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ABSTRACT

We describe a speech recogniser which uses a speech production-
motivated phonetic-feature description of speech. We argue that
this is a natural way to describe the speech signal and offers an
efficient intermediate parameterisation for use in speech recogni-
tion. We also propose to model this description at the syllable
rather than phone level.

The ultimate goal of this work is to generate syllable models
whose parameters explicitly describe the trajectories of the pho-
netic features of the syllable. We hope to move away from Hidden
Markov Models (HMMs) of context-dependent phone units. As a
step towards this, we present a preliminary system which consists
of two parts: recognition of the phonetic features from the speech
signal using a neural network; and decoding of the feature-based
description into phonemes using HMMs.

1. INTRODUCTION

We will first discuss some of the shortcomings of the context-
dependent phone HMM approach, then suggest the syllable as
an alternative unit, with models of syllables specified in terms
of phonetic features. HMM systems were trained to recognise
phones from MFCCs (Mel Frequency Cepstral Coefficients) and
from the feature representation.

1.1. The Problems with HMMs of Phones

Markov assumption The Markov assumption, namely that the
observations generated by the states of a (Hidden) Markov Model
are independent of one another, is not true for speech. Speech
is produced by movements of articulators, and therefore, in some
space, speech is constrained to follow a smooth trajectory with
occasional abrupt accelerations. Smoothly moving articulators
can produce sharply changing acoustics – when the lips open dur-
ing the production of [ p ], for example. Therefore, we can say
that there is some parametric description of speech, perhaps in
terms of the articulators, in which the parameters follow piece-
wise smooth trajectories.

Trajectories The Markov property can be relaxed, so that states
generate observation sequences, or trajectories. Such a model
has been called a Segmental HMM [5], which is one of a fam-

ily of stochastic models [6] which includes conventional HMMs.
Constraints on the trajectory are applied in the model parame-
ter space, which is generally also the observation (e.g. MFCCs)
space since model parameters are generally means and variances
of Gaussian distributions. The Markov assumption is still made
for observations from different states, but the observations from
any single state are no longer independent of each other. We wish
to go one step further than this, and model trajectories at the syl-
lable level, and, moreover, allow for temporal misalignment of
those trajectories. We believe that the trajectories should be in a
speech production-based feature space. The experimental work
described here is a step towards such a model.

Context dependency HMM-based systems model co-
articulation effects with context-sensitive models. In effect, a
different variant of each phoneme model is required for each
possible context. The large number of models required means
that techniques for reducing the number of model parameters
are used: state or mixture tying, for example. Typical HMM
systems use decision trees to perform state tying. These trees
use ad hoc questions which are typically about phonetic features.
We want a more principled system than this, so we argue against
the approach of assuming that all phonetic contexts are different,
then grouping them together to reduce the number of parameters.
Co-articulation is not simply a function of phonetic context. It
depends rather on some properties of the context (articulatory
targets or trajectories, perhaps), speech rate, position within a
syllable, and so on. In other words, co-articulation should not be
modelled as phonetic-context sensitivity, but more explicitly.

2. PHONETIC FEATURES

2.1. Feature system

The choice of feature system must consider both its descriptive
power (its ability to distinguish all the required phoneme or syl-
lable units) and the ease of automatically recognising the features
from the speech signal. We will refer to the types of feature sys-
tems of interest as speech production-based phonetic features, or
simply phonetic features, because they describe the way the sound
is produced (place of articulation, for example).

A variety of feature systems exist. Binary systems, such as that of
Chomsky and Halle [2], can be designed so that any combination
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Figure 1: Example NN output for the SPE feature system. The utterance is part of TIMIT sentence dr4/mbns0/sx50 and is “...economic
cutbacks..”. Each feature takes values from 0 to 1. The phonetic labels are the correct transcription.

of values is allowed. In other words, setting the values of the
features to any combination of + and - produces a description of
a legitimate segment (although not necessarily one used in the
particular language in question).

Multi-valued systems, on the other hand, tend to use fewer fea-
tures, but allow these features to take more than two values. A
typical feature in such a system might be place of articulation,
which could take values velar, dental, labial, and so on. We con-
sidered one feature system of each type : Chomsky and Halle’s
binary system [2], which will will refer to as SPE; and a multi-
valued system adapted (for English) from [7], which we will call
MV.

