respectively. These transformation matrices
(W = [ζ, ε] and X = [χ, ν]) are simultaneously estimated us-
ing the HSMM-based CMLLR algorithm [15]. This technique
can be viewed as a generalized version of several normaliza-
tion techniques such as CMN, CVN, VTLN, and bias removal
of F0 and duration. Since this HSMM-based feature-space SAT
algorithm requires a lot of computation, we basically train the
acoustic models using the HMM-based feature-space SAT al-
gorithm and apply the HSMM-based SAT algorithm in the final
embedded training procedures (see Fig. 2).

Another advantage of this feature-space SAT is feasibility.
As reported in [14], in the the model-space SAT algorithms, it is
necessary to store a full matrix for each Gaussian pdf, or store
statistics for each Gaussian component for every speaker. In our
speaker-independent HMM-based speech synthesis system, the
number of the Gaussian pdfs reaches O(107) or more, and it
partly makes the parameter estimation impractical. In particu-
lar, the embedded training procedures in which we could use
the model-space SAT were restricted to the training procedures
in which the parameters of the Gaussian pdfs were tied among
several pdfs. On the other hand, we can apply the feature-space
SAT algorithm to all the embedded training procedures and con-
duct further normalization in the training of the average voice
model.

2.4. Gender-Mixed Modeling

In general, speech data weaves speaker-dependent charac-
teristics with gender-dependent characteristics in addition to
phonetic and prosodic features. We must reproduce both
the gender-dependent characteristics as well as the speaker-
dependent characteristics of the target speaker in our system.
If large amounts of training data for both genders are available,
it would be the most efficient choice to use gender-dependent
average voice models using enough training data as an initial
model of the speaker adaptation. However, in practice, we
encounter common problems from the amount of the training
data available from either gender or both genders being limited.
In such cases, it would not be the best choice to use gender-
dependent average voice models. In addition to this, it is not
straightforward to clarify that how many training sentences and
speakers are enough for constructing the appropriate gender-
dependent average voice models in any condition.

Another practical approach is to use a gender-independent
average voice model (or the opposite gender-dependent model
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Figure 2: Details of gender-mixed modeling. This model-
ing technique consists of the speaker adaptive training and the
decision-tree-based context and gender clustering.

using enough training data) as an initial model, instead of the
correct gender-dependent average voice model. However, we
have shown that naturalness and similarity of the synthetic
speech using those average voice models becomes significantly
worse than that of the synthetic speech using the correct gender-
dependent average voice model [16]. This is a logical con-
clusion because we have to adapt not only speaker-dependent
characteristics but also gender-dependent characteristics of the
average voice model based on a small amount of the adapta-
tion data. An alternative approach is to simultaneously use the
gender-dependent average voice models to complement one an-
other and to perform soft decisions in the speaker adaptation
[16]. However, there was no significant improvements between
the results of the simultaneous use of the gender-dependent av-
erage voice models and those of the single gender-dependent
average voice model. Although the simultaneous use of the
gender-dependent average voice models could complement one
another, it required twice as many parameters for the adaptation
as the gender-dependent average voice model, and it seemed
to suffer from “curse of dimensionality.” In summary, we are
required to develop an approach which satisfies the following
three conditions: 1) it reflects the gender-dependent character-
istics as a prior information, 2) it makes the best possible use of
the training data from both genders and complements one other
if necessary, and 3) it does not increase the number of parame-
ters required for the speaker adaptation.

To achieve this, we propose a gender-mixed modeling tech-
nique. The key idea of this gender-mixed modeling is sim-
ilar to style-mixed modeling proposed in [17]. The gender-
mixed modeling technically includes the speaker adaptive train-
ing and a decision-tree-based context and gender clustering
technique. The actual training procedures for the modeling
were conducted as follows (see Fig. 2). In order to conduct
both normalization of the speaker-dependent characteristics and
conservation of the gender-dependent characteristics, we first
train gender-dependent monophone HMMs using the SAT al-
gorithm. Then we convert them into gender-dependent context-
dependent HMMs, and re-estimate the model parameters us-
ing the SAT algorithm again. Then, using the state occupancy
probabilities obtained in the SAT framework, the decision-tree-
based context clustering technique using minimum description
length (MDL) criterion is applied to the HMMs, and the model
parameters of the HMMs at each leaf node of the decision trees
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Figure 3: Part of a constructed decision tree in the gender-
mixed modeling. Genders of training speakers are split by using
gender-related questions as well as other contexts.

