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Abstract

This thesis introduces a general method for using information at the utterance
level and across utterances for automatic speech recognition. The method involves
classification of utterances into types. Using constraints at the utterance level via
this classification method allows information sources to be exploited which can-
not necessarily be used directly for word recognition. The classification power of
three sources of information is investigated: the language model in the speech recog-
niser, dialogue context and intonation. The method is applied to a challenging
task: the recognition of spontaneous dialogue speech. The results show success in
automatic utterance type classification, and subsequent word error rate reduction
over a baseline system, when all three information sources are probabilistically

combined.

111



Contents

1 Introduction

1.1

1.2

2.1

2.2

2.3

2.4

The problem being addressed . . . . .. ... ... ... ...
1.1.1  About this thesis . . . . . ... ... ... ...
Background: spoken language systems . . . .. .. ... ... ..
1.2.1  Tasks which need speech recognition . . ... .. ... ..

1.2.2  Dialogue systems . . . . . ... Lo

Utterance type classification

Introduction . . . . . . . ..

2.2.1 Utterance types . . . . . . . . . .o

2.2.2  Other work on dialogue move classification . . . . . . . ..

Additional constraints . . . . . . . . ...

v

10

10

12

20



CONTENTS

243 Splitting . . . ..o

2.4.4 An alternative move typeset . . . . . .. ... ... ..

3 Speech recognition

3.1

3.2

3.3

Introduction . . . . . ... oo
The state of theart . . . . . ... ... o000
3.2.1 Systems . . ...
3.2.2 Benchmark tasks . . ... ... o000
A baselinesystem . . . . .. ... L L
3.3.1 HMMs . . . o oo oo
3.3.2 Language model . . . . . . .. ... oL
333 Results. . .. ... o

4 Language modelling

4.1

4.2

4.3

Classes of language model . . . . .. .. .. ... 00
4.1.1  Stochastic context-free grammars . . . . . .. .. ... ..
4.1.2  Left context-dependent models . . . .. ... ... ....
Meeting the requirements . . . . . . .. .. ... 000
4.2.1 Desirable properties . . . . . . .. .. ... ... ...
4.2.2  Models with desirable properties. . . . . ... .. .. ...
N-gram language models . . . . . .. .. .. ... 0000
4.3.1 Robustness . . . .. .. ... L
4.3.2 Smoothing . . . . . ... .

4.3.3 Backed-off N-gram models . . . . . ... ... .. ... ..

29

29

30

30

31

31

33

36

36

37

42

43



CONTENTS

4.5

4.6

Adaptation . . . ...
4.4.1 Adaptation towhat 7. . . .. ... 0 L
4.4.2 Adaptation of what 72 . . . . ... ... 0oL
4.4.3 Implementation . . . . .. .. ... Lo
Models designed for conversational or dialogue speech . . . . . ..
4.5.1 Annotation issues . . . .. .. ..o
4.5.2  Dividing the input speech . . . . . ... ... 000
Sub-language models . . . . ... .o oo
4.6.1 Finding units in spontaneous speech . . . .. .. ... ..
4.6.2 Decimating the training data . . . . .. ... .. ... ..
463 Use. . .. .
4.6.4 Language model estimation . . . . ... ... ... ....

5 Intonation

5.1

5.2

5.3

Introduction . . . . . . . . .
Review . . . . . .

5.2.1 Frameworks . . . . . ...

5.2.2 Relation to structure . . . . . . . . . ... ...
5.2.3 Relation to content . . . . . . . . ... ...

5.2.4  Using prosody and intonation for speech recognition . . . .

5.2.5  Summary . .. ..o
Automatic intonation recognition . . ... ... L
5.3.1 Introduction . . . . . ... ..o oo

5.3.2 Event labeller . . . . . . . . . .. ...

vi

62

63

65

66

67

63

69

70

70

74

74

74

82

83

83

89

93

94



CONTENTS

5.3.3 Intonational tune to utterance type . . . . . . .. .. ...

6 Dialogue

6.1

6.2

6.3

Introduction . . . . . ... oo
Dialogue modelling . . . . ... ... oo oL
6.2.1 Introduction . . . . . ... Lo
6.2.2 Theoretical frameworks . . . . . . .. .. ... 000
6.2.3 Practical dialogue modelling . . . . ... ... .. ... ..
The DCIEM dialogues . . . . . ... .. ... ... ...
6.3.1 Speechdata . . . .. ... ... .. L o000
6.3.2 Labelling . . ... ... ...

6.3.3 Dialogue modelling . . . . .. ... ... ... ...

7 System performance

7.1

7.2

7.3

Introduction . . . . . ... oo
Formal derivation . . . . .. ... .. 0o L oo
7.2.1 Notation . . . . . .. ...
7.2.2 Dependence and independence . . . . . . ... ... ...
7.2.3 Finding the most likely move type sequence . . . . . . ..
Integrated system experiments . . . . . ... ..o
7.3.1  Move type classification . . . . ... ... 000
7.3.2  Speech recognition . . . . .. .. ... oL
7.3.3 Effect of training data . . . . .. ... ...

7.3.4  Move type merging and splitting experiments . . . . . . .

vil

101

102

102

109

109

110

114

116

116

116

118

128



CONTENTS

8 Conclusions
8.1 Analysisofresults. . . . .. ... o0 o000
8.2 Analysis of method . . . . . ... oo
8.3 Room for improvement . . . . ... ...

8.4 Further work

References

viil

151

151

153

155

159

160



List of Figures

1.1

1.2

4.1

4.2

4.3

4.4

5.1

6.3

7.1

7.2

7.3

7.4

Trains map . . . . . . . . 12
Verbmobil scenario . . . . . . ... oL 15
Finite state representation of bigram model . . . . . .. ... .. 51
Finite state representation of back-off bigram model . . . . . . . . 62
How sub-language models form a single model . . . . . . ... .. 75
Log probability of example sentence using various LMs . . . . . . 80
Finite state models of intonation structure . . . . . . .. .. ... 87
A lattice representation of word string hypotheses . . . . . . . .. 97
Examplemaps. . . . . . . . ... . 117
Predictors and predictee in N-gram models . . . . .. ... .. .. 119
Notation for heterogeneous N-grams . . . . . .. ... .. .. ... 121
Systemmodules . . . . ... 138
System architecture . . . . . ... o000 139
Sensitivity of system to weights . . . .. ... ... ... ... 140
Language model perplexity vs. data size . . .. ... .. .. ... 148

X



List of Tables

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

6.1

Game initiating move types . . . . . .. ..o oL 22
Other move types . . . . . . . . 23
Move types and their frequencies . . . . .. . ... ... ..... 24
Special words . . . ... Lo 38
Dataset sizes . . . . . . . . L 39
Effect of choice of vocabulary on test set perplexity . . . .. ... 40
Effect of training data set size . . . . . . .. .. ... L. 41
Comparison of unigram and bigram language models . . . . . . . 42
How the baseline system performance compares with others . . . 42
A frequency of frequencies table . . . . . .. .. ..o 00 53
Good-Turing smoothing . . . . . .. .. ... ... ... ... HY)
Move type-specific LM training set sizes . . .. .. ... .. ... 76
The interpolation weights . . . . ... ... ... ... .. ... 77
Perplexity by move type . . . . . .. .. Lo o000 78
Language model perplexities . . . . . . ... ... .. L. 79
Perplexities of simple N-gram dialogue models . . . . . . ... .. 119



LIST OF TABLES xi

6.2 Possible alphabet for dialogue N-gram model . . . . . . .. . .. 120
6.3 Candidate predictors . . . . . .. .. ... L 122
6.4 Dialogue model perplexities . . . . . .. .. ... 123
6.5 Dialogue model perplexities (12 move types) . . . .. .. .. ... 124
6.6 A fragment of the chosen dialogue model . . . . .. .. .. ... 126
7.1 Summarised results forset 5 . . . . . ..o 00000 141
7.2 Confusion matrix for move type classification . . . . . .. ... .. 144
7.3  Sentence hypotheses for move type-specific LMs . . . .. ... .. 145
74 Resultsforset 4 . . . . . .. ..o 147

7.5 Summarised results for alternate move typeset . . . .. ... .. 149



Chapter 1

Introduction

1.1 The problem being addressed

e Speech recognition as a search problem

Automatic speech recognition is a search problem. The search space is all possible
sentences' in the language, and the solution we are looking for is the most likely
sentence, given some observations and some constraints. Observations give us
information about the utterance being recognised, and constraints express our
prior knowledge. There are two distinct problems: defining the constraints so that
the most likely sentence i1s the correct answer as often as possible, and ordering

the search of the space so that it can be achieved in a reasonable amount of time.

The Viterbi algorithm (Forney, 1973) is an efficient method for solving the
speech recognition problem formulated as a search through the space of all possible
sentences. Because the search space is very large, we cannot afford to search very
much of it for the solution. Typically, the search will proceed incrementally. A
number of differing hypotheses about the solution will be considered in parallel.
The number of possible hypotheses will typically be very large, so some pruning
must take place: certain parts of the search space will not be explored. So, there

are also two distinct possibilities for error: the constraints may not lead to the

1For the sake of simplicity, let us assume that all utterances are of sentences.
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correct solution; and we may prune that part of the space which contains the

correct solution.

This means that improving the constraints has two consequences: for a given
amount of pruning, accuracy will increase; for a required accuracy, more prun-
ing can be done. The constraints can be improved by better modelling of the

observations available, or by finding new observations and modelling them.

o Observations and constraints

Generally, the only observation available is the speech signal, and the constraints
take the form of stochastic generative models. The search problem is therefore
to find the (sentence) model which is most likely to have generated the observa-
tions seen. In any recognition system with more than a few words vocabulary,
the sentence models are in fact composed of smaller models. If these smaller
models are of words, say, then a model of each possible sentence can be built by
concatenating the appropriate word models. Practical systems typically use mod-
els of phone-sized units, and compose those word models using a pronunciation

dictionary.

A system using only a model of the acoustic signal will typically not achieve
good results. The solution it finds will not be very close to the correct one; word
accuracy will be poor. More constraints are required to improve accuracy, and the
obvious choice is a model of the language. This model constrains the way sentence
models can be composed from word models, by assigning differing probabilities to

different word sequences.

o Restrictions of current approaches

The acoustic observations are usually restricted to spectral features, which are

typically vectors of cepstral coefficients. This parameterisation of the speech signal
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describes the spectral shape. Typical analyses are based on a source-filter model,
and it is assumed that the filter (vocal tract, lips, nasal passage) part of the model
contains all the useful information and source (glottis) effects should be removed.