2.2. Automatic feature detection

The output from the first component of the recogniser will be a
set of parallel feature streams; an example is shown in figure 1.
This representation allows temporal overlap, or misalignment, of
features. In other words, features do not all change value simul-
taneously – at phone boundaries, for example – but tend to be
staggered in time. Such overlap results from co-articulation and
we believe that this representation allows the modelling of con-
textual effects more effectively than conventional triphone based
recognisers.

Other work on automatic feature detection includes [1] in which
the features are strictly acoustic – energy in certain frequency
bands, for example. Such features, although intended to be pho-
netic, are more closely related to MFCCs than true phonetic fea-
tures, and indeed, perform almost identically in speech recogni-
tion applications.

To train an automatic feature detector, we need data labelled with
feature values. Since no such database exists, we must generate
these feature labels from phonetic labels. This is far from ideal,

since the labels generated in this way will not show all the effects
of overlap that we intend to model. In future, embedded training
techniques (repeated cycles of training and automatic segmenta-
tion using the trained models) may be able to improve the sit-
uation. The TIMIT [4] database was used for all experiments,
because it is labelled throughout with phone and word bound-
aries. The training/testing division was the official one; the SA
sentences were omitted, leaving approx. 3600 training sentences
and 1300 test sentences.

Neural networks Two differing approaches were used. For the
MV feature system, one neural network (NN) was trained for each
feature; for the SPE feature set, a single network was trained to
detect all features.

In both systems, the NNs were multilayer networks with one hid-
den layer, recurrent time-delaying connections and an input con-
sisting of a total of 7 frames of context. Each frame is param-
eterised as 12 MFCCs plus energy. First and second derivatives
were computed by special units. All nets were sparsely connected
(only 1 in 4 possible connections between layers were made). The
connectivity and time window arrangement were inspired by [10].
Frames are 25ms in duration and spaced 10ms apart. The Nico
toolkit [10] was used for all experiments. The network sizes and
training parameters were roughly optimised on a validation set
– 100 files held out from the training set. No speaker appeared
in both training and validation sets. The test set was only used
for final evaluation. The total number of frames in the test set is
������������� .

Multi-valued features This system employed a number of
smaller networks, each performing a 1-of-N classification task.
The 8 features and their possible values are shown in table 1,
along with the recognition accuracies for each net. The bottom
line in the table indicates the percentage of frames in which all 8
features are assigned the correct value. This is effectively a frame-



Feature Values
Frames

correct (%)
NN HMM

centrality central full
85 73nil

continuant continuant noncontinuant 86 n/a
frontback back front 84 64
manner vowel fricative

87 75approximant
nasal occlusive

phonation voiced unvoiced 93 87
place low mid

72 61
high labial
coronal palatal
corono-dental labio-dental
velar glottal

roundness round non-round 92 83
tenseness lax tense 87 n/a

All correct together 53 32

Table 1: The multi-valued feature system. All features can addi-
tionally take the value ‘silence’. Performance is measured on the
full test set.

wise phone classification result, except the classification space
contains nearly 6000 feature combinations (the product of the
number of network outputs), and not just the 39 in the TIMIT
phone set, for example. The confusion matrix for the manner fea-
ture is shown in table 2.
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silence 89.0 1.3 2.3 1.3 3.1 3.0
approximant 0.9 68.6 1.8 1.8 1.3 25.7

fricative 1.9 0.9 88.2 1.1 4.6 3.1
nasal 1.8 1.9 2.1 84.4 2.6 7.3

occlusive 3.1 0.8 5.6 2.3 85.8 2.4
vowel 0.5 4.7 1.2 1.2 0.9 91.5

Table 2: Confusion matrix for the ‘manner’ neural network. All
figures are percentage of frames correct.

SPE features The SPE feature system has 13 features. A single
network was trained to recognise all features simultaneously, with
an additional network output for ‘silence’. All networks had 13
inputs and 14 outputs and the same context window and deriva-
tives as the MV networks. Various numbers of hidden units were
used, and a network with 250 hidden units was found to give the
best performance (measured on the validation set). The results
for this network on the full test set are given in table 3 and typical
network output is shown in figure 1. For these results, network
outputs were thresholded (values over 0.5 become 1, the rest be-
come 0). The performance on training and testing portions of the
database did not differ greatly – this indicates that the network

learned to generalise well. When evaluating the results in the ta-
ble, it should be noted that on average, feature values are ‘0’ 70%
of the time and ‘1’ 30% of the time; for some features, the value
is ‘0’ more than 90% of the time (94% for nasal). 14% of frames
are silence.