are tied. In the clustering, gender information of each speaker
is treated as one of contexts for the clustering, and the cluster-
ing technique is applied to both the gender-dependent models at
the same time. As a result, the gender information is included
in a single acoustic model. Note that the decision trees were
separately constructed for each state of mel-cepstrum, log F0,
aperiodicity measures, and duration parts. Hence, when the tar-
get feature is generally gender-specific, such as log F0, the gen-
der would be automatically split at around a root node of the
tree by using gender-related questions, and the pdfs of the fea-
ture can keep the gender-dependent characteristics if required.
Then, when dependency on gender of the target feature locally
occurs such as duration, the gender information are automati-
cally split as well as other contexts during the construction of a
decision tree, and thereby we can make use of the training data
from both genders laconically. We refer to the resulting model
as a gender-mixed average voice model. Figure 3 shows a part
of the constructed decision tree for the mel-cepstral part in the
fifth state of the HMMs.

We re-estimate the clustered HMMs using SAT algorithm
with piecewise linear regression functions. To determine re-
gression classes for the piecewise linear regression, the decision
trees constructed for the gender-mixed model are used, since
use of the decision tree automatically reflects both differences
of gender information and phonetic and linguistic information,
and it is expected that more appropriate normalization for the
average voice model is conducted. We then calculate initial du-
ration pdfs from trellises of the HMMs [18], and conduct the
decision-tree-based context and gender clustering for the dura-
tion pdfs. Using the tied duration pdfs, we perform the HSMM-
based SAT algorithm with piecewise linear regression functions
in order to normalize speaker characteristics included in the du-
ration pdfs as well as other acoustic features. In each iteration
of these SAT stages, we first estimated transformation matrices
three times, and then updated mean vectors of both output and
duration pdfs, their covariance matrices, weight for MSD, and
transition matrices five times. Then we repeated the iterations
three times in each SAT stage.

In the speaker adaptation stage, we adapt the gender-mixed
average voice model to that of the target speaker by using a
small amount of speech data with gender information of the tar-
get speaker. We utilize a combined algorithm of HSMM-based
constrained structural maximum a posteriori linear regression
(CSMAPLR) [19] and maximum a posteriori (MAP) adapta-
tion [3]. In the CSMAPLR adaptation, the decision trees for the
gender-mixed average voice model are used for the same reason
as the above SAT algorithm with piecewise linear regression
functions.



2.5. Parameter Generation Considering Global Variance

In the synthesis stage, input text is first transformed into a se-
quence of context-dependent phoneme labels with the gender
information of the target speaker. Based on the label sequence,
a sentence HSMM is constructed by concatenating context-
dependent HSMMs. From the sentence HSMM, mel-cepstrum,
log F0, and aperiodicity-measure sequences are obtained us-
ing the parameter generation algorithm considering GV [6], in
which phoneme durations are determined using the duration
pdfs. The parameter generation algorithm is a penalized max-
imum likelihood method in which the GV pdf (a Gaussian pdf
for the variance of the trajectory at utterance level) acts as a
penalty for the likelihood function. The algorithm tries to keep
the global variance of the generated trajectory as wide as that
of the target speaker, while maintaining an appropriate param-
eter sequence in the sense of maximum likelihood. It is possi-
ble to adapt the GV pdf from a speaker-independent model to
that of a target speaker using MAP adaptation. However, the
number of parameters of a GV pdf is very small. Specifically,
it is equal to the dimensionality of the static features. Hence
we directly estimate the GV pdf from the adaptation data. The
generation method for speech waveforms is identical to that of
Nitech-HTS 2005. A one-pitch waveform is synthesized from
STRAIGHT mel-cepstral coefficients and the mixed excitation
with the MLSA filter, and then a synthesized waveform was
generated with PSOLA.

