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Recognition of Dialogue Acts in Multiparty
Meetings Using a Switching DBN
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Abstract—This paper is concerned with the automatic recogni-
tion of dialogue acts (DAs) in multiparty conversational speech.
We present a joint generative model for DA recognition in which
segmentation and classification of DAs are carried out in parallel.
Our approach to DA recognition is based on a switching dynamic
Bayesian network (DBN) architecture. This generative approach
models a set of features, related to lexical content and prosody,
and incorporates a weighted interpolated factored language
model. The switching DBN coordinates the recognition process by
integrating the component models. The factored language model,
which is estimated from multiple conversational data corpora, is
used in conjunction with additional task-specific language models.
In conjunction with this joint generative model, we have also inves-
tigated the use of a discriminative approach, based on conditional
random fields, to perform a reclassification of the segmented
DAs. We have carried out experiments on the AMI corpus of
multimodal meeting recordings, using both manually transcribed
speech, and the output of an automatic speech recognizer, and
using different configurations of the generative model. Our results
indicate that the system performs well both on reference and fully
automatic transcriptions. A further significant improvement in
recognition accuracy is obtained by the application of the discrim-
inative reranking approach based on conditional random fields.

Index Terms—AMI corpus, conditional random field (CRF), di-
alogue act (DA), dynamic Bayesian network (DBN), interpolated
factored language model (FLM).

I. INTRODUCTION

D IALOGUE acts (DAs) form a useful level of represen-
tation for the interpretation of conversations. A DA is a

construct that describes the role that an utterance plays in a
conversation and provides a bridge between an orthographic
word-level transcription and a richer representation of the dis-
course. A conversation may be segmented into a sequence of
DAs, with each DA assigned a label that describes the function
played by that utterance within the conversation. DA labels may
incorporate syntactic, semantic, and pragmatic factors: in addi-
tion to providing information about the structure of a dialogue
and the course of a conversation, DAs are also able to capture, at
a coarse level, individual speaker attitudes and intentions, their
interaction role, and their level of involvement.
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Multiparty meetings have been intensively researched over
the past several years, with a growing focus on how a meeting
may be automatically analyzed and interpreted in terms of the
group discourse and interaction. Example applications have in-
cluded automatic summarization [1], topic segmentation and la-
beling [2], [3], group action detection [4]–[6], participant influ-
ence [7], and dialog structure annotation [8]. The reliable recog-
nition of the DA sequence in a meeting, and the resulting knowl-
edge of the discourse structure, plays an important role in the
development of such applications.

In this paper, we present a flexible trainable approach for the
automatic recognition of DAs in meetings, based on a switching
dynamic Bayesian network (DBN) model, a factored language
model, and discriminative reranking. We present results on the
AMI meeting corpus, in which we compare DA recognition ac-
curacy on manual and automatic meeting transcriptions, and
compare the effect of the different components of the overall
approach.

The DA recognition task comprises two related subtasks: seg-
mentation, and classification or tagging. These tasks may be
performed jointly or sequentially. In a sequential approach the
conversation is first segmented into unlabeled DA segments,
then each detected segment is tagged with a DA label. The joint
approach performs both tasks concurrently, detecting DA seg-
ment boundaries and assigning labels in a single step. The joint
approach is able to examine multiple segmentation and clas-
sification hypotheses in parallel, whereas only the most likely
segmentation is supplied to the DA classifier in a sequential
approach. The joint approach is potentially capable of greater
accuracy, since it is able to explore a wider search space, but the
optimization problem can be more challenging. In a sequential
system, the two subtasks can be optimized independently.

Wepresent anapproach toDArecognition that takesadvantage
of both techniques by employing a joint generative infrastructure
followed by a discriminative classifier. Both system components
make use of supervised learning from manually annotated data.
The joint recognition is coordinated by a switching DBN which
integrates a discourse language model, six lexical and prosodic
features, and two factored language models trained on the or-
thographic transcriptions. The recognized sequence of DA units
is then reclassified using a conditional random field DA tagger
trained using the lexical content and a set of discrete features.

We have performed tagging, segmentation, and recognition
experiments using the joint generative approach on unseen
meetings with three different modelling configurations, based
on both manual and automatic speech recognition (ASR) tran-
scriptions. We demonstrate in additional experiments, that the
accuracy of DA recognition using this joint approach can be
further improved through discriminative postprocessing.
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II. MULTIPARTY CONVERSATIONAL DATA RESOURCES

In our main experiments, we have used the AMI meeting
corpus [9], which is a multimodal collection of annotated
meeting recordings. It consists of about 100 h of meetings col-
lected in three instrumented meeting rooms. About two thirds
of the corpus consists of meetings elicited using a scenario in
which four meeting participants, playing different roles in a
team, take a product development project from beginning to
completion. The scenario portion of the corpus consists of a
number of meeting series, with four meetings per series. Each
series of four meetings involves the same four participant roles,
and comprises project kickoff, functional design, conceptual
design, and detailed design meetings. The remaining meetings
in the corpus, “nonscenario,” are naturally occurring meetings,
with three to five participants.

The aim of the corpus collection was to obtain a multimodal
record of the complete communicative interaction between
the meeting participants. To this end, the meeting rooms were
instrumented with a set of synchronized recording devices,
including lapel and headset microphones for each participant,
an eight-element circular microphone array, six video cameras
(four close-up and two room-view), capture devices for the
whiteboard and data projector, and digital pens to capture the
handwritten notes of each participant. The corpus has been
manually annotated at several levels, including orthographic
transcriptions, various linguistic phenomena including DAs,
head and hand movements, and focus of attention.1 The DA
annotation scheme for the AMI corpus, outlined in Table I,
is based around a categorization tailored for group decision
making, and consists of six broad categories and a total of
15 DA classes. Each DA unit is assigned to a single class,
corresponding to the speaker’s intent for the utterance. The
distribution of the DA classes, shown in Table I, is rather
imbalanced, with over 60% of DAs corresponding to one of the
three most frequent classes (inform, backchannel or assess).
Over half the DA classes account for less than 10% of the
observed DAs.