Cepstral analysis captures this filter information, but effectively removes Fj.

Linguistic constraints are always used to improve recognition accuracy, but are
generally restricted to models of word sequence probabilities — what we will refer
to as a language model. These models generally take no account of context

outside the current utterance.

o More constraints

It 1s widely accepted that speech recognisers could make more use of the informa-
tion given by Fp, but that using it in the same way as cepstral coefficients (that
is, as just another component of the observation vector) does not work. This is
because the spectral properties of the signal vary on a different (much shorter)
timescale than Fy. In other words, the spectral properties of the signal vary at the
segmental level and Fj varies suprasegmentally — accents are placed on syllables,
not phones. There are, of course, microprosodic effects which mean that Fy does
depend to some extent on the segment type; the use of this has been explored by

Dumouchel and O’Shaughnessy (1993) and is discussed on page 98.

One area of current interest is the recognition of spontaneous dialogue speech
—in the form of conversations between two people. Whenever utterances are part
of a sequence, whether from a single speaker (a discourse) or a pair of speakers (a
dialogue), there are clearly additional constraints of use in speech recognition. For
example, we could model utterance sequences — with what we will call a dialogue
model, or extend the language model to use context outside the current utterance.
Recognition of dialogue speech has applications in human-computer interaction

(HCI) and spoken language translation.
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o How to use the information

Attempts to use these additional sources of information have often been somewhat
piecemeal, often as add-ons to existing recognition systems. For example, Iy has
been used to guide syntactic parsing of speech recogniser output, but without the
speech recogniser making use of this constraint itself. Another example might
be the classification of utterances into types (statements and questions, for ex-
ample) based on the word sequences from a speech recogniser, but without using
utterance type constraints at the recognition stage. Utterance type classification
is of particular interest for HCI applications because the type of an utterance
carries information not necessarily present in the surface form (word sequence).
If we classify utterances, we can condition language model probabilities on the

utterance type.

e A novel method

I propose that the classification of utterances into types is a way to incorporate
constraints at the utterance level into speech recognition and that the automatic
classification of utterances will lead to improved word accuracy. Further, I propose
that to do this requires an integrated approach. Not only must we find the best
models of the acoustic signal, language and dialogue, but we must combine these
models in a probabilistic way that minimises pruning errors. For illustration,

consider some wrong ways to go about this:

1. use a speech recogniser with a general purpose language model to find the
most likely word sequence, then determine the type of the utterance based

only on that word sequence using utterance type-specific language models.

2. use Fy to determine the type of the utterance then do speech recognition

using a language model for this type.
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The first of these approaches is sub-optimal because the most likely word se-
quence is found using a sub-optimal language model; since the utterance is always
of one of the types?, using the appropriate language model during recognition
should improve word accuracy. The second approach is worse; to make a definite
decision about the type of an utterance based only on intonation observations is
clearly not going to work, given the complexity of the relationship between intona-
tional tune and utterance type. Every time the type is incorrect, an inappropriate
language model will be used — leading to very poor recognition accuracy. As |
will show, intonation has predictive power for utterance type, but works best in

conjunction with other constraints.

In this thesis, I present a novel method which combines the information sources:
spectral features, Fj, utterance type-specific language models and a di-
alogue model in a probabilistic way. All of these components have parameters
estimated from training data, and the acoustic signal is the only observation
required®. A language model composed of utterance type-specific language mod-
els is employed, thus integrating utterance type constraints into the recogniser

itself.

o An important assumption

Because this thesis concentrates on a novel method for combining information
sources at the utterance level, I will not address the problem of segmenting di-
alogues into utterances. The data used has been pre-segmented into utterances,

and I will assume that, in a practical system, this could be done automatically.

T will only consider utterance type classification schemes which can classify all utterances.
3The dialogue model also uses speaker identity, but this is assumed to be easily derived from
the acoustic signal, since the recordings use a separate channel for each speaker.
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o Qutline of the method

The method can be summarised thus:
o Utterances are categorised into a number of dialogue-theory motivated types.
e Unknown utterances are classified as one of these types using

— Fy information, via a probabilistic model of intonation,
— language models which account for utterance type,

— dialogue structure constraints.

e All these information sources are combined in a probabilistic framework,
which avoids hard decisions and allows weighting of the relative importance

of each source.

The strategy is therefore to determine the type of each utterance and then deter-
mine the most likely word sequence, given that type. If language models are to be
used for predicting the utterance type, this will involve doing speech recognition,
so the task of determining the most likely word sequence will simply become that
of picking the recogniser output which was produced using the language model of

the appropriate type.

o Originality of the method

The method is original because these information sources are combined at the
lowest level possible — the utterance level — and word accuracy is directly improved,

without the need for further processing (syntactic analysis, for example).

One goal of the work is of course to improve word recognition accuracy for
speech recognition of spontaneous dialogues, but another goal is the actual classi-

fication of utterances into types. I will show that these two goals can be achieved
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simultaneously: by finding the most likely utterance type sequence for a dialogue,
word accuracy is improved over a baseline system which does not classify utter-

alces.

Although utterance type categorisation is not a new idea, simultaneous ut-
terance type classification and word sequence recognition is. The method is gen-
eral in that it does not rely on the particular categorisation system used or the
method(s) of utterance type classification. The probabilistic combination of infor-
mation sources used for type classification allows assessment of the contribution
made by each source; results are given using various combinations of the informa-

tion sources listed above.

To test the hypothesis that utterance type classification is a useful way to com-
bine information sources, an experimental speech recognition system was built.
This system consists of a number of components, reflecting the number of infor-

mation sources used .

1.1.1 About this thesis

e Structure of this thesis

The structure of this thesis reflects the process of building the experimental sys-
tem. Each component of the system was designed and evaluated, followed by

integration and evaluation of the whole system.

Utterance type classification will be considered first, as it is the foundation for
all other work. Chapter 2 describes the theory of utterance type classification,

surveys the literature, and introduces the classification system of Carletta et al.

(1995).

The following chapters each examine a component of the system and give the
design choices which must be made; the choice made in each case is based on the

literature and the results of the experiments which are described in this thesis.
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A baseline speech recognition system is established in chapter 3. The state of
the art in speech recognition is surveyed; the results of this survey are used in the
design of the baseline system, which 1s then evaluated experimentally and shown
to perform at least as well as other current systems on comparable data. The
baseline system not only provides a reference point (in terms of word accuracy)

for the new method, it also provides the acoustic models which will be used later.

Chapter 4 concerns language modelling. The state of the art is reviewed, and
the building of language models for the experimental system is described. The
language models are assessed using data, and the best performing model is selected
for use in the system. In chapter 5, intonation is examined. Several frameworks
for describing intonation are considered, and their usefulness for the automatic
recognition of intonation is evaluated. One framework is chosen, and evaluated
experimentally. Dialogue is covered in chapter 6, and the problems of modelling
it are described. Here, a database of recorded dialogues is introduced which will
be the data for the experimental system. Experiments relating to the design of
components are documented in the relevant chapter, and experimental evaluation

of the integrated system is in chapter 7.

The whole system is then used for utterance type classification and speech
recognition; this 1s covered in chapter 7 . The results show that the method of
combining information sources is successful, and gives improvements in accuracy
over the baseline system. Conclusions are drawn in chapter 8. The implications
of the results using the experimental system are considered, with an analysis of

where improvements could be made.
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e Distribution of the work

The system described in this thesis is the work of several people. Those parts

which are not the work of the author are:

e intonational event detector and labeller (Paul Taylor)

e utterance type intonation models (Helen Wright)

A sufficient description of these components is contained in this thesis, and ref-
erence 1s made to published descriptions. Stephen Isard also contributed to all
parts of the system, and valuable contributions were made by Hiroshi Shimodaira.
Everything else, namely the speech recogniser, language models, dialogue model

and system integration is the work of the author.

The EPSRC* funded project “Intonation and dialogue models as constraints in
speech recognition” (CSTR, October 1993 - March 1997) — known as ID4S — set out
to improve speech recognition results by using the interaction between intonation
and dialogue context as a constraint. At the time the project was conceived,
the intention was to use an existing CSTR speech recogniser, but shortly after it
started a decision was taken to switch to the widely used HTK toolkit, in part to
show that the contribution, if any, of the novel components would be relevant to
mainstream speech recognition work of the day. At this point T started to build
the experimental system described in this thesis. The 1D4S project proposal left
the method by which intonation and dialogue models would be used as constraints
in speech recognition as an open question. This thesis contains an answer to that

question.

*Engineering and Physical Science Research Council
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e Published work

Some of the work contained in this thesis has been published. T am co-author of
the following publications: (Isard et al., 1995; Taylor et al., 1996; Taylor et al.,
1997b; Taylor et al., 1998 ,pending). The intonation component is described in
(Wright & Taylor, 1997)

1.2 Background: spoken language systems

One of the goals of the work described here is to improve speech recognition
accuracy, the simplest measure of which is word accuracy. To do this, a novel
approach 1s used in conjunction with a conventional speech recogniser. To show
the contribution made by the novel technique, we establish a baseline system which
uses “state-of-the-art” technology to ensure that the improvements obtained are

genuine; improvements to poor systems mean little.

Throughout this thesis, it should be assumed that the speech recogniser is a
component of a spoken dialogue system, such as Verbmobil (Wahlster, 1993) or
Trains (Allen et al., 1995; Ferguson et al., 1996). Therefore, the first thing to do is
to review the state of the art in speech recognition, and in the other components

of spoken dialogue systems.
1.2.1 Tasks which need speech recognition
What are we doing speech recognition for? We can categorise speech recognition

tasks into passive, active and interactive. Dictation is a passive task, command

and control is an active one and interactive tasks involve two-way communication.
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e Dictation

Speech recognition systems for dictation tasks have been around for a number of
years and have evolved from early systems requiring what amounted to isolated
word input, to those which allow “naturally” spoken input. The possibilities for
improving these kinds of systems include things like noise robustness, speaker
adaptation, language model and domain adaptation and so on. As these systems
are required to recognise more spontaneous speech, the novel method introduced
in this thesis will find applications. Dictation is of course, not a dialogue, but a
discourse. There is still the possibility of modelling effects across utterances using

a discourse model.