3. Experiments
3.1. Experimental conditions

We carried out several subjective and objective evaluation tests
to assess the performance of the AVSS 2006 system. We used
the CMU-ARCTIC speech database, which contains a set of
about a thousand phonetically balanced sentences uttered by 4
male speakers (AWB, BDL, JMK, RMS) and 2 female speak-
ers (CLB, SLT), and a speech database, which was released
from ATR for the purpose of the Blizzard Challenge 2007 and
contains the same sentences as that of CMU-ARCTIC speech
database and additional sentences uttered by a male speaker
EM001. To model the synthesis units, we used the “radio”
phone set of the Festival speech synthesis system, and took the
phonetic and linguistic contexts included in the utterance files
of the Festival speech synthesis system into account.

Speech signals were sampled at a rate of 16 kHz and win-
dowed by an F0-adaptive Gaussian window with a 5-ms shift.
The feature vectors consisted of 25 STRAIGHT mel-cepstral
coefficients (including the zeroth coefficient), log F0, aperi-
odicity measures, and their dynamic and acceleration coeffi-
cients. We used 5-state left-to-right context-dependent multi-
stream MSD-HSMMs without skip paths. Each state had a
single Gaussian pdf with a diagonal covariance matrix. In the
speaker adaptation, the transformation matrices were triblock
diagonal corresponding to the static, dynamic, and acceleration
coefficients.

3.2. Evaluation of the AVSS 2006 system

First, we evaluated naturalness and similarity of the synthetic
speech generated from the adapted model. We chose a male
speaker AWB as a target speaker of the speaker adaptation and
used 3 male speakers (BDL, JMK, RMS) and 2 female speak-
ers (CLB, SLT) of CMU-ARCTIC database as training speak-
ers for the average voice model. The number of training data
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Figure 4: The average preference scores of the paired compari-
son test and the ABX test using our conventional system (AVSS
2005 system) and the proposed system (the AVSS 2006 system).

from each speaker was about 1000 sentences and the number
of the adaptation sentences from the target speaker was 100
sentences selected from the corpus randomly. Then, ten test
sentences which were not included in either the training or the
adaptation data were used for the subjective evaluations. We
constructed our conventional system (AVSS 2005 system) [2]
and the AVSS 2006 system using the above training data and
adapted the resulting average voice models of each system to
the target speaker using the above adaptation data. Note that the
shared-decision-tree-based context clustering algorithm was not
used in both systems, since the algorithm is a directly-opposed
idea from that of gender mixed modeling.

We then conducted a paired comparison test to investigate
that these techniques are effective even under condition of lim-
ited amount of speech data. We compared the synthesized
speech generated from the adapted models using the AVSS
2005 or 2006 systems. The subjective evaluations were con-
ducted via the Internet. 28 subjects were presented a pair of
synthetic speech utterances generated from the adapted models
in random order, and asked which speech sounded more natural.
At the same moment, we conducted an ABX comparison test to
assess adaptation performance of the average voice models of
both systems. In the ABX test, the subjects were presented a
reference speech in addition to the above pair of synthesized
speech, and asked to select the first or second synthetic speech
as being similar to the reference speech. The reference speech
was the recorded original speech. The same test sentences as
the paired comparison test were used.

Figure 4 shows the average preference scores with 95%
confidence interval of the paired comparison test and the ABX
test. From this figure, we can see that naturalness and similarity
of the synthetic speech generated from the adapted model us-
ing the AVSS 2006 system are drastically improved compared
to our conventional system. In order to analyze which tech-
nique brings this good result, we separately investigated effects
of STRAIGHT, feature-space SAT, gender mixed modeling, and
parameter generation algorithm considering GV using prelimi-
nary evaluations. From the preliminary evaluations, we con-
firmed that each method had some effect, and above all the pa-
rameter generation algorithm considering GV made a huge con-
tribution to the improvements in these subjective evaluations.
However, it is interesting to note that objective measures such
as mel-cepstral distance or RMSE of log F0 between synthetic
speech using GV and real speech became worse than those be-
tween synthetic speech without GV and real speech. Since the
experimental results for the STRAIGHT and the parameter gen-
eration algorithm considering GV were similar to the results
of speaker-dependent system [4], we report the effect of the
feature-space SAT and gender mixed modeling in the next sub-
sections.
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3.3. Evaluation of the Feature-Space SAT