We performed our experiments on the 138 meetings that form
the scenario subset of the AMI corpus, following the subdivision
into training, development, and test sets suggested in the corpus
documentation. There were 98 meetings in the training set, 20
in the development set, and 20 in the test set.

We have used two further corpora in this work: the ICSI meet-
ings corpus [10] and the Fisher corpus [11]. The ICSI meet-
ings corpus consists of 72 h of naturally occurring research
group meetings at the International Computer Science Insti-
tute in Berkeley, CA, during the years 2000–2002, recorded
using close-talking microphones worn by each participant (in
addition, there were also four tabletop microphones). The ICSI
corpus has been orthographically transcribed and annotated in
terms of DAs. However, the DA annotation scheme is different
to the one used for the AMI corpus—it is not possible to test a
DA recognition system developed on the AMI data on the ICSI
corpus or vice-versa. The ICSI corpus was annotated according
to the Meeting Recorder Dialog Act (MRDA) scheme, which
utilizes 11 generic tags and 40 specific subtags resulting in more

1The annotated corpus is freely available from http://corpus.amiproject.org

TABLE I
SIX BROAD CATEGORIES AND 15 SPECIALIZED DA CLASSES USED

IN THE AMI CORPUS DA ANNOTATION SCHEME, WITH
THE PERCENTAGE OF DAS IN EACH CLASS

than 1000 unique DA labels [12]. This large set of DA classes
may be transformed (by rule) to a set of five broad DA classes:
statements (52.2% of annotated DAs), questions (6.2%), disrup-
tions (12.9%), fillers (10.3%), and backchannels (12.3%). It is
not feasible to build a mapping between the ICSI and AMI DA
classes.

The Fisher corpus consists of more than 16 000 English tele-
phone conversations on a wide range of elicited topics, resulting
in about 2000 hours of recorded speech, which has been or-
thographically transcribed. Although it is not possible to use
these corpora directly as training data for DA recognition (using
the AMI corpus annotation scheme) they represent valuable ad-
ditional sources of transcribed conversational data. The Fisher
corpus was of particular utility, since it contains over 10 million
words, making it an order of magnitude larger than the AMI and
ICSI corpora.

III. JOINT DA RECOGNITION SYSTEM

We have developed a joint approach to DA recognition
based on a switching DBN generative model. The observed
features that are generated by this model are the words spoken
by the meeting participants, together with a set of word-based
prosodic features related to timing, intonation, and energy. The
mapping from DA labels to word sequences was modeled using
a factored language model (FLM) and an interpolated FLM.
The probability of observing a certain sequence of DA labels
(discourse model) was represented through a simple trigram
language model over DAs. The set of continuous word-based
prosodic features was integrated into the recognizer using
a Gaussian mixture model (GMM). The overall recognition
process is actively controlled by a switching DBN which inte-
grates information derived from words, prosodic features, and
language models. Section III-A outlines the use of an automatic
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speech recognizer to produce a transcription, and the extraction
of the prosodic features. Sections III-B and III-C discuss the
factored language models and the switching DBN model that
underlie the DA recognition system.

A. Feature Extraction

We have used two sets of features in the DA recognition
system: the transcription of the spoken words obtained using an
ASR system (Section III-A1) and the continuous prosodic fea-
tures (Section III-A2).

1) Speech Recognition: Fully automatic DA recognition re-
quires speech recognition. The AMI corpus has been manually
transcribed at the word level, as well as being processed by an
ASR system, thus enabling us to assess the robustness of the DA
recognition system to speech recognition errors.

Large vocabulary continuous speech recognition (LVCSR) of
conversational speech is a significant research domain, and the
recognition of speech in meetings has been intensively studied
and evaluated in recent years.2 Automatic transcriptions of the
AMI meeting corpus were obtained using the AMI–ASR system
[13]. This LVCSR system is based on decision tree clustered
crossword triphone hidden Markov models and a trigram lan-
guage model. For the multiparty meeting domain, the front end
was enhanced using acoustic echo cancellation, and the per-
ceptual linear prediction acoustic features were processed using
heteroscedastic linear discriminant analysis. The acoustic fea-
ture space was normalized by speaker, using vocal tract length
normalization, and the model space was adapted using max-
imum-likelihood linear regression.

The meeting domain acoustic models were trained on the
AMI corpus data. To recognize the complete corpus, a fivefold
cross-validation was employed using equal splits of the corpus.
Two transcription versions were generated in each case: a fully
automatic one achieved by applying the full system to auto-
matically segmented audio files; and a semiautomatic transcrip-
tion obtained using a manual segmentation into utterances. The
“manual segmentation” system also used a simpler ASR com-
ponent, in which speaker adaptation was not used. The fully au-
tomatic system resulted in an overall word error rate (WER) of
about 36%; the simpler system, using manual segmentation, re-
sulted in a WER of about 39%. In both cases the system operated
on signals recorded from the close-talking microphones.

The automatic DA recognition experiments performed on
the AMI corpus (Section V-B) compared both transcription
versions. The speaker adapted “automatic segmentation” ASR
output offers an overall improvement in terms of WER com-
pared with the “manual segmentation” ASR output. However,
entire utterances may be deleted by the automatic acoustic
segmentation, and consequently whole DA segments are ir-
redeemably lost (Section IV). Moreover, the word boundary
times of the “manual segmentation” ASR output, are more
accurate, compared with the reference orthographic transcrip-
tion, since they cannot cross the manually annotated utterance
boundaries. Accurately timed word boundaries are desirable
for the extraction of prosodic features at the word level and are
also required to evaluate segmentation into DAs.