° Command and control

Using speech recognition for command and control of systems requires severe lim-
itations to ensure reliable operation. If commands are accepted without question,
the speech recogniser must be either very accurate, or able to reject difficult ut-
terances. Adding some form of clarification dialogue could alleviate this problem

- the task then takes the form of a goal oriented dialogue.

e Goal oriented dialogues

For more complicated tasks than dictation, and for command/control tasks where
some interaction is required, a goal oriented dialogue can be the most effective
form of communication. Typical goal oriented dialogues are co-operative — the
participants are trying to achieve the same goal, which may be completion of

some task, or transfer of information.

This sort of task is not limited to human - computer interaction. In other
situations, such as the Verbmobil translation system (Wahlster, 1993), the con-

versation may be between two people, with the machine following the dialogue.
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1.2.2 Dialogue systems

Here I review the state of the art in spoken dialogue systems by considering some
well known systems. Such systems are generally large and complicated, and often
quite task- or domain-specific. T will concentrate on the speech recognition aspect
of the following systems, and how dialogue context and/or intonation are used to

improve recognition accuracy.

One of the most obvious problems in comparing these systems, 1s that they
all use their own data, which is invariably collected specially. The databases used
can be compared in terms of vocabulary size, speech quality, whether the speech
is spontaneous or read text and on the “difficulty” of the task. T will give this
information for the systems I consider, to allow comparison with the experimental

system used to investigate the new method introduced in this thesis.

° Trains

Figure 1.1, taken from (Allen

et al, 1996), shows the
TRAINS (Allen et al., 1995;
Ferguson et al., 1996) sce-
nario. The task is route plan-
ning, where the user must in-
teract with the computer to
select the best route for trains
travelling between cities. The

TRAINS system is composed

of “off-the-shelf” components

(speech recogniser and syn- Figure 1.1: The TRAINS scenario

thesizer) and specially designed ones, such as the parser, discourse manager and
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reasoning components. Interaction with the system is multimodal: the user can
type in or speak their requests, and the system responds through speech and a
visual display screen. Only the speech recognition and dialogue components are

of interest here.

The vocabulary size in TRAINS is around 1000 words, which is very close
to the vocabulary size for the DCIEM dialogues which will be used in this the-
sis (see section 6.3). The speech was collected using high-quality close-talking
microphones and recorded on DAT - therefore it is of a very high quality.

o Speech recognition

The speech recogniser in the TRAINS system is the Sphinx-II system from CMU
(Huang et al., 1993). The system achieves word error rates of 30% and 20% using
language models trained on ATIS and TRAINS data respectively.

o Post-processing

The speech recogniser output is post-processed to reduce errors. This approach
has the advantage of allowing the post-processor to use methods not possible or
practical during speech recognition, such as higher order N-gram language mod-
els. The post-processor is trained using pairs of correct transcriptions and corre-
sponding speech recogniser output, it can therefore learn the kinds of errors the
recogniser makes. In other words, the post-processor models the speech recogniser

as a noisy channel, and attempts to correct the errors it introduces.

o Speech acts

Identifying “intent” is used for disambiguation, both for spoken and other com-
munications modes (using a mouse, for example). The dialogue model uses speech

acts which are determined by a combined syntactic and semantic parser. Some
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very simple cues to speech act are used, such as common word sequences (“I want
to...”, for example). The claim is that this approach is robust to speech recogniser
errors, but clearly it is also very limited, since these short phrases are by no means

the only cue to the speakers’ intent.

o Dialogue manager

Discourse state is tracked using a stack. The stack supports just two operations:
push and pop. Pushes open new dialogue segments, and pops complete them.
A simple example would be the effect of the statement “No” whose speech act
is “reject” which causes all information in the preceding dialogue segment to be
removed from the stack. Nesting of segments results in consecutive pushes. This
is related to the theory of conversational games, described on page 112, where

games are dialogue segments which open and close, and can be nested.

The dialogue parser (Core & Schubert, 1996) in the TRAINS systems accounts
for spontaneous speech and dialogue effects using additional speech segment types:
“lulls”, “interpolations” and “backtracking”. Lulls are the most interesting of
these, and are used for pauses, back-channel speech and change of turn boundaries.
No use is made of prosody, but the notion of lulls is intended to allow for some

account of prosody to be included eventually.
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° Verbmobil

Verbmobil (Wahlster, 1993) is a speech-to-speech translation system for face-to-
face dialogues between two people — see figure 1.2. A certain amount of human-
machine interaction is required for clarification and other purposes.
The demonstration

task is that of ar- vERBMOBIL ' Englisch - yerBMOBIL

ranging business meet-
Deutsch a“- Japanisch
M Aushutzen der passiven Sprachbehemrschung
lngs- The SyStem des Englischen fiir:
' Yerstehen der AuBerungen des Dialogpartners & a
Oberpriifung derUbersetzung der eigenen Eingabe
- L

is complex and in-
cludes speech recog-

nition (Plannerer et al.,

1994; Reichl & Ruske,

1995), NLP, ma- Figure 1.2: The Verbmobil scenario

chine translation, gen-

eration and speech synthesis (King et al., 1997) components. This is one of the
few systems to have explored the use of prosody extensively for a variety of pur-
poses (Hess et al., 1996; Strom, 1995; Strom et al., 1997). From the acoustic
signal, accents, boundaries, focus and sentence modality are estimated, and used

at various stages, from the morphological parser up to the semantic parser.

The vocabulary size for the demonstrator system for Verbmobil is 1300, which,
like the TRAINS vocabulary, is very similar to the DCIEM corpus which will be

used in this thesis (see section 6.3).

o Accents and boundaries

A system of four types of boundary and three types of accent is used, which is

similar to ToBI® (Silverman et al., 1992). With various constraints, only six dif-

"Tones and Break Indices - a system of numerical scales for representing prosodic elements.
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ferent combinations of accent and boundary are allowed, and these are recognised
using a neural network. The input features to this network are syllable based (a
segmentation is available from a speech recogniser), and comprise over 240 param-
eters of the current and neighbouring syllables including Fj, energy and lexical
accent. An average classification rate for four classes of boundaries of around 80%

is reported for spontaneous speech, given syllable nuclei locations.

o Focus

Focus, defined in Verbmobil as prosodic focus, which means the word with the
most prominent accent, is useful information for semantic and higher level pro-
cessing. Elsner (1997) presents a rule based method for detecting focus from Fj.
Sentence modality and phrase boundaries are also available cues. This work ap-
pears to be less well developed than the accent and boundary classification, and

only preliminary results are reported in (Elsner, 1997).

o Sentence modality and use of dialogue context

Verbmobil follows the dialogue between two participants, in order to build a model
of dialogue context which is required to aid translation requests. This is done in
terms of Dialogue Acts (DA). Therefore, the speech must be segmented into DA
units, and each one classified as one of the DA categories (DACs): greeting,

confirm date, suggest place and so on. There are 18 categories altogether.

The speech is assumed to be already divided into turns. Warnke et al. (1997)
describe an approach to segmentation and classification of DA units. Available as
input for this task is a word lattice generated by a speech recogniser. A scheme
similar to the accent and boundary detector described above is employed to de-
tect DA boundaries. Their first approach is two-step: segmentation followed by

classification. The segmentation is based on prosodic features, as used in the ac-
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cent/boundary detector, and N-gram language models. These language models
estimate probability of dialogue act boundaries from word sequences. Subsequent
classification uses DAC-specific language models (which are also N-gram mod-
els) and a DAC sequence model (again, an N-gram model) which models DAC

sequences only within turns.

A second, integrated, approach performs segmentation and classification in a
single step. The probabilities from prosody, the DA boundary language model,
DAC-specific language models, and the DAC sequence model are combined as a
weighted sum in the log domain, and an optimal combined segmentation /classification

is found in a single search step.

The accuracies reported were similar for both the two step and integrated
approaches, at around 53%. Interestingly, in the integrated approach, the DAC
sequence model (that is, dialogue model), can be omitted with little loss in accu-
racy. This may be because this model only accounts for DAC sequences within the
current turn, and there are typically only a few DA units per turn. Although the
Verbmobil system uses context across turns for semantic processing, these con-
straints are not applied at the speech recognition level. The result of this is the

small contribution made by the dialogue model to DAC classification accuracy.

o Eliciting easy to recognise responses

As we will see later (on page 106), the dialogue can be manipulated by one or
both participants. This is most commonly done by asking “leading” questions —
in which the intention is to elicit an easy-to-recognise response. For example, if
we were fairly sure that the other participant was going to answer “Yes” to some
question, we could phrase that question in a way which prompts intonational

marking should the answer be “No”.
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question You are free on Monday, aren’t you ?

Yes. (not intonationally marked)

answer No, I'm not! (intonationally marked)

The two possible answers to the questions are now not only distinguished by

word sequence, but also by intonation, making them easy to differentiate.

o Conclusions

Verbmobil has shown that prosody “favourably contributes to the overall perfor-
mance of speech recognition” although “Even if the incorporation of a prosodic
module does not significantly increase word accuracy, it ... reduces overall com-

plexity” (Hess et al., 1996).

e Other systems

o Gemini

Gemini (Dowding et al., 1993) is a natural language system designed for spoken
language. The Gemini system uses a variety of grammars using the formalism of
the Core Language Engine (CLE) (Alshawi, 1992). Dowding et al. (1993) makes
no mention of the speech recogniser, or what grammar it uses. The aspects of
Gemini which are of interest here are two rule-based modules: the first is used
for “glueing” together fragments of sentences and the other is used for repair.
This approach, of post processing the output of a speech recogniser, is common
in spoken language systems, but the degree to which higher level constraints are
applied at the speech recognition level is crucial. Typical syntactic and semantic
parsing is done with language models not suitable for speech recognition, so such
constraints are difficult to apply. Dowding et al. (1993) suggest that the syntactic
and semantic parsing be “interleaved” with the recognition — that is, the parser

should be able to process sentence fragments as recognition proceeds, and pass
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constraints back to the speech recogniser.

o Spoken Language Translator

The Spoken Language Translator (SLT) (Rayner & al, 1993) from SRI is a pro-
totype system for translating spoken language from a restricted domain. The
prototype translates ATIS-domain utterances from English to Swedish. The sys-
tem is particularly interesting because it was constructed from existing pieces of
speech and language software, rather than custom built as was the case, for exam-
ple, in Verbmobil (Wahlster, 1993). Such approaches can be suboptimal because
the interfaces between components are frequently weak points. For example, us-
ing a speech recogniser to give a single sentence as output will not be as good as
outputting a word hypothesis lattice or N-best list. The SLT passes N-best lists
out of the speech recogniser. Higher level processing uses the unification gram-
mar formalism of the Core Language Engine (CLE) (Alshawi, 1992), which is not
suitable for direct use in a speech recogniser, so a post-processing approach must

be taken.