Feature
Frames

Feature
Frames

correct (%) correct (%)
NN HMM NN HMM

vocalic 88 65 consonantal 90 n/a
high 86 83 back 88 58
low 93 87 anterior 90 71
coronal 90 70 round 94 63
tense 91 56 voice 93 76
continuant 93 65 nasal 97 68
strident 97 83

All correct together 51 11

Table 3: The binary-valued feature system from [2]. Performance
is measured on the full test set.

As for the MV feature results, the bottom line of table 3 shows the
percentage of frames in which all 14 network outputs were cor-
rect; this figure includes the ‘silence’ output of the network. The
space of feature combinations is effectively �

����� ���	� ��
� , since
one output signifies silence. Fewer than 1% of these combinations
are used in English.

Hidden Markov Models Mainly for comparison with the NN
approach, the method in [7] was repeated for the TIMIT data.
HMMs were used to recognise regions of the speech signal with
feature values. Each feature was recognised independently: our
approach was exactly as if we were doing phone recognition. Tak-
ing voicing (phonation) as an example, there are three models:
voiced, unvoiced and silence. The “language model” was either
a simple loop which allowed any sequence of these three values
(but not two consecutive regions with the same value), or a bi-
gram trained on data. The observation vectors were composed
of 12 MFCCs and energy, with their 1st and 2nd derivatives (39
components). The training of the HMMs was not discriminative
(in contrast with the NNs). This system produces feature value
labels for speech, and not continuously valued features.

In order to compare the accuracy of the HMM systems to the
NN systems, the results were converted into frame accuracies, as
shown in tables 1 and 3. The HMM experiments were performed
independently of the NN ones, and consequently there were are
minor differences in the feature systems - those features not used
in the HMM systems are indicated by n/a in the tables.



2.3. Analysis

The results in tables 1 and 3 show that the NN systems were more
accurate for both feature systems. Furthermore, the nature of their
output – continuously valued features – is preferable to the HMM
symbolic output since it can be interpreted as feature value pos-
terior probabilities. The superior performance of the NN systems
may be because they use a longer context window and were dis-
criminatively trained. Only the output from the NN system was
used in the recognition experiments.

For the SPE feature system, the largest network (250 hidden units)
gave the best performance. Training time for such large networks
is considerable, even with sparse connectivity (12 hrs per epoch
on a Sun Ultra 10); 14 epochs were required to achieve the quoted
performance. We intend to experiment with larger numbers of
hidden units and different degrees of connectivity.

The NN phoneme classification frame accuracies of around 52%
are similar to results reported in [3], in which a NN using phonetic
features was used for recognition of single-speaker data (Swedish
and Hungarian).

3. RECOGNITION EXPERIMENTS

Only the output of the MV neural network system was used in
the recognition experiments. This system gave marginally better
frame accuracy than the SPE system. However, the SPE feature
system is more compact, and future experiments will explore its
use in syllable recognition.

3.1. Phones

As a test of the information content of the NN feature output,
phone HMMs were trained. Models were trained on both MFCCs
and the NN output for comparison, and the results are shown in
table 4. In both cases the HMMs were tied state, cross-word tri-
phones with single Gaussian observation densities, trained with
HTK, and a simple phone bigram language model was used. The
best reported performances on this task are summarised in [9] and
are around 28% for HMM and NN-HMM hybrids, and around
36% for segment-type models. [8] contains a good review of seg-
ment models. Although our phone recogniser does not achieve
state-of-the art performance, it compares well with segmental
models.The feature representation carries as much information as
MFCCs as far as phone recognition is concerned.

System Phone error rate (%)
HMMs using MFCCs directly 36.7 %
NN feature detector + HMMs 36.5 %

Table 4: Phone recognition from feature-detecting NN output.
The phone set is the standard 39 phone TIMIT set. The perfor-
mance is quoted for the full test set. Error rate = 100 - accuracy.

4. CONCLUSION

We have introduced a new method for speech recognition, which
shows promising results. The method allows explicit modelling
of coarticulation effects by using a phonetic feature representa-
tion of the speech signal. We have achieved a high accuracy map-
ping from acoustics to this representation using neural networks,
and have demonstrated the potential of the phonetic features for
speech recognition.

Future work may use segment models of the types surveyed in
[8], with explicit, parametric models of feature trajectories. Early
work suggests that cubic polynomials are a reasonable fit to ob-
served feature values within syllables.
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