2NIST rich transcription meeting recognition evaluation available at http://
www.nist.gov/speech/

Fig. 1. Data-flow of the automatic speech transcription and feature extraction
process.

Although both ASR versions offer valuable insights during
the evaluation of our system, the “automatic segmentation” ASR
output represents the main test condition since it does not re-
quire any manual intervention.

2) Prosodic Features: Six continuous prosodic features were
extracted for each word, using the audio signal and the transcrip-
tion (Fig. 1): mean and variance of the fundamental frequency
(F0), mean energy, word duration, pause duration, and word rel-
evance. For the reference transcription, the times of word bound-
aries were obtained using a forced alignment against the audio.
For the ASR transcriptions, the word boundary timings were
output as part of the recognition process. The F0 tracks were
estimated using ESPS [14], and the mean and variance
were computed. The mean pitch was also normalized by speaker
and by the average pitch for that term, with the objective of
having a speaker-independent measure able to highlight con-
tent words with a significant pitch shift. A similar normaliza-
tion technique was applied during RMS energy estimation with
the aim of compensating for different channel gains and to high-
light emphasized words. Word duration was “term normalized,”
being thus divided by the average word duration for that term,
in order to highlight words which last more (or less) than the
usual occurrences of that term. Unit duration, pitch, and energy
were assigned to words which appear only once in the training
set and to out-of-vocabulary words observed during testing but
absent from the training set. Interword pauses were also esti-
mated from the word boundary times. Pauses are often associ-
ated with speaker turn alternations and other relevant changes in
the conversational process such as topic shifts, and it is known
that they provide a valuable cue for DA segmentation [15], [16].
Word relevance was estimated as the ratio between local term
frequency within the current conversation and absolute term
frequency across the whole meetings collection, thus assigning
high scores to globally infrequent terms which occur frequently
in the current conversation.
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B. Interpolated Factored Language Models

Conventional language models construct a joint prob-
ability distribution over word sequences ,
which is factorized as a product of conditional probabilities

. This concept can be general-
ized by replacing words with bundles of factors

, to construct a factored language model (FLM) [17].
Each factor bundle, , is a vector whose
components are factors such as word identity, part of speech
tag, word stem, and enclosing dialogue act label. Conventional
LMs can be interpreted as a special case of FLMs with a single
factor, the actual words: . Word identities are usually
included in the collection of factors employed in an FLM. The
smoothing and discounting techniques used for conventional
LMs may be applied to FLMs, with the added flexibility of
choosing which factor to drop when constructing simpler
models for interpolation or backoff. Moreover, it is possible
to drop more than one factor at a time and to follow multiple
concurrent backoff paths using generalised parallel backoff
[17]. FLMs have an increased number of degrees of freedom,
compared with conventional LMs, and it is possible to choose
the factor set, the number of backoff steps, the backoff topology,
and the discounting method associated to each backoff step.

We use FLMs to map word sequences into DA units, and we
are primarily interested in evaluating these models in terms of
DA labeling accuracy, rather than perplexity. It is possible to se-
lect the optimal FLM topology automatically [18], and we ex-
perimented with a simple search algorithm that randomly sam-
pled the search space. The resulting models tended to employ a
large number of factors (seven or more), implying many backoff
steps. These automatically discovered topologies resulted in a
slightly improved DA tagging accuracy (up to 2% absolute)
when compared to manually developed FLMs, but the more in-
tricate structure requires a more elaborate DBN infrastructure
and substantially increases computational cost. In order to reach
a tradeoff between simplicity, cost, and accuracy, we decided
to employ a simpler FLM topology with three factors (and two
backoff steps). Although this topology was initially designed by
hand, it was also discovered by the automatic search procedure
(with an improved set of discounting parameters).

The FLM that we used for the DA recognition task was based
on three factors: the word identity , the dialogue act label
associated to each word , and the relative word position
in the context of the DA unit. The word sequence probability
was modeled using a product of word bigrams conditioned also
on word position and DA label . The model
was smoothed using two backoff steps and Kneser–Ney dis-
counting. was the first term to be dropped leading to a
unigram like term . In the case of a subsequent
backoff, the DA label factor was the next term to be dropped,
leading to . The FLM was estimated using the training
subset of the AMI scenario meeting data outlined in Section II
(470 000 words and a dictionary of about 9000 unique terms).

FLMs with the same topology may be interpolated, similarly
to word-based n-grams. This enables the construction of com-
bined models, whose component FLMs are trained using dif-
ferent data resources. We built FLMs for DA recognition using

the ICSI meetings corpus and the Fisher corpus of conversa-
tional telephone speech, in addition to an FLM built on the target
AMI corpus, integrating them into a single interpolated factored
language model.

The AMI meetings corpus has a size of 0.97 million words
in total, with about 0.47 million words in our training set of 98
meetings. The ICSI corpus, which is from a similar domain,
contains 0.74 million words. The Fisher corpus, which is based
on two party telephone conversations is much larger, containing
10.62 million words. Building an interpolated FLM from
these data sources, enriches the baseline FLM trained on AMI
meetings only, by extending the vocabulary and thus reducing
the out-of-vocabulary, and by improving the n-gram counts
with word sequences that are not observed in the AMI training
data-set alone. However, neither the ICSI or Fisher corpora are
annotated using the AMI DA annotation scheme. (The ICSI
corpus has been annotated for DAs, but using a different and
incompatible scheme.) In the absence of compatible DA anno-
tations, both the ICSI and FISHER corpora were duplicated 15
times when training the FLMs, labeling every sentence with all
the 15 possible DA labels in the AMI DA annotation scheme.
FLMs trained on artificially duplicated data are obviously not
discriminative in a DA classification task, but they are able
to enhance the dictionary and n-gram counts of the resulting
interpolated FLM.