Chapter 2

Utterance type classification

2.1 Introduction

The novel, integrated approach to dialogue speech recognition introduced here
combines information from spectral parameters, Fy, language model and dialogue
context in a probabilistic way. In chapter 1 1T described speech recognition as a
search problem, with the goal of finding the most likely word sequence for an
unknown utterance, given a set of observations and constraints. Within an ut-
terance, this means optimising over all possible word sequences. The information
provided by Fy! and dialogue context is not at the word level, but at the utterance
level. That is, Fy and dialogue context are used to estimate probabilistically the
type of an unknown utterance. Therefore, the optimisation is not over the word
sequence for a dialogue, but over the utterance type sequence. That is, we will find
the most likely utterance type for each utterance in a dialogue. The hypothesis is

that this will lead to improved word accuracy.

T will use Fy and intonation interchangeably, since Fy will be stylised as a series of pitch
accents, boundaries and connections — see chapter 5

20
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o  Organisation of this chapter

This chapter starts with the theory of utterance type classification, and introduces
the scheme which was adopted. There was, in fact, little choice of utterance
classification schemes for several reasons: there are not many schemes to choose
from; the database chosen was already coded using a particular scheme; recoding
the database with a new scheme would be far too costly. It must be pointed
out that, despite this, the method does not rely on this particular classification
scheme. T show how constraining utterances to be one of a fixed set of types allows
the imposition of further constraints such as dialogue context and speaker role.
Since there was effectively no choice of classification scheme, T then attempt to
improve the scheme by small modifications, namely merging and splitting some

of the types.

2.2 Theory

Now that I have established utterance type classification as the goal, a set of
utterance types must be chosen. I have postulated that this classification will both
improve speech recognition word accuracy, and be an end in itself, as in (Garner &
Hemsworth, 1997) for example. For the type set to be useful, the types must relate
to the content and the dialogue role of utterances. The automatic classification
of utterances is intended to be useful in spoken dialogue systems, so the choice
of a type set which reflects the role of the utterance in a dialogue seems a good
choice. The theory of conversational games (Power, 1979) will be introduced on
page 112, and this theory defines a type set which meets these criteria. It was

already thought that the move types would be intonationally distinguishable.
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instruct a direct or indirect request or instruction
e.g. Go round, ehm horizontally underneath diamond mine ...

explain provides information that the speaker believes to be unknown
by the other participant
e.q. I don’t have a ravine.

align checks that the other participants understanding aligns with
that of the speaker
e.g. Okay?

check asks a question, to which the speaker believes the listener

knows the answer
e.g. So going down to Indian Country?

query-yn a yes—no question
e.q. Have you got the graveyard written down?

query-w a question containing a wh-word

e.q. In where?

Table 2.1: Game initiating move types
2.2.1 Utterance types

There is no predefined set of utterance types, unlike the problem of word recog-
nition. The choice is crucial, as different categorisation systems vary in their ease
of recognition (from intonation or word string, for example) and their usefulness

in speech recognition.

The starting point here is the set of 12 move types (Carletta et al., 1995) for the
Map Task. Moves come from Conversational Game Theory, which is described
on page 112; all we need to know here is that moves typically contain single
utterances, and that move type describes the utterance’s role in the dialogue.
Moves fall in to two types: those which can initiate conversational games, and

those which cannot. The move types and their réles are described? with examples

“Descriptions and examples are adapted from Taylor et al. (1998,pending)
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acknowledge acknowledges hearing or understanding
e.g. Okay.

clarify clarifies or rephrases old information
e.g. { Other participant said: So you want to go ... actu-
ally diagonally so you’re underneath the great rock.} Diagonally
down to uh horizontally underneath the greal rock.

reply-y responds to a query-yn, check, or align; usually indicates
agreement
e.g. Okay.
e.q. I do.

reply-n responds to a query-yn, check, or align; usually indicates
disagreement
e.q. No, I don’t.

reply-w elicited response that is not to clarify, reply-y or reply-n; can
provide new information that is not easily categorised as posi-
tive or negative
e.g. { Other participant satd: And across to? } The pyra-
mid.

ready indicates completion of previous game and that a new game is
about to begin
e.g. Okay.
e.g. Right.

Table 2.2: Other move types

from the DCTEM? version of the corpus (Bard et al., 1995) in tables 2.1 and 2.2;
their frequency in that corpus is given in table 2.3 (taken from table 4.3 on page
76).

The Map Task corpus consists of spontaneous, goal-oriented dialogues between
two participants. Both participants have copies of a map, one of which has a route
plotted on it. The participant with this map is called the “instruction giver” and

must describe the route to the other participant — the “instruction follower”. To

3The Defence and Civil Institute of Environmental Medicine (Canada) sponsored version of
the Map Task corpus using Canadian speakers of English.
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make the resulting dialogues more interesting, there are slight differences in the
landmark features between the two maps. Chapter 6 contains a full description

of the Map Task corpus.

The distribution of move types, shown by table 2.3, is far from uniform. How-
ever, the distribution i1s not so uneven as to result in a very low information
content (cf. the ToBI system for intonation labelling described on page 84). For
the 12 move types, the task perplexity is 9.1 — this is the perplexity of the unigram
language model (see page 119). A perplexity of 12 would indicate that all move
types were equally likely. Perplexity is defined on page 49.

move type  frequency move type frequency
instruct 1407 acknowledge 2607
explain 733 clarify 246

align 319 reply-y 1020
check 598 reply-n 262
query-yn 703 reply-w 331
query-w 262 ready 784

Table 2.3: The 12 move types used in the Map Task dialogue coding and their
frequency in the DCIEM corpus (training set)

2.2.2 Other work on dialogue move classification

As T have noted, the identification of the move type of utterances in a dialogue
is an end in itself, and not simply a way to improve word accuracy. This task is
related to topic identification, in that the word sequence can be used to identify

some very broad semantic property of the utterance.

Bird et al. (1995) report results for move type identification for the Map Task
(the original version (Anderson et al., 1991)). Techniques for topic spotting are
adapted for move type recognition; these are all based on utterance fragments
— short word phrases found automatically from training data. For example, the

fragment “and then” is relatively common in instruct moves. The results reported
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are based on the correct utterance transcriptions (rather than automatically
recognised ones, as used in the work in this thesis). Between 36% and 38% of
moves are correctly recognised, depending on the exact method used. They report
a similar pattern of classification accuracy across move types as we do (refer to
table 7.2 on page 144) — with acknowledge moves being much easier to recognise
(typically 70% accuracy) than, say, ezplain (30% accuracy). The corresponding
figures from table 7.2 are 80% and 37% using automatic speech recognition (and

the DCIEM version of the corpus).

Garner and Hemsworth’s work (1997) follows from (Bird et al., 1995). The
move type? classification rate reported is now around 52% for the Map Task corpus
(HCRC version). Results are also given for report topic identification using the
LOB corpus, where around 55% of report topics were correctly identified (number

of topic types not reported !).

2.3 Additional constraints

Having described speech recognition as a problem of search under constraints, and
having decided to use these constraints via utterance type classification rather
than directly at the word recognition level, there is no limit on what these con-
straints might be. So far I have only considered modelling the sequence of move

types (with a dialogue model), but more information is available.

2.3.1 Further linguistic constraints

The move type-specific language models take account of the different syntax of
each move type. In the Map Task dialogues, there are a set of maps, each with
different features. This means that the language models could be made “map

type” specific. There would clearly be a problem with lack of data if this was

*As ever, there are 12 move types.
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done explicitly. However, only one class of lexical items changes — geographical
features — and these items can be determined a priori from the map. So it would
be possible to use this information to improve the language modelling further.
One way might be to use class-based language models, with a feature class which
can be filled by whatever entities are present on the current map. We could refine
this and divide entities into more specific sub-categories, such as natural (lakes

and forests, for example) and man-made (cottages, for example).

2.3.2 Non-linguistic information

By “non-linguistic” T mean sources of information not present in either the acous-
tic signal or surface form of utterances. Examples are the speaker’s réle in the

dialogue and non-verbal communication.

e Speaker identity

By “speaker identity” I mean specifically the role of the speaker in the dialogue
and not their gender, age or other characteristics. Typically, each speaker will
have his or her own microphone (this is always true for telephone conversations!)
and therefore separate acoustic signals for the two speakers are available. From
this, T will assume speaker identity is easily and accurately determinable with

100% accuracy.
° Visual cues

In face-to-face dialogue, further visual cues are available. Simple cues such as
eye contact and head movements add significant information. It can be seen
from the Map Task corpus that when participants have eye-contact, dialogues are
completed in significantly fewer moves. The HCRC Map Task dialogues do in fact
have eye movement coding, but the DCIEM dialogues do not. This coding is very

simple, and was done via video recordings of the dialogues. The coding indicates,
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for each participant, whether they are visible on camera, and, if so, whether they
are looking down at the map or up at the other participant (or at a dividing screen
for the no eye contact condition). In auditory channel only dialogues, visual cues
are replaced by back channel communication (ums and ahs, for example). Some
backchannel sounds were used in this work, and they were treated as lexical items.

Further use could be made of things like pause duration®.

2.4 Regrouping the move types

It would seem unlikely that the 12 move types (what I will call the original set
of move types) defined by Kowtko et al. (1993) are the best possible ones for our
purposes. From experimental evidence, given in section 7.3.1, the original set of
move types does work reasonably well, so attempts to find a better set of move

types started from the original set. Experimental results can be found in section

7.3.4.

2.4.1 Constraints

Some simple utterance properties such as overall duration may provide a simple
(easy to recognize) and effective (reduced perplexity language models) way to sub-
divide utterances into types. However, we decided that only utterance properties
with a definite role in the dialogue would be used; this is motivated by the goal
of simultaneous word recognition and utterance type classification, and the desire

to classify utterances in a way useful for higher level processing (see section 2.2).

The inability of intonation to distinguish some pairs of move types lead to
some merging of types. Evidence in (Hockey et al., 1997) for the context-sensitive
nature of some of the original move types lead to splitting some of the types as

detailed below.