We evaluated the feature-space SAT algorithm using two types
of objective evaluations based on the average mel-cepstral dis-
tance and RMSE of log F0. In these evaluations, we chose a
male speaker EM001 as a target speaker of the speaker adapta-
tion and used 4 male speakers (AWB, BDL, JMK, RMS) and
2 female speakers (CLB, SLT) of CMU-ARCTIC database as
training speakers for the average voice model. We constructed
three kinds of the gender-independent average voice model us-
ing HSMM-based model-space SAT and HMM/HSMM-based
feature-space SAT, and adapted the resulting average voice
models of each system to the target speaker. The amount of
training data from each speaker was about 1100 sentences. The
adaptation data was from 10 sentences to 100 sentences. 1000
test sentences were used for the evaluations, and these were in-
cluded in neither the training nor the adaptation data. For the
calculation of the average mel-cepstral distance and the RMSE
of log F0, the state duration of each HSMM was adjusted after
Viterbi alignment with the target speakers’ real utterance.

Figure 5 shows the average mel-cepstral distance between
spectra generated from the adapted model and spectra obtained
by analyzing target speakers’ real utterance. Figure 6 shows
the RMSE of log F0 between F0 patterns of synthetic and real
speech. Silence, pause, and consonant regions were eliminated
from the mel-cepstral distance calculation. Since F0 is not ob-
served in the unvoiced region, the RMSE of log F0 was cal-
culated in the region where both the generated and the real
F0 were voiced. Comparing HSMM-based model-space and
feature-space SAT only, one sees that the feature-space SAT
gives slightly better results in the adaptation of the F0 pa-
rameter, whereas the error of the feature-space SAT partly be-
comes slightly worse in the adaptation of the spectral parame-
ters. However, we can also see that when we consistently ap-
ply the feature-space SAT to all the embedded training proce-
dures for HMMs and HSMMs, both the mel-cepstral distance
and RMSE of log F0 significantly decrease.
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3.4. Evaluation of the Gender-Mixed Modeling

Then, we evaluated the gender-mixed modeling using the mel-
cepstral distance. We constructed the gender-independent,
gender-dependent, and gender-mixed average voice models and
adapted these average voice models to the target speaker using
the same adaptation data. The experimental condition on the
speech data in this subsection is the same as 3.3.

Figure 7 shows the average mel-cepstral distance between
spectra generated from the adapted model and spectra obtained
by analyzing target speakers’ real utterance. Silence, pause,
and consonant regions were eliminated from the mel-cepstral
distance calculation. Comparing the gender-dependent and
gender-mixed average voice models, we can see that from 10
to 50 adaptation sentences, the gender-dependent modeling is
generally better, whereas the gender-mixed modeling becomes
better from the 50 to 100 adaptation sentences. We believe that
this is because the gender-mixed average voice model has many
more pdfs than the gender-dependent model, although we need
to perform further experiments to investigate it.

3.5. Comparison with Nitech-HTS 2005

Finally, we conducted a comparison category rating (CCR) test
and assessed the performance of the AVSS system with the
state-of-the-art TTS systems. For this purpose, we compared
the synthesized speech generated from the AVSS 2006 system
with that of the speaker-dependent system Nitech-HTS 2005.
The only difference between this Nitech-HTS 2005 system and
a system reported in [4] is dimension of mel-cepstral coeffi-
cients. In [4], 39 mel-cepstral coefficients were used. How-
ever, this increases the number of parameters of the matrix for
linear transformation. Hence we consistently utilize 24 mel-
cepstral coefficients for both systems. The experimental condi-
tion on the training data in this subsection is the same as 3.3. We
constructed the AVSS 2006 system using the training data and
adapted the resulting average voice model to the target speaker
using 100 sentences of the target speaker EM001. The speaker-
dependent system Nitech-HTS 2005 was built using 1000 sen-
tences of the target speaker EM001. For reference, we com-
pared synthesized speech generated from an adapted model us-
ing the same 1000 sentences of the target speaker EM001 as
adaptation data. 25 subjects were first presented with synthetic
speech of Nitech-HTS 2005 as a reference speech and then with
synthesized speech from the adapted models using 100 sen-
tences or 1000 sentences in random order. Then the subjects
were asked to comprehensively evaluate the synthetic speech
generated from the adapted models compared with the refer-
ence speech. The evaluation was done on a 5-point scale, that
is, 2 for better, 1 for slightly better, 0 for almost the same, -1 for
slightly worse, and 2 for worse than the reference speech.