As will be discussed in Section V, the use of an interpolated
FLM provides an improvement in DA segmentation at the price
of slightly reduced DA classification accuracy. To address this,
we conducted experiments with a hybrid approach in which the
baseline FLM trained on the AMI data is combined with an in-
terpolated FLM at the sequence decoding level by maximizing
the product of the joint probabilities associated to the two con-
current FLMs.

C. Switching DBN Architecture

In a DA recognition system, segmentation and classification
are strongly related—the output of the DA classifier is depen-
dent on the optimal placement of the DA unit boundaries, and
the placement of the DA boundaries depends on the labels as-
signed to the DAs. In this paper, we treat the segmentation and
classification problems jointly and the process is coordinated by
a switching DBN model [19], implemented using the Graphical
Model ToolKit (GMTK) [20].

Fig. 2 depicts the switching DBN model [21]. The transcribed
words are represented as the sequence of discrete observable
nodes . The FLM and interpolated FLM out-
lined in the previous section are depicted using dotted arcs, and
each word is observed twice: once for the baseline FLM and
once for the interpolated FLM. The relative position of each
word in the current DA unit DA is represented by the dis-
crete node . relies on a bounded word counter , which is
incremented at every word encountered in the current DA unit.
After each block of five words, is reset to zero, and is
incremented, thus indicating to which “block of five words” the
current word belongs to

(1)
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Fig. 2. Switching dynamic Bayesian network model for the joint dialogue act
recognition task. (A) Intra-DA topology adopted within a DA unit. (B) Inter-DA
topology used at DA boundaries. The model switches between the two operating
conditions (topologies) according to the state of the DA boundary detector node

. Square nodes represent discrete random variables; round nodes are contin-
uous variables. Shaded nodes represent observable features; unshaded nodes
are hidden variables. Plain arcs visually encode statistical dependences between
random variables and dotted arcs highlight the dependences implied by FLMs.

The final length of an automatically detected DA unit is not
known a priori and is only available at the end of the DA recog-
nition process; therefore, it is impractical to estimate word po-
sition features normalized for DA length.

The DA recognition history is represented by the current and
the two previous DA labeling hypotheses, DA DA and DA .
This history is needed by the DA boundary detector, the hidden
binary variable . is the principal switching variable in
the model, switching from zero to one when a boundary be-
tween two disjoint DA units is detected. In the absence of a DA
boundary the DBN assumes the intra-DA topology
shown in Fig. 2(A); when a boundary is likely to be present

, the model adopts the alternative inter-DA topology
depicted in Fig. 2(B).

The dependency of the observable prosodic feature vectors
on is modeled using a Gaussian mixture model (GMM) with

components

(2)

where is a Gaussian density with mean and
covariance , evaluated at . is the conditional prior
weight of each mixture component , and the optimal number of
mixture components for each state is automatically
selected during training [20]. The GMM relates the six-dimen-
sional prosodic features to the two discrete states of , thus
helping to predict the DA segmentation.

The cardinalities of the discrete random variables reflect
the function they serve in the model, thus:

DA DA DA , and has as many states as

the number of words in the dictionary. Since the vast majority
of the DA units have fewer than 75 words, the word block
counter cardinality has been constrained to .

The intra-DA topology used within a DA unit [Fig. 2(A)] ac-
cumulates the joint probability for a sequence of words

as the product of a FLM and a weighted inter-
polated FLM given the current DA label hypothesis DA and
the deterministic counter nodes and . The two language
model probabilities (FLM and interpolated FLM) are combined
by using an equally weighted stream weighting combination

DA

DA

DA (3)

where DA represents the joint probability
for the observed utterance , given the current DA
classification hypothesis DA and are the proba-
bilities, respectively, provided by the baseline and the interpo-
lated FLMs.

The absence of a DA boundary implies that the DA recog-
nition history remains unaltered; hence, the content of DA
needs to be cloned into DA , and similarly DA DA .
Since the word sequence has been generated by
the same DA unit with label DA , and no DA boundaries have
been spotted between time and time , it follows that
DA DA DA for .

If a DA boundary is hypothesized , then the model
switches to the inter DA topology [Fig. 2(B)], which integrates
the probability from the 3-gram discourse LM into the overall
recognition process and starts the evaluation of a new DA unit,
reinitializing the counter nodes: . The DA
recognition history is updated and a new set of DA classifica-
tion hypotheses DA , for the next DA unit beginning with ,
is generated following the 3-gram discourse language model

DA DA DA .
When a slightly modified intra-DA topology
needs to be adopted, with both the DA recognition history and

the counter nodes initialized to zero DA DA
.

Segmentation and classification are carried out concurrently.
The classification process accounts for the joint probability of
the transcription accumulated by the two con-
current FLMs given the current classification hypothesis DA ,
the probability of DA given the two previously recognized DA
units, and the segmentation hypothesis (a DA unit starting at
time and ending at time ). Several alternative segmenta-
tion hypotheses are generated, with the probability of each seg-
mentation combining the likelihood of generating the observed
prosodic feature vectors and the likelihood of the DA unit
generating the observed words . A pruned Viterbi
decoding is used to find the most likely sequence of labeled DA
segments.3

3The decoding runtime for this model is about 10 times slower than realtime
on a 3–GHz P4 equipped with 1 GB of RAM.
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TABLE II
DA SEGMENTATION AND RECOGNITION EVALUATION METRICS

Since this approach cannot generate a DA segmentation
without an associated DA labeling hypothesis, the segmenta-
tion accuracy is assessed by ignoring the recognized DA labels.
Classification of the DA units for a reference segmentation can
be achieved by constraining the state of the boundary detector
nodes .