SRather than mere pause presence.
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2.4.2 Merging

Whilst merging any of the original move types clearly reduces the information
content (entropy) in dialogue modelling terms, there are strong reasons for doing
this on intonational and language modelling grounds. If a pair of moves cannot
be distinguished intonationally, then the intonation recogniser is not going to
add useful information to distinguish them — that is, it will not give an entropy
reduction. Likewise, if two move types have very similar language models, then
there is no advantage in distinguishing them, and we will be needlessly decimating
the training data. But, as have already mentioned, the original move type set
offers a useful degree of dialogue description; any type merging will reduce the

usefulness of utterance type classification for subsequent processing.

e Intonation

Some move types are apparently indistinguishable from intonational evidence —
that is, using our automatic utterance type classifier with only intonation as input
(see section 7.3.1). Whilst there are strong intonational contrasts between clari-
fications and questions, there do not appear to be any between clarifications and
explanations. This alone is not enough to justify complete merging of explain and
clarify. We could decide not to distinguish between them intonationally but to
still use distinct language models. In speech recognition terms, we might describe

this as tying the intonational models for explain and clarify.

e Language modelling

If our language models make no use of whether information is given or new,
then there will be little difference between the language models for explain and
clarify, since clarifications are basically explanations using old information (such

as already mentioned entities); there will possibly be more pronouns in clarify
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utterances. Merging these two language models makes sense.

2.4.3 Splitting

The motivation for splitting some move type categories is that the language mod-
els, and possibly intonational patterns, for certain types are context-dependent.
For example, the grammar of replies will depend not only on the type of reply,
but on the type of move they are replying to. We assume context-dependence 1s
from the left only, that is the grammar of a move type does not depend on the
following move. The right-context effect, of prompting a certain type of response,
is already sufficiently described in the move type set: for example, the two types

of questions (yes/no and wh).

2.4.4 An alternative move type set

Based on the above observations and intuitions, we performed a combination of

move type merging and splitting as follows:

o explain, clarify and instruct were merged

o reply-n was split into three types according to the type of the preceding

move: query-yn; align or check; other
e reply-y was split into three types as per reply-n
o acknowledge was merged with the type “reply-y preceded by align or check”

e align, check, query-w, query-yn, ready and reply-w were unchanged

The result was a set of 13 move types. Experimental results for this move type

set, can be found in section 7.3.4



Chapter 3

Speech recognition

3.1 Introduction

This chapter covers the design of the baseline system. This system serves two
purposes: to provide a reference for the system using utterance type classification,
and to provide the acoustic models (Hidden Markov Models) for that system. The
novel method introduced in this thesis does not require modifications to these
models; therefore they can be taken directly from the baseline system, which
means that the models can be trained on all available training data, regardless of

utterance type.

o Organisation of this chapter

A review of the state of the art in automatic recognition of speech is given, with an
emphasis on spontaneous, dialogue speech. This leads to the design of the baseline
system, which is then built and tested. Its performance is shown to be at least
as good as other current systems under comparable conditions (such comparisons
are difficult because it is hard to quantify the differences between the domains

and data used by each system).

30
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3.2 The state of the art
3.2.1 Systems

Speech recognition systems can be classified in several ways. They could be put
in to one of two classes: large vocabulary, domain-specific systems or small to
medium vocabulary robust systems. The problems facing each of these types of
systems are quite different. Alternatively, we can divide systems into those which
recognise “read text” speech and those which recognise genuinely spontaneous
speech. These two divisions coincide, since large vocabulary systems, such as that
in (Woodland & Young, 1993), generally only recognise what amounts to “read
text” speech which is noise-free, fluent and clearly spoken. The reasons for this are
the difficulty of recognising large vocabularies, the problem of collecting enough
data to train acoustic models, and, more especially, language models. For read
text, such as newspaper articles, very large amounts of training data for language

modelling are easily obtained.

On the other hand, spontaneous speech recognition systems often operate
with only a limited vocabulary. One of the most challenging tasks at present is
the Switchboard corpus of spontaneous telephone conversations (Linguistic Data
Consortium, 1993-7). Although not explicitly constrained, the vocabulary is of
only moderate size (around 25 000 words') because the conversations are about

everyday subjects.

e Large vocabulary systems

The major problem facing systems with large or very large vocabularies is the sheer
size of the search space. Language models for vocabularies of tens of thousands of
words have potentially very large numbers of parameters and can have perplexities

(defined on page 49) in the hundreds. Estimating the parameters of these language

'Counted in phase 1 transcripts.
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models becomes difficult due to the amount of data needed even for bigram or
trigram models. Many of the techniques used to overcome these problems are

applied at recognition time, and include:

e Two pass approaches: a simple language model is used to produce candidate
word lattices (in other words, to narrow down the search space) which are

rescored using a more sophisticated language model

¢ Advanced search techniques: exploring the search space in a more intelligent
way, and representing hypotheses efficiently, as in stack decoding and time-
asynchronous search, for example (Jelinek, 1969; Bahl & al, 1988; Paul,
1992)

e Hybrid systems: separating phone probability estimation and search, as in

(Renals & Morgan, 1992) and (Robinson, 1993) .

e Spontaneous speech systems

The problems facing systems which recognise spontaneous speech are slightly dif-
ferent. The size of the vocabulary does not cause problems in terms of language
model complexity, but the lack of training data does make acoustic and lan-
guage models hard to estimate. Techniques for overcoming difficulties due to lack
of training data can be applied when building the system (estimating language

models, for example) rather than when recognising speech.

Language model estimation requires a variety of techniques to make the most of
limited training data. Additional constraints may be required to increase robust-
ness, and special treatment of spontaneous speech phenomena such as disfluency,

ungrammaticality, extreme co-articulation and variable pronunciation is needed.

One approach to the problem of recognising spontaneous speech has been

wordspotting. By only recognising words of interest to the system, a degree of
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robustness to spontaneous speech effects is achieved, at the expense of limiting
the recogniser to signal the presence of words rather than whole utterances. In
systems like Gemini (Dowding et al., 1993), a form of wordspotting is used in the
semantic interpreter, which uses the presence of key words or short phrases to
determine speech acts. In a very limited domain, such an approach may work,
but, in general, speech act is not uniquely signalled in the surface form of an
utterance, and methods such as that described here which combine estimates of
utterance type from multiple sources are more likely to work and be robust to
variations in surface form. The new approach described here places no restriction

on the estimators of utterance type.

o Dialogue speech

In conversations between two (or more) people, or indeed human and machine,
there are some properties which are absent in read text. The prosody and into-
nation are likely to be more “interesting” and informative, there are higher level
constraints such as utterance purpose (illocutionary force), turn taking, and so
on. Therefore investigation of the use of these additional sources of information
will be easier with spontaneous dialogue speech since the effects are likely to be
stronger than in, say, read text. In other words, the contribution of intonation (for
example) to speech recognition is more easily assessed using data certain to con-
tain informative intonation. The fact that intonation carries useful information

has been shown by Kowtko (1996) using the Map Task corpus (see page 93).

3.2.2 Benchmark tasks

In order to evaluate performance, some standard task is required — a bench-
mark. Since much research in recent years has been on large vocabulary (RM,
WSJ, Switchboard) or speech in noise tasks (Noisex, for example), these types

of databases are readily available. Unfortunately, for the developer of spoken di-
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alogue systems, the choice of corpora is rather limited. However, it is better to
choose an existing, publicly available database than to generate one — because this

is time and resource consuming and makes comparison with other work difficult.

e Large vocabulary recognition

With the recent emphasis on large vocabulary recognition (LVR), several large,
and some very large, corpora exist to support this kind of work. T will briefly ex-
amine them here, and show why, although they typically contain very substantial

amounts of data for training models, they are not suitable for our purposes.

o Resource Management

This is a one-way command and control task — there is no interaction with the
computer. Since the data is actually read text from a fixed set of sentences, the
intonation is very uninteresting and not especially informative. The data does not

contain any disfluencies or non-speech sounds.

o Wall Street Journal

This is another read text task, but with a much larger vocabulary than the Re-
source Management task. Again, read text has uninteresting intonation which
adds little information. However, this task does have the attractive property of
very large amounts of textual training data which allows the estimation of more

complex language models.

e Spontaneous dialogue speech corpora

Spontaneous speech is cheap to collect: for example, the Switchboard corpus is
simply recordings of telephone conversations. However, it needs to be transcribed

by hand, which is expensive, especially if detailed labelling of disfluencies (see
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section 4.5.1) is required. Furthermore, there are inevitably errors in transcription
and places where the speech is ambiguous (and therefore transcription is difficult),

or where arbitrary decisions must be made.

o Switchboard

The Switchboard corpus consists of spontaneous speech gathered over the tele-
phone network, loosely restricted in domain but not vocabulary. The conversa-
tions are social calls, without any ultimate goal. Speech recognition work on this
corpus is still ongoing (CLSP, 1997) and the combination of telephone-quality
speech, lack of goal in the dialogues? and large inter-speaker variation make this
corpus a little too challenging for development work! However, the technique de-
scribed in this thesis has subsequently been applied to the Switchboard corpus by
Taylor et al. (Jurafsky et al., 1997; Shriberg et al., 1998).

o  Map Task

This corpus was collected specifically for dialogue-related research, and as such,
great care has been taken to effectively limit the vocabulary size through the de-
sign of the task. The dialogues have a specific goal, so they follow much more
constrained patterns than those from the Switchboard corpus, and therefore lend
themselves more to dialogue modelling. Other variable factors have been largely
controlled: the speech signal is of a high quality with no background noise; speak-
ers have reasonably similar accents; the labelling is of a high quality. Although
somewhat artificial, this task was therefore thought to be a more practicable
proposition. A full description of the Map Task can be found in chapter 6.3. A
significant amount of other work has been done using the Map Task corpus — in

both its original and DCIEM versions. In particular, Power’s theory of conver-

ZWhich leads to a lack of global structure, although local dialogue structure is probably less
affected.
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sational games (Power, 1979) has been applied to the Map Task — see page 112.
Other work includes standardising dialogue coding (Carletta et al., 1995; Carletta
et al., 1997b) and examining disfluencies in dialogue speech (Bard & Lickley, 1997;
Lickley & Bard, 1996).