The average values and their 95% confidence interval of
each adapted model in the CCR tests were 0.140±0.145 for
100 sentences and 0.424±0.08 for 1000 sentences, respectively.
The values indicate that the AVSS 2006 system can synthesize
speech of almost the same quality as the Nitech-HTS 2005 sys-
tem from just 100 sentences, that is, 10% of the training data for
the speaker-dependent systems. This is a very meaningful result
since the Nitech-HTS 2005 system was evaluated as a best sys-
tem in the Blizzard Challenge 2005, and we can say that the
synthetic speech using the AVSS 2006 system bears compar-
ison with other state-of-the-art TTS systems. Furthermore, we
can see that the synthetic speech generated from the AVSS 2006
system using 1000 sentences is judged to be slightly better than
those using 100 sentences and Nitech-HTS 2005 system. This
result implies that this average voice approach is no longer just
a speaker conversion system and it has the potential to surpass
the common speaker-dependent approach.

4. Conclusions
In this paper, we incorporated a high-quality speech vocoding
method STRAIGHT and a parameter generation algorithm with
GV into the AVSS system for improving quality of synthetic
speech. In addition to these techniques, we also proposed a
feature-space SAT algorithm using the HSMM and a gender
mixed modeling technique for conducting further speaker nor-
malization of the average voice model. We applied the AVSS
system using these techniques to U.S. English and built a new
system named AVSS 2006 system. From the subjective evalua-
tions, we shown that naturalness and similarity of the synthetic
speech of the AVSS 2006 system were drastically improved
compared to our conventional system, and then the AVSS 2006
can synthesize speech of the almost the same quality as the
Nitech-HTS 2005 system from just 100 sentences.

Our future work is to develop a modeling technique for
dealing with several dialects of English in the framework of the
average voice model. We will also focus on developing an un-
supervised speaker adaptation algorithm for speech synthesis.

5. Acknowledgments
This research was conducted for the purpose of the Blizzard
Challenge 2006 and 2007. The authors would like to thank Dr.
Yasser Hifny Abdel-Haleem of IBM T.J. Watson research center
for his original idea on gender-mixed modeling.

6. References
[1] J. Yamagishi and T. Kobayashi, “Average-voice-based

speech synthesis using HSMM-based speaker adaptation
and adaptive training,” IEICE Trans. Inf. & Syst., vol.
E90-D, no. 2, pp. 533–543, Feb. 2007.

[2] J. Yamagishi, T. Kobayashi, M. Tachibana, K. Ogata, and
Y. Nakano, “Model adaptation approach to speech synthe-
sis with diverse voices and styles,” in Proc. ICASSP 2007,
Apr. 2007, pp. 1233–1236.

[3] K. Ogata, M. Tachibana, J. Yamagishi, and T. Kobayashi,
“Acoustic model training based on linear transformation
and MAP modification for HSMM-based speech synthe-
sis,” in Proc. ICSLP 2006, Sept. 2006, pp. 1328–1331.

[4] H. Zen, T. Toda, M. Nakamura, and K. Tokuda, “De-
tails of Nitech HMM-based speech synthesis system for
the Blizzard Challenge 2005,” IEICE Trans. Inf. & Syst.,
vol. E90-D, no. 1, pp. 325–333, Jan. 2007.

[5] H. Kawahara, I. Masuda-Katsuse, and A. Cheveigné,
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