IV. EVALUATION

DA tagging accuracy can be easily evaluated by scoring the
automatic DA classification output on a test set against the corre-
sponding reference DA annotation. The percentage of correctly
classified DA units, or its complement the classification error
rate, is a standard metric for the DA tagging task, along with
class-based precision and recall measures [22].

The evaluation of DA segmentation accuracy is less straight-
forward. The concept of a “correct” DA segmentation is not
unequivocally defined, since it may be in terms of the overall
sequence of DA units, or may demand precise timing of the
DA boundaries. Moreover, a segmentation metric may be ex-
pressed and normalized in terms of DA units, DA boundaries,
or words. A number of different metrics have been proposed,
each offering a different perspective on the task of DA segmen-
tation. In this paper, we report our results using four previously
defined metrics: the NIST Sentence like Unit (NIST-SU), Strict,
and Boundary metrics [15], and the DA Segmentation Error
Rate (DSER) metric [23], [16]. These metrics are summarized
in Table II.

According to the Strict and DSER metrics a DA unit has
been correctly detected only when both boundaries are correctly
located and no other boundaries fall within the detected unit;
the NIST-SU and Boundary metrics focus on individual bound-
aries, rather than on DA units, and are thus more tolerant. The
NIST-SU metric scores the sum of missed DA boundaries and
false alarms divided by the number of reference DA bound-
aries. In case of a high number of insertions (false alarms),
the NIST-SU metric can assume values well above 100% [16].
The Boundary metric has the same numerator as the NIST-SU
metric (missed boundaries insertions) but is normalized by
the total number of nonboundaries in the reference, which is
equivalent to the number of reference words. Since there are
usually many more reference words than segmentation errors,
this metric tends to be skewed toward very low error rates. The
DSER metric is the complement of the percentage of correctly
detected DA units; similarly the Strict metric can be defined
as the percentage of words belonging to incorrectly segmented
units. The Strict metric is a severe metric heavily influenced by
the length of DA units in terms of words.

Since the DA recognition task combines segmentation and tag-
ging, it is possible to translate most of the segmentation metrics
into recognition metrics by requiring that the detected DA unit
labels match the reference annotation. Therefore, the NIST-SU,
Strict, and DSER (usually referred as DA error rate or DER in the
recognition task) metrics can be easily adapted to the recognition
task by adding the constraint that wrongly labeled units will be
scored as errors even if their boundaries are a perfect match. This
added requirement implies that these recognition metrics will re-
sult in error rates at least as great as their segmentation counter-
parts. The Boundary segmentation metric is an exception, since
it is translated into the Lenient recognition metric [15], which is
defined as the percentage of correctly classified words indepen-
dent of the segmentation. Since it is focused exclusively on tag-
ging accuracy, this metric should be regarded as a DA classifi-
cation metric rather than a genuine recognition metric.

The reference DA annotation is produced in terms of the
manually transcribed word sequence. When processing ASR
output, the DA tags will be applied to a different word sequence,
owing to ASR errors. Since a manual re-annotation of the ASR
output would be extremely expensive, we have adopted the
evaluation scheme proposed by Ang et al. [15]: ASR words are
mapped into the manually annotated segments according to their
midpoint word start time word end time , thus
inheriting their reference DA labels. Because of ASR deletions
and the time-based alignment, several DA units will be empty. As
we have adopted a word-based approach, these lost segments
cannot be successfully recognized and will be reported as errors
by every segmentation/recognition metric. Conversely, on a pure
DA tagging evaluation task, empty segments will be scored as if
they were tagged with a randomly drawn label, thus reducing the
biasing effect of words and utterances deleted by the ASR system.

V. EXPERIMENTS

We have used the switching DBN model for tagging, segmen-
tation, and recognition of DAs in the ICSI and AMI meeting cor-
pora, using the three language model configurations described
in Section III-B: FLM, interpolated FLM, and a hybrid in which
the interpolated FLM is focused on segmentation and the base-
line FLM is focused on tagging. These experiments extend our
previously published results in which an early version of the
switching DBN model, without the use of interpolated FLMs,
was used for DA recognition on the ICSI meetings corpus [24],
and experiments on the AMI corpus using manual transcriptions
only [21]. Our initial experiments, applying the complete frame-
work to the five DA ICSI task, validates the methodology on an
established task, forming the base for our investigations on the
novel 15 DA AMI task.

A. Joint DA Recognition of ICSI Meetings

We performed DA tagging, segmentation and recognition on
the ICSI meeting corpus, using the reference manual transcrip-
tions. These experiments used the ICSI DA annotation scheme
based on the five broad DA categories described in Section II.
In order to facilitate comparison with the existing literature, we
used the subdivision of the ICSI corpus defined by Ang et al.
[15]. The results obtained using the three language model con-
figurations are reported in Table III: the baseline FLM model
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TABLE III
DA TAGGING, SEGMENTATION, AND RECOGNITION ERROR RATES (%)
ON THE ICSI MEETING CORPUS USING A DICTIONARY OF FIVE BROAD
DA CLASSES; RESULTS ARE REPORTED ON THREE DIFFERENT FLM

SETUPS (BASELINE FLM, INTERPOLATED FLM, AND HYBRID FLM+IFLM)
USING REFERENCE MANUAL TRANSCRIPTIONS

[24]; a novel weighted interpolated FLM trained on ICSI, AMI,
and FISHER data (AMI and FISHER were duplicated five
times, one .for each DA class); and a hybrid combination of the
two FLMs

The results on the ICSI corpus indicate that the baseline FLM
offers the best tagging performance; adoption of an interpolated
FLM improves the segmentation accuracy at the cost of tag-
ging. An effective tradeoff between DA tagging and segmen-
tation, required for DA recognition, was obtained using the hy-
brid configuration (baseline FLM and interpolated FLM used in
conjunction). In Section VII, we compare these results with the
state-of-the-art results reported on this task [16].