3.3 A baseline system

To examine the contribution of the proposed method to recognition accuracy, we
first need a baseline system. Having reviewed some typical state-of-the-art speech
recognition systems, the chosen system can be designed using similar technology:
Hidden Markov Models and a bigram language model. The acoustic models are
the same for both baseline system and the system using intonation and dialogue
constraints. The vocabulary size for the DCIEM task® is around 900 which is
small to medium in speech recognition terms. The task is spontaneous dialogue
speech. There are only a few systems with similar parameters for comparison, for
example (Suhm & Waibel, 1994) or the speech recognition component of spoken
dialogue systems such as Verbmobil (Wahlster, 1993) or TRAINS (Allen et al.,
1995; Ferguson et al., 1996).

3.3.1 HMMs

Typical medium vocabulary speech recognition systems (e.g. for RM, (Woodland
& Young, 1993)) use phone-based HMMs. Here, tied-state cross-word Gaussian-
mixture density triphone models were used. That is, each model is context-
sensitive one phone to both left and right, even across words, and the output
probability density functions (pdfs) are mixtures of 8 Gaussian pdfs. Each model
has three states. States are tied (shared among a set of models) according to

a data-driven clustering technique, as provided by HTK (Young et al., 1996).

3For the subset of dialogues used here.
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This technique is decision tree based, and uses rules based on phonetic context.
This means that models can be made even for triphones with no examples in the

training data.

3.3.2 Language model

For well trained HMMs, the limiting factor in recognition accuracy is the language
model. The baseline system should use the best language model possible, given

the limited amount of training data available.

° Data

The DCIEM corpus is described in section 6.3. The data was still being labelled
as work progressed, so two data sets were used (named 4 and 5 for historical
reasons): set 4 was an initial development set of 20 dialogues; set 5 is a larger
set of 50 dialogues, which includes all of set 4. For language model estimation,
all training data could be used, since word level transcriptions were available.
The test set of 5 dialogues was constant throughout. The training and testing
portions were selected so that no speaker appeared in both; this is true for the
HMMs, dialogue model and intonation components also. Therefore, the whole

system is truly speaker independent

e Dealing with non-words

Because the DCIEM corpus speech is spontaneous, there are non-speech sounds
and disfluencies to deal with. Many disfluencies consist of aborted and repeated
words, such as “to the sou...the north”. Although these are often fragments of real
words, and are transcribed in the training data, dealing with these problems in the
language model is not straightforward. It has been noted (Lickley & Bard, 1996;
Bard & Lickley, 1997), that human listeners largely ignore, or in fact appear not

to hear, disfluencies. In other words, some repair process is taking place. Here,
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I take a very simplistic approach to the problem: non-words are grouped into
a class which is called NW. This word appears in both the language model and
the dictionary — where it is pronounced “sil” (that is, silence, which is modelled
by a 3-state HMM). Other special words are used for filled pauses and aborted
words, as shown in table 3.1; they are all pronounced “sil”. This makes sense,
because, for the data we are using, the segments labelled as “sil” actually contain
a variety of background noises — I am simply extending the silence class to cover
other non-speech sounds. Of course, aborted words are speech, but not speech we

want to recognise.

AB aborted word
FP filled pause
NW non-word, including non-speech sounds and silence

Table 3.1: Special words

Other words particular to conversational speech, such as “Uh-huh” are treated
as normal lexical items and given full pronunciations. The problems of annotating
disfluent speech were considered in section 4.5.1. Having the three homophones
AB, FP and NW as separate words is not necessarily optimal. They could have
been grouped as a single word as far as this work was concerned. However, they do
have distinct linguistic functions and syntactic properties: aborted words and filled
pauses don’t typically end sentences; filled pauses can indicate the speaker’s desire
to continue to speak, for example “NW okay FP you’ve travelled east...”. The
treatment of disfluencies here is crude, to say the least, but work on disfluency in
automatic speech recognition is a subject of research itself, and to attempt a more
complex treatment here would be too ambitious. As far as assessing recogniser
performance is concerned, the special words in table 3.1, plus Hm, Huh, Uh and
UhHuh, are ignored. This does not artificially improve results - including these

words actually gives slightly higher word accuracies.
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e What is the “best” language model ?

As T explain in section 4.2.1, perplexity is a good criterion for selecting a language
model. The model with the lowest perplexity on a held-out portion of the training

set, was chosen.

e Training the language model

Bigram language models were trained using the CMU-Cambridge Statistical Lan-
guage Modeling [sic] Toolkit (Rosenfeld & Clarkson, 1997) and locally developed

software. The amount of data available is shown in table 3.2.

Data set dialogues moves words
set 4 20 4k 24k
set 5 50 10k 66k*
test 3 1k Tk

Note: 1k = 1000

* Of which 55k are in sentences containing only sel § vocabulary words

Table 3.2: Data set sizes

o Vocabulary mismatch

Initial experiments used data set 4. This, plus the test set, has a vocabulary of
around 900 words — I will call this the set 4 vocabulary. As more data was labelled,
set 5 became available, and the vocabulary size increased to 1200. The increase
can be attributed to two factors: the new dialogues are for different maps with new
entities; the number of speakers increased. The test set had been fixed at the start
and was covered by the 900 word vocabulary. Therefore, when training language
models using set 5 data, there were two choices. Either the vocabulary could be
extended so that the entire training set could be utilised, or only that part of set

5 which contained only set 4 vocabulary words could be used. The second option
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Training data
set 4 set h
set 4 | 27.6  23.6
set 5| n/a 23.1

Test set perplexity

Language model vocabulary

Table 3.3: Effect of choice of vocabulary on test set perplexity

was chosen so that results for the new data were directly comparable to those
using language models trained on set 4. This result shows the effect of training
data set size on language model perplexity. When training language models on
set 5 data, only those sentences which consisted entirely of set 4 vocabulary words

were used — this reduces the number of usable training tokens (words) from set 5

by 17% to 55k*. The size of each of these data sets is shown in table 3.2.

Table 3.3 shows the effect of vocabulary choice and training set size on the
perplexity of a backed-off bigram model — this type of model will be described on
page 58 in chapter 4. The perplexities for models trained on all of set 5, and those
set 5 sentences with set 4 vocabulary, are similar: 23.1 and 23.6 respectively. The

effect of reducing the amount of training data is mitigated by the vocabulary size

reduction (from 1200 to 900).

o Training set size

Some initial experiments simulated the lack of data for the move type-specific
models (see later) by training the “general” model on only a fraction (1/12th,
because there are 12 move type-specific models) of the training data. These
experiments showed the effect of the lack of data well, but since the aim was to
improve word accuracy over a baseline, a model trained on the entire training
set was used in the baseline system. The perplexity of the language model as a
function of training set size is given in table 3.4 and further illustrated in figure

7.4 on page 148. The vocabulary is set 4 in this case.

41k = 1000 words
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Training set Test set perplexity
1/12th of set 4 43.1
all of set 4 27.6
set 5 (set 4 vocabulary part only) 23.6

Table 3.4: The effect of training data set size on back-off bigram language model
perplexity. Vocabulary is set 4.

o  Optimising the language model

Various choices can be made when training the LM, such as the back-off threshold
value (see page 58), the method of calculating the back-off discounts and the
vocabulary used. As everywhere, perplexities quoted here are for the test set,
but perplexity on a held-out portion of the training set was the only information
actually used to choose the best model. The choice of backing-off method has a
small effect on test set perplexity, as does the cutoff at which backing-off begins.
The cutoff is one less than the minimum count of bigrams required to include
a bigram probability in the language model. Bigrams with counts at or below
the cutoff are backed-off. A cutoff of 0 means that all bigrams occurring in the
training data have probabilities estimated, and non-occurring ones are backed-off;
a cutoff of 1 means that bigrams occurring only once or not at all will be backed-
off. Experiments showed that, for this task, the lowest perplexity® model was a
backed-off bigram, with discounts computed using the Witten-Bell (see page 61)
method with a cutoff of 0. The perplexity for this type of model, trained on all

set b training data which has a set 4 vocabulary, is 23.6 on the test set.

Finally, to demonstrate how much structure even a bigram model captures,
table 3.5 gives test set perplexities for the best backed-off bigram model and a

unigram model both trained on set 5 with set 5 vocabularies.

The vocabulary size of around 900 means that there are potentially 810 000

bigram probabilities to estimate. By backing-off many of these to unigrams, only

50n a held-out portion of the training set
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Language model  Test set perplexity

unigram 110

backed-off bigram 23.1

Table 3.5: Comparison of unigram and bigram language models — set 5 training
data and set 5 vocabulary

around 10 000 parameters (unigram and bigram probabilities — back-off weights
are not free parameters) remain in the best language model. This relatively com-

pact language model can be reliably estimated from data.

3.3.3 Results

The lowest perplexity backed-off bigram with a set 4 vocabulary and trained on
set 5 was used in a speech recogniser using the HMMs described above. The

accuracy of the system is calculated as:
correct — insertions

Accuracy = x 100%

total number of labels

where the total number of labels is for the correct transcription and the number
of correct and inserted labels was computed by a Viterbi alignment of recogniser
output and correct transcription using HTK. The word error rate (calculated as
100 - Accuracy) was 24.8%. This compares favourably with other systems, as
summarised in table 3.6. The two comparable systems are reviewed on pages 64
and 72. We can see that the baseline system achieves state-of-the-art performance,
and that it therefore provides a fair benchmark for the new method which is

described in this thesis.

System Vocabulary size Language model Word error rate
perplexity

Suhm & Waibel (1994) 1200 35 34%

Eckert et al. (1996) 1500 20 25%

This system 900 23.6 24.8%

Table 3.6: How the baseline system performance compares with others



Chapter 4

Language modelling

¢ What does a language model do?

In the speech-recognition—as—search paradigm introduced on page 1, the language
model is a constraint. It imposes restrictions on the search space, leading to better

solutions in less time.

We need to estimate the likelihood that a given sentence is in the language.
In practice, we also need to be able to do this for partial sentences — that is, any
word string. Because language can only really be learned from observation, and
because we can never observe enough natural language to have seen all possible
sentences, this estimate will be an estimate of how frequent the sentence is in
a (hopefully) representative example of the language. This example is called a

training corpus.

A wide selection of language models is available, ranging from hand-crafted
grammars with thousands of rules to statistical models with parameters estimated
from large corpora. Only a small subset of these is useful for speech recognition.
To describe language modelling, a few special terms will be used, and these are

defined in the glossary below.