B. Joint DA Recognition of AMI Meetings

We performed more extensive experiments using the
switching DBN model and the three system configurations on
the AMI meeting corpus. Each of these systems was run on
three transcription conditions: manual reference transcription,
ASR with manual utterance segmentation, and ASR with
automatic utterance segmentation. As discussed in Section II,
the AMI meeting corpus uses a set of fifteen DA classes, in
contrast to the five broad DA classes used on the ICSI corpus,
thus results for the two corpora are not directly comparable.

Error rates for the DA tagging, segmentation, and recognition
tasks, using the three system configurations and the three tran-
scription conditions are shown in Table IV. The three system
configurations are as follows:

• FLM: simple FLM trained only on the AMI training set;
• iFLM: weighted interpolated FLM trained on AMI (rela-

tive combination weight of about 58.5%), ICSI (2.7%), and
FISHER (38.8%) conversational data;

• Hybrid: iFLM and FLM combined at the decoding level.
These three systems were each run on three transcription con-
ditions, described in Section III-A1:

• Manual hand transcription (WER: 0%);

Fig. 3. DA class-based precision/recall metrics for the automatic DA tagging
task on reference orthographic annotation and two versions of the ASR output.
The 15 classes are sorted by their relative frequency in the AMI corpus.

• ASR_AS ASR with automatic segmentation: fully auto-
matic system from ASR preprocessing up to DA segmen-
tation and recognition (WER: 36%; 12.8% of DAs lost due
to ASR deletions);

• ASR_MS ASR with manual segmentation: non-speaker
adapted ASR with manual utterance segmentation (WER:
39%; 5.8% of DAs lost due to ASR deletions).

Although ASR_MS has a higher word error rate, the manual seg-
mentation results in fewer complete DAs being deleted. Most of
the deleted DA segments are very short, typically backchannels
or fragments; an example of this is visible at the bottom of Fig. 4.

The FLM system has a classification error rate of about 10%
absolute lower than the iFLM system for the tagging task, which
uses a predefined segmentation. This is to be expected, since
the additional data sources used in the iFLM system, the Fisher,
and ICSI corpora do not have DA tags corresponding to the
AMI scheme (Section III-B). Thus, although these additional
data sources extend the vocabulary and n-gram counts, they are
unable to provide information to help discriminate between DA
classes. The trigram discourse model contributes to these results
by about 7.0% absolute: DA tagging experiments using the FLM
system without the discourse trigram, resulted in classification
error rates of 47.7%, 57.5%, and 59.7%, respectively, for the
manual, ASR_MS, and ASR_AS transcriptions.

Precision and recall of DA tagging is shown by class in Fig. 3.
This graph indicates that DA tagging accuracy is influenced
by the imbalanced distribution of DA labels. Not surprisingly,
the classifier performs better on the two most frequent classes,
inform and backchannel. However very infrequent classes such
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TABLE IV
DA TAGGING, SEGMENTATION, AND RECOGNITION ERROR RATES (%) ON THE AMI MEETING CORPUS; RESULTS ARE REPORTED ON THREE DIFFERENT FLM

SETUPS (BASELINE FLM, INTERPOLATED FLM, AND HYBRID FLM IFLM) BOTH ON REFERENCE MANUAL TRANSCRIPTIONS AND ON TWO ASR OUTPUTS

as be-positive and offer have good recall and precision scores,
suggesting that even if rare, they can be well modeled and
discriminated.

For the DA segmentation task, Table IV indicates that the
iFLM system results in much lower errors, by a factor of three,
compared with the basic FLM approach. In this case, the re-
duced discrimination of the iFLM system is outweighed by the
extended dictionary and larger language model, obtained from
the additional ICSI and Fisher corpora.

Since DA recognition needs both accurate segmentation and
classification, we combined the FLM and iFLM, resulting in a
hybrid approach which combines the two models at the decoding
level. The segmentation error rates of the hybrid system are
slightly higher than those provided by the iFLM approach, and
the tagging error rate is slightly higher than the FLM approach,
but on the joint recognition task, which involves both classifica-
tion and segmentation, the hybrid provides the lowest errors.

Compared with the reference transcription, the automati-
cally produced transcriptions, ASR_AS and ASR_MS, result in
increased error rates for DA tagging, segmentation, and recog-
nition. For tagging, the ASR_AS system results in an increased
error of about 11% absolute, similar to that recorded on the
ICSI tagging task [24]. Since the automatic DA segmentation
strongly relies on the lexical content, a similar degradation can
also be observed on DA segmentation metrics. The iFLM and
Hybrid test conditions are less severely affected, suggesting that
the larger language model results in a greater tolerance toward
ASR inaccuracies. The full DA recognition task, representing
a tradeoff between segmentation and classification, leads to
an increase in the NIST-SU recognition metric by about 10%
on iFLM and Hybrid setups and by 20% on the baseline FLM
experiment.

However, the 12% of segments that are deleted in the ASR_AS
transcription have an effect on the DA recognition results. In
order to quantify this degradation, we compared the ASR_AS
with the ASR_MS transcription which has an increased overall
WER, but a reduced number of utterance deletions. Despite its
higher WER, ASR_MS performs slightly better than ASR_AS on
the isolated DA tagging task, although the lenient metric sug-
gests that the situation is actually inverted when the DA classi-

fication is carried out as part of the joint DA recognition. Be-
cause of the lower number of deleted segments, ASR_MS out-
performs ASR_AS on the DA segmentation subtask using both
the FLM and iFLM systems. A similar discourse applies to the
overall recognition performances on the baseline FLM setup.
Thanks to the more ASR tolerant interpolated FLM and to the
improved ASR_AS transcription quality, which leads to better
dynamic classification performances (Lenient metric), ASR_AS
offers a slightly improved DA recognition over ASR_MS on both
iFLM and Hybrid setups.

An example of the automatic DA recognition output is shown
in Fig. 4. The reference manually annotated DA units (bold
text) have been aligned to the automatic DA recognizer output
produced using both the reference transcription (plain text) and
the ASR_AS output (italic text). An excerpt rich in interactions
has been chosen for this example even if this often results in
more ASR errors, because of overlapping speech and crosstalk
between microphones, and thus in a lower DA recognition
accuracy.

The switching DBN architecture generates both word se-
quences, using language models, and sequences of continuous
prosodic features (using GMMs). We have performed a set
of experiments to analyze the effect of the prosodic features.
Table V gives tagging, segmentation, and recognition results
for the manual and ASR_AS transcriptions, using a model
that does not include the continuous prosodic features. The
prosodic features do not contribute to the tagging task; hence,
the results in this case are unchanged. For the segmentation
and recognition tasks, it can be seen that removing the prosodic
features results in a substantial increase in all the error rates,
with the exception of the lenient error metric.

VI. DISCRIMINATIVE RECLASSIFICATION

OF JOINT RECOGNITION OUTPUT

The use of static discriminative classifiers to rerank the output
of sequential generative models has proven to be an effective
technique in domains such as probabilistic parsing [25] and
statistical machine translation [26]. Discriminative approaches
have also been used to correct (or validate) the ASR transcrip-
tion produced by a generative HMM system. Support vector ma-
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Fig. 4. Manually annotated DA units in bold (first row), and the automatic DA recognizer output obtained applying the switching DBN model with a Hybrid FLM
configuration to the manual reference (second row) and the automatic ASR_AS transcriptions (third row, italic font). The DA segments have been specified using
the following format: [speaker label—DA label “utterance”] where the four interacting speakers have been represented through the capital letters A, B, C, and D.

TABLE V
DA TAGGING, SEGMENTATION, AND RECOGNITION ERROR RATES (%) ON

THE AMI MEETING CORPUS WITHOUT THE USE OF CONTINUOUS PROSODIC
FEATURES; RESULTS ARE REPORTED ON THREE FLM SETUPS BOTH ON

REFERENCE AND FULLY AUTOMATIC ASR TRANSCRIPTIONS

chines trained on features related to the acoustics are used in
[27] to disambiguate confusable word pairs. In another applica-
tion of static reranking of LVCSR n-best hypotheses, additional
phonetic, lexical, syntactic, and semantic knowledge were used
to discriminate between multiple recognition hypotheses [28].

This is an attractive approach for several reasons. First, since
it is a postprocessing method, it may be applied to any preex-
isting system leaving it unaltered. Second, directly discriminant
approaches explicitly optimize an error rate criterion, while ex-
ploiting temporal boundaries and recognition candidates esti-
mated by the generative model. Finally, it is possible to add
features to the joint recognition system, with the possibility of
lower computational overhead.

We have applied discriminative reranking to automatic DA
recognition, postprocessing the output of the iFLM system with

TABLE VI
DA RECOGNITION ERROR RATES (%) OF A CRF-BASED RECLASSIFICATION

SYSTEM WITH AND WITHOUT THE USE OF DISCRETISED PROSODIC FEATURES;
BEST PRIOR RECOGNITION PERFORMANCES USING THE HYBRID APPROACH

HAVE BEEN REPORTED IN BRACKETS

a static discriminative classifier based on conditional random
fields [29]. CRFs are undirected graphical models frequently
used with a simplified linear chain topology (first-order CRF)
which can be interpreted as a generalization of HMMs. Since
CRFs are trained to maximize the conditional likelihood of a
given training sequence, rather than the joint likelihood, they
offer improved discrimination and a better support of correlated
features. Moreover, during CRF decoding, the classification de-
cision is taken globally over the entire sequence and not locally
on a single observation.

The linear chain CRF has been used to associate DA labels
with the best segmentations provided by the switching DBN.
The prosodic features that we used in the generative model (with
the exception of F0 variance) were discretized and used in con-
junction with the lexical information during the CRF relabeling
process, implemented with CRF .4

Table VI reports the recognition performances after
discriminative reclassification. The improvement is consis-
tent on all the transcription conditions and on all the evaluation
metrics, with reduction of 5%–12% absolute. This improvement
is mainly due to the discriminative use of the lexical content;

4[Online]. Available: http://crfpp.sourceforge.net/
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prosodic features provide a marginal contribution of less than
0.5% on reference transcriptions, 2.6% on ASR_MS, and 1.2%
on ASR_AS. This confirms that acoustics related features can
help to discriminate between DA units with similar lexical
realizations, but word identities play a more central role in DA
classification. The experiments reported in Table V show that
prosodic related features have a more substantial impact on the
segmentation task, confirming the intuition behind exploiting
the prosodic information in the switching DBN approach only
for segmentation. This approximation also helped to reduce the
model’s complexity.

VII. RELATED WORK

Most previous work concerned with DA modeling has fo-
cused on tagging presegmented DAs, rather than the overall
recognition task which includes segmentation and tagging. In-
deed, automatic linguistic segmentation [30], [31] is often re-
garded as a research problem itself.