43
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Language Modelling Glossary

language a subset of all possible word sequences

grammar a perfect description of the language

coverage how much of the language the model can generate
overgeneration when a model generates sentences not in the language
perplexity a measure of the complexity of the language, defined on

page 49; also a measure of how well a model matches a
test corpus

robust the model parameters are well estimated

fragile the opposite of robust

For probabilistic models, which can estimate the likelihood that any given
word string would occur in the language, coverage comes to mean how well the
model accounts for word strings which are likely to occur, but did not do so in
the training corpus. Models which estimate that such strings never occur, just
because there were no training examples, have poor coverage (and consequently
high perplexity!). For probabilistic models, overgeneration is not relevant, since

perplexity measures how well the model matches the language.

To quote Meteer & Iyer (1996): “The interesting problem in language mod-
elling is how to bring generalisations above the level of the words themselves to
the text.” This problem is taken into consideration in this chapter, where a selec-
tion of language models are described. The problem of generalisation is addressed
through word class systems, parameter smoothing and backing off and utterance

type specific language modelling.

n fact, any model which estimates zero probability for a particular word string will have
infinite perplexity over any test data which contains that string.
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¢ Requirements for speech recognition

To facilitate speech recognition in reasonable time, we must impose some restric-
tions on the language model we choose. Tt is highly desirable that the language
model be convertible to a finite state network, which means that only left context
may be used to condition word probabilities. Models which are not readily repre-
sented as finite state networks are not easily integrated with the acoustic models
into the decoding algorithm — (Rabiner & Juang, 1993, page 448), amongst oth-
ers. Restrictions will also result from the limited number of observations of the

language available — that is, the size of the training corpus.

4.1 Classes of language model
4.1.1 Stochastic context-free grammars

Stochastic context-free grammars (SCFGs) are simply context-free grammars
(CFGs) with probabilities for each production. These are “top-down” or gener-
ative models, are well understood, and the probabilities are trainable from data.
There are typically far fewer parameters in a SCFG than a word N-gram model.
This 1s because the structure of the SCFG is predetermined since the number
of nonterminals is fixed (the number of terminals being given by the vocabulary
size); only the probabilities required in the rules are learned from data. The
reduction in free parameters is highly desirable since it allows more robust pa-
rameter estimation for a given amount of training data. On the other hand, the
fixed structure results in poor coverage - the model cannot learn to make new
productions. SCFGs are not suitable for direct use in speech recognition (Rabiner
& Juang, 1993), but can be converted to N-gram models using techniques such as

that described in (Stolke & Segal, 1994) — see page 58.
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4.1.2 Left context-dependent models

The alternative to top-down generative models like SCFGs is a bottom up ap-
proach. Here, no parsing is done since no overall structure is modelled. Rather,

word sequences are assigned probabilities directly.

e  Word pair

The simplest form of left-context dependence is a word-pair language model which
simply consists of a list of valid two-word sequences. All valid pairs are equiprob-
able; all other pairs are impossible. For some tasks, such as the Resource Manage-
ment task (RM) (Linguistic Data Consortium, 1996b), a simple word pair model
can perform surprisingly well. When the task has a very “rigid” grammar where
the set of possible sentences is basically fixed, and no other sentences must be
allowed (which is the case in the RM), word-pair models have sufficient coverage
with low perplexity. They have no probabilities to estimate, so do not require

large training corpora.

e N-gram models

If we add probabilities to a word pair model, so that words follow other words with
differing probabilities, we get a bigram model. Typically, all words will be allowed
to follow all other words, some with much higher probabilities than others. If we
then condition the probability of a word not just on the immediately preceding

word, but on the preceding N — 1 words, we get an N-gram model:
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M

P(wy, we,ws, ... wy) = ]___[P(wi|w2-_N+1,...wi_g,wi_l)
1=1
where we typically estimate P(w;|w;i—n41,...wi—2,w;—1) from data:
~ C(“)i—N+17 e Wy, Wi, U)Z'>
P(w;|w;_ Wi i = 4.1
(wz|wz N+1, Wi, W; 'l) C(wi_]\u’_l, Wi, u]i_l) ( )

where C(-) is a counting function applied to some corpus of training data and P

is an estimate of P.

e Longer span models

Training data requirements generally limit NV in N-gram models to 2 or 3 (Rabiner
& Juang, 1993, page 447), so we cannot simply model longer term effects by
increasing N. This is because the number of N-grams is (Ny)™. One of the most
striking long term effects is known as word recurrence — words used recently are
more likely to be used again. One method for modelling word recurrence is to
use a cache; this is described in section 4.4.3. The most common technique for
modelling longer span dependency is to mix N-gram models of different N. This

is known as backing off and is described on page 58.

e Finite state models

It is possible to generate a finite state model directly. For small tasks (for example,
recognising telephone numbers) this can be done by hand. This has the great
advantage of precise coverage without overgeneration. Manual generation of such
models is of course very tedious, and not practicable for most real-world tasks.
Some attempts have been made to combine the precise coverage of finite state

models with the probabilistic nature of N-gram models (Eckert et al., 1996).
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4.2 Meeting the requirements
4.2.1 Desirable properties

To select amongst those language models meeting the restrictions for use in speech

recognition, we need some criteria.
e Probabilistic models

The language model will be used to compute the probability of word sequences?.
This will be useful in ranking a list of candidate word sequences in order of like-
lihood, ordering and pruning the search, and for ranking the likelihoods of a
particular word sequence for each of a set of language models. An application of
the latter would be utterance type classification based on word sequence, using a
set of utterance-type specific language models. Therefore, probabilistic language

models are better than non-probabilistic ones.

e Models with low perplexity

Perplexity is a measure of the average “branching factor”, or the typical number
of words which can follow a given word sequence. For speech recognition, fewer
possible words means an easier task for the recogniser. So, a language model with
low perplexity is more constrained, and will generally result in faster and more
accurate recognition. The relationship between perplexity and word accuracy
is not guaranteed, although we expect models with lower perplexity to produce

better word accuracy.

Consider first a simple language model in which all of the Ny words in the
vocabulary are allowed to follow any other word (with probability 1/Ny). The
perplexity of this model is Ny . Perplexity is defined for probabilistic models
too, where the probability of words following each other is not uniformly 1/Ny.

2That is, the probability of them occurring in the language.



4.2. MEETING THE REQUIREMENTS 49

Perplexity, B, is defined in terms of entropy, H. In practice, we can only estimate
probabilities using some test data, and thus only an estimate of perplexity can
be obtained. The more data used to train and test the model, the better this
estimate should be. The test data should be a held-out set, as explained below.

From Rabiner & Juang (1993), page 450:

B = 2

and we estimate H to be H, over ) words of data:

1
H, = ) log P(wy,ws,...wgq)

which for an N-gram model is

1
Hp = —é Z 10g P(wi|wi_1, Wi—9y ... wi—N+1> (42)
=1

o Held-out method

A test data set is required to measure language model perplexity. We cannot

use the actual test set®, so a held-out scheme is used in which some part of the

)
training data is held out, that is, it is not used for estimating the model parameters.
The held-out data can then be used for estimating the model perplexity. Simply
using the same data to estimate the model parameters and perplexity would give
misleading results. Perplexity will generally be lower over training data than
test data. Optimising the model perplexity over the training set would therefore

lead to a language model “tuned” to the training set and less likely to have low

perplexity over test data. In practice, the held-out method is used for optimising

3That would be cheating !
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the estimation process — selecting the length of N-grams, the type of discounting
when backing-off and so on. A model is then re-estimated using this method from
the whole training set. This avoids wasting valuable training data. The held-out
part of the training set (typically some fraction, such as one third) can be rotated
— if the training data is split three ways, then three held-out sets can be used to

get three different estimates of the best process?.

4.2.2 Models with desirable properties

The selected model must meet the restrictions given at the start of this chapter,
and this means that we must be able to represent it by a finite state network. If
this is not possible, a method for approximate conversion to a finite state network

must be used.

e N-gram models

Because N-gram models are easily represented as finite state networks, those lan-
guage models which fail to meet the requirements on page 45 can still be used via
estimation of a N-gram model. For example Stolke and Segal (1994) use a SCFG

to compute N-gram probabilities — see page 57.

4This technique is sometimes called cross-validation. I will not use this term because it means
different things to different people.
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P(wl | wl)

P(wn | wl)

P(w3 | wn)

Figure 4.1: Representation of an bigram model by a finite state network (not all
arcs are shown)

o  Representation as finite state network

Figure 4.1 shows an example for N=2, where nodes represent words and arcs
represent probabilities. In general, nodes represent (N-1)-tuples of words — that
is the conditions in the conditional probabilities (e.g. {a,b} in P(c|a,b)). For
example, in a trigram, each node is labelled with an ordered pair of words; we
can see that the size of the network will increase exponentially with N — there are

(NV)(N_l) nodes and (Ny)" arcs where Ny is the vocabulary size.

In the figure, not all arcs are shown, and the start node is not made explicit. In
a practical network, we would have two special nodes (perhaps labelled |[ENTER
and !EXIT), and constrain the path through the network to start at one node and
finish at the other. In this way we also model the probabilities of words (or more

generally, word (N-1)-tuples) starting and ending sentences.
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4.3 N-gram language models

The baseline recogniser and the new method both require language models (the
new method requires several models). All these models perform the same task:
they constrain the search during recognition. From the literature review above,
it 1s clear that N-gram language models are the obvious choice. The reasons can

be summarised thus:

e easy to integrate into the recogniser
¢ allows parameter smoothing:

— can have non-zero probability for zero-frequency N-grams

— very simple to interpolate between two models
e wide variety of training techniques to:

— compensate for sparse data
— minimise perplexity

— optimise number of free parameters

4.3.1 Robustness

Inevitably, language models are trained on minimal amounts of data; if more data
is available, models are more likely to be made more complex (for N-gram models,
this means large values of N) than to be better trained! A lack of training data
leads to fragile models: they will have poor coverage and badly estimated proba-
bilities. A variety of techniques is available to compensate for these problems, all
of which work by adjusting the raw estimates of the model probabilities given by

equation 4.1.
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e¢ The zeroton problem

One major problem with probabilistic models such as N-grams, is how to estimate
the probability of events never seen in the training data. There will always be
such events (N-grams in this case) for two reasons: 1) some N-grams really don’t
ever occur in natural language; 2) there was not enough training data. There is a
similar problem with all rare events in the training data. If we saw an event just
once in a corpus, this is not a reliable estimate of its “true” frequency. The simplest
solution is to use a “floor” probability, so that the probability of an N-gram never
falls below some small amount (equivalently, no N-gram has a frequency below a
certain value). Fixed floor probabilities are crude and must be manually selected.
A more general solution is to smooth the frequency counts, which adjusts both

zero and non-zero frequencies.