The use of an HMM discourse model has underpinned most
approaches to DA modeling, and a good overview of this ap-
proach is given by Stolcke et al. [32]. The discourse history
is typically modeled using an n-gram over DAs, although ap-
proaches such as polygrams [33] have been tested. Lexical fea-
tures have been widely used for DA tagging, via cue words
or statistical language models, including approaches such as
multiple parallel n-grams [34], hidden event language models
[23], and factored language models [35]. The factored language
model approach of Ji and Bilmes [35], the closest to the work re-
ported here, presents a DA tagging approach for the ICSI corpus
based on a switching DBN, using a set of 62 DA classes. Sev-
eral authors have previously investigated the use of prosody to
disambiguate between different DAs with a similar lexical real-
ization [36], and investigated approaches to automatically select
the most informative features [37].

More recently, there have been a number of conditional
models applied to DA classification including support vector
machines (SVMs) [38], [39] and maximum entropy classifiers
[34], [15]. Features for these models include both lexical and
prosodic cues, as well as contextual DA information [34]. As
outlined in Section VI, generative and conditional approaches
can also be combined. For example, Surendran et al. [40] inte-
grated local discriminative SVM classifiers (using prosodic and
lexical features) within the HMM discourse model by applying
Viterbi decoding to class posterior probabilities estimated using
the SVMs.

Automatic DA recognition, in which segmentation and tag-
ging are combined, is less well investigated. An early system
for the integrated joint DA segmentation and classification
[33] employed a multilayer perceptron and a language model
for segmentation, a polygram LM for DA classification, and
a joint search algorithm to score multiple joint recognition
hypotheses. More recently Ang et al. [15] have proposed a
sequential approach to segment the ICSI meetings and label
the detected units using five broad DA categories (statements,
questions, backchannels, floorgrabbers, and disruptions). The
segmentation algorithm is based on a hidden event language
model (HE-LM) and a DA boundary detector based on inter-
word pauses jointly combined through an HMM framework. A

maximum entropy classifier trained on lexical, prosodic, and
DA contextual features performs the final DA tagging.

We have reported some preliminary results using a joint
DA recognition system on the ICSI meeting data [24], using a
framework in which components such as the interpolated FLM
were missing. The DA segmentation and recognition results
on that system, are similar to those of Ang et al., although
using a discriminative MaxEnt DA classifier [15] resulted in a
5% lower error rate for the tagging task. In a later work, Zim-
merman et al. [23] compared two joint approaches on the same
experimental setup. An extended HE-LM able to predict not
only DA boundaries but also the type of the DA, and a HMM
recognizer inspired by HMM-based part of speech taggers,
was trained on lexical features and compared using several of
the metrics discussed in Section IV. The joint HE-LM system
obtained lower recognition error rates than the HMM based
DA recogniser, achieving performances closer to the discrimi-
native sequential approach of [15]. A further extension of this
joint HE-LM DA recognizer [16] included a discriminative
maximum-entropy DA boundary detector and tagger trained
on discretized interword pauses with a lexical context of four
words. The weighed combination of the classification proba-
bilities for both systems provides the most likely sequence of
labeled DA units, which is able to outperform the sequential
approach of [15]. Our results applying the switching DBN
model to the ICSI task (Section V-A) compare favorably to this
novel combined joint approach. Although for tagging the FLM
is less accurate than a discriminative DA classifier [15], the
situation is inverted on the DA segmentation task [16], thanks
to the added capability to include additional in-domain data by
adopting an interpolated FLM. Joint recognition experiments,
reported in Section V-A, suggest that these two effects can be
carefully balanced (hybrid approach), leading to a competitive
DA recognizer which performs well in comparison with the
state of the art [16].

VIII. SUMMARY AND CONCLUSION

We have presented a framework for the automatic recogni-
tion of dialogue acts in multiparty conversations. DA recogni-
tion experiments were carried out on the AMI meeting corpus
using a dictionary of 15 DA classes tailored for decision making
meetings, and on the ICSI corpus using a more generic set of
five DA classes. The system that we have presented employs
a generative probabilistic approach implemented through the
integration of a heterogeneous set of technologies: six contin-
uous prosodic features extracted from the lexical and prosodic
content facilitate the segmentation process; a trigram discourse
language model estimated from observed sequences of DAs;
a factored language model interpolated using multiple conver-
sational data resources, used in conjunction with a plain FLM
trained solely on in-domain data; and a switching DBN model
with two alternating topologies, which coordinates the joint DA
segmentation and classification task by integrating the available
resources. Multiple concurrent DA segmentation and classifica-
tion hypotheses are evaluated by this joint DA recognizer, en-
abling the investigation of a larger search space compared with
a two-step sequential segmentation-classification approach.

Three experimental systems were investigated based on a
simple FLM, an interpolated FLM, or a hybrid using both. The
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simple FLM trained only on data from the target corpus offers the
most accurate DA classification. However, the interpolated FLM,
thanks to its richer dictionary and language model, reduces the
number of segmentation errors by a factor of 2–3, at the cost of a
slightly degradedDA classification accuracy.A hybridapproach,
using both FLMs, allows a tradeoff between segmentation and
classification, to improve the overall recognition accuracy. Ex-
periments using each of the three systems on hand-transcribed
and two kinds of automatically transcribed data, showed that
these systems generalize well to automatic imperfect transcrip-
tions. A further significant improvement in the recognition
accuracy, of 5%–12%, was obtained using a discriminative DA
reclassification process based on conditional random fields.

The degradation when moving from manual transcriptions to
the output of a speech recognizer is less than 15% absolute for
most tasks and metrics. Our experiments indicate that it is pos-
sible to perform automatic segmentation into DA units with a
relatively low error rate. However, the operations of tagging and
recognition into 15 imbalanced DA categories have a relatively
high error rate, even after discriminative reclassification, indi-
cating that this remains a challenging task. As the first complete
set of DA recognition experiments reported on the AMI meet-
ings, this work can also provide a baseline reference system for
future work on this corpus.
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