4.3.2 Smoothing

Smoothing the parameters of the language model is an attempt to “iron-out” ir-
regularities in the frequency of frequencies distribution — for example by smooth-
ing the distribution by fitting a function. An example frequency of frequencies

distribution is given in table 4.1.

frequency number of different bigrams (N=2)
of N-gram with that frequency
0 711601
5074
1445
669
385
247
210

Sy Ot = W N~

Table 4.1: A frequency of frequencies table for the DCTEM training set 5, set 4
vocabulary.
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Table 4.1 is for the training data used for the baseline language model —
DCIEM set 5 with set 4 vocabulary. Only around 10% of the possible bigrams

are found in the training set. The table 1s truncated at a frequency of 6.

In a simple N-gram model, the probabilities are estimated by the Maximum
Likelihood Estimation (MLE) defined by equation 4.1. Using this estimate, the
probability of events never seen in the training data is exactly zero. We would
like to be able to replace that zero with a better estimate. To do that, we will
have to remove some of the “probability mass” from the non-zero frequencies and

assign it to zero-frequency events.

If C' is the total number of N-gram observations seen in the training data, and

(', is the number of distinct N-grams seen r times, then

C = Z C.r
r=0

Now if r* is the smoothed frequency which replaces frequency r, we must ensure

that 302 ) Crxr™ = C and since Crx = C, then 32, Cr* = C
e The Good-Turing method

The Good-Turing method (a good description of which can be found in (Church &
Gale, 1991), for example) for smoothing the frequency-of-frequencies distribution

1s:

We must preserve the property Y02 C.r* = C. From the above, C,r* = (r +
1)Crs1, so 302, Cor* = Y2 0(r + 1)Crqq. Now, C = Y22 C,r, but for r =
0, C,r = 0 so the lower limit on the sum can be replaced by r = 1. A simple
substitution of (r 4+ 1) by r, so that (r + 1) = 1 becomes r = 0, shows that
Yorey Crr* = C.
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T,*

0.00072
0.57

1.4

2.3

3.2

=~ W N — O

Table 4.2: Good-Turing smoothing of the frequencies from table 4.1.

Table 4.2 shows the effect of Good-Turing smoothing on the frequency distribution
from table 4.1 using the equation above. Enhanced versions of this method are
possible by, for example, smoothing the (', first, or taking unigram counts into
account when estimating bigram frequencies (Church & Gale, 1991). The Good-
Turing method can be applied to calculating discounts in a backing off scheme as

described in section 4.3.3.

e Interpolation

Often, we are estimating a language model for a specific domain where the amount
of training data is limited. However, there may be a large amount of data available
from another domain. A language model trained on the larger corpus will be more
robustly estimated, but will not match the target domain. A simple solution to
this would be to interpolate the parameters of the domain-specific (but fragile)
model with this model in the hope of getting the robustness and coverage of the

large-corpus trained model but with the domain-specificity of the fragile model.

The “domain” can be defined in various ways. One interesting definition is
that each utterance belongs to a particular domain. There is a set of domains
reflecting, say, possible utterance types. Now, consecutive utterances in a corpus
need not belong to the same domain — the domains can be “interleaved”. Each
domain contains many utterances. Now, in estimating a language model for each

of these domains, there is probably not going to be enough in-domain data for
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training. Therefore, the model parameters could be interpolated with a more
robustly estimated model — and the obvious choice is a domain independent model,
which is simply a model trained on data from all domains. This is a key idea’ in

the work here, and the experimental details are described in section 4.6.4.

o FEstimation—-maximisation model interpolation

Two or more language models can be interpolated such that the probability of a
given word string assigned by the interpolated model is simply a weighted sum of

the probabilities assigned by the original models:
P(word string) = Z Ai Pi(word string)

The weights A; can be found using the estimation maximisation (EM) algorithm®,
which chooses weights which minimise the perplexity of the interpolated model
over some held-out” training data. This algorithm is implemented in the CMU
language modelling toolkit (Rosenfeld & Clarkson, 1997) which was used to es-
timate the (word level) language models in this thesis. Experimental results are
described on page 76. Linear interpolation of language models has attractive prop-
erties — pointed out in (Rosenfeld, 1994): it cannot hurt, since the EM algorithm
guarantees not to increase perplexity (on the held-out data, at least); very little
held-out data is required to compute the weights; the weights do not need to be

specified very accurately.

Interpolation of language models is not a new idea.
6Also known as the expectation—maximisation algorithm.
"See page 49 for a description of the held-out method.
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° Other methods

o Cooccurence smoothing

Essen & Steinbiss (1992) extend a technique originally applied to HMM parame-
ter smoothing to smoothing the probabilities of stochastic language models. This
technique makes use of the observation that some words frequently occur in the
same context as other words (for example, most nouns can occur in the context
Jthe ____/ ). This property can be used to smooth the probabilities in, say, an
N-gram language model. A confusion matrix can be computed, containing the
probability of two words occurring in the same context (their confusibility). In
the case of a word bigram model, the confusibility is used to compute a smoothed
conditional probability for a bigram based on a weighted sum of conditional prob-
abilities for all confusible words. The weights are the values from the confusion
matrix. Thus the smoothed conditional probability of a bigram depends on the
conditional probabilities of confusible bigrams. Variants are possible where the
smoothing takes place not over the current word (the one being predicted) but
the preceding word, or indeed both. Perplexity reductions of up to 10-15% are

shown using this technique.

o Cooccurence with backing off

Pereira et al. (1996) use cooccurence to distribute the discounted probability
mass in the back-off method (Katz, 1987) (see also section 4.3.3). The usual
method for redistribution is based on the observed (N-1)-gram prefix frequency.
The cooccurence method uses the frequency distribution of “similar” words. The
effect of this is to average together the standard back-off probability estimates for
a group of similar words. Similarity in this case is defined as the Kullback-Liebler
distance, which is a relative entropy measure. Perplexity reductions obtained (on

the Wall Street Journal task) by this technique are small, at only 2.4%, and the
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corresponding word error rate reduction reported is 21.4% to 20.9% - a reduction

of 2.3% (relative).

o Using stochastic context-free grammars

Although stochastic context-free grammars (SCFGs), as mentioned in section
4.1.1, are powerful models with typically far fewer parameters than N-gram mod-
els, they are not directly suited to use in speech recognition. Stolke & Segal
(1994) give a method for generating N-gram probabilities from SCFGs, thus get-
ting what they call “the best of both worlds”. However, best results are obtained
by smoothing the N-gram probability estimates obtained by this method with
directly estimated ones, because SCFGs suffer from limited coverage (as defined

on page 43).

4.3.3 Backed-off N-gram models

To model longer term dependencies, we would like N to be as large as possible.
However, as the number of parameters in a straightforward N-gram model is the
number of items in the vocabulary raised to the power N, there is unlikely to
ever be enough data for large N. We know that, as N increases, the number of
different N-grams actually found in data becomes a smaller and smaller fraction
of the total number of possible N-grams. Since we only need to reliably estimate

probabilities for relatively common N-grams, we can make use of this property.

Consider a trigram (N = 3): {a, b, c}. It contains the shorter term: {b, c}.
We wish to estimate P(c|a,b) but have not seen {a, b, ¢} enough times in data
to be able to do that reliably. We can, however, estimate P(c|b) reliably. We can
base our estimate of P(c|a,b) on P(c|b) through a technique known as backing off
(Katz, 1987).
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Let

P(cla,b) = a.P(c|b) if C(a,b,c) is below some threshold

where C'(+) is the counting function from before, and « is some weight to ensure

that probabilities for a given word history sum to 1, that is:

> P(wla,b) = 1 Va,b whereV is the vocabulary a,b,c...

weVvV

Clearly, if we estimate probabilities with equation 4.1, then a will be zero. There-
fore, we need to discount some of the probability mass from those N-grams with

non-zero frequency so that a > 0. Generalising, from (Katz, 1987):

P(wylwy™") if C(wl) > k
Plwy|wl ™) = (43)
av=1 - Pwy|w) ™) otherwise
where w{v is the sequence of words wy, wy,...wy, k is a threshold and ]5() is now

estimated using:

- _ Clwy,wy,...wy) — d(C(wy,wy,...wy))
P N-1 — ) ) 3 3
(wN|WI ) C(U)],'U)Q,...UJN_])

where d(-) is a discounting function which removes probability mass from higher
frequencies so allowing it to be redistributed to lower ones. In Katz’s notation,
wy 1s the word whose probability is being estimated and w; is the first word in
the N-gram. By adjusting the threshold %k, the number of N-gram probabilities
that are backed-off to weighted (N-1)-gram probabilities can be controlled. All
backed-off N-grams with the same N-1 initial items share the same back-off weight

@, so high cut offs result in fewer parameters to estimate.
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e Discounting functions

There are a variety of discounting functions — d(-) — to choose from.

o Fixed discounting

In the simplest discounting scheme (Ney et al., 1994), a fixed discount is removed

from all frequencies greater than the threshold k. Typically d = 0.5.

o Linear discounting

Now the discount is proportional to the frequency - a fraction of the frequency

count is discounted (Ney et al., 1994): d(r) o r.

o Good Turing method

Katz’s (1987) original suggestion was to use a Good Turing method, as applied
to language modelling (see (Church & Gale, 1991), amongst others) to compute a
frequency for unseen N-grams, based on the frequency of frequencies distribution.
As in section 4.3.2, the frequency of frequencies distribution is modified (see table
4.1 for an example). Zero frequencies are modified to a small non-zero frequency.
From this frequency we can see what the total probability of all the “zerotons”

(unseen N-grams) should be.

In the simple smoothing of section 4.3.2, all zerotons would now be assigned
a uniform (small) probability based on the modified zero frequency entry in the
table. In a backing off scheme, this probability is distributed amongst the zerotons
according to the (N-1)-gram frequency, according to equation 4.3. Variations of
this method are available depending on how far down the frequency of frequencies

distribution the Good Turing method is applied.
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o Witten-Bell discounting

This method is from (Witten & Bell, 1991), as implemented in (Rosenfeld &
Clarkson, 1997), from which the following is taken:

The discounting ratio is not dependent on the event’s count, but on ¢,
the number of types which followed the particular context. It defines
d(r,t) = n/(n 4 t), where n is the size of the training set in words.
This is equivalent to setting P(w|h) = ¢/(n+1t) (where w is a word, h
is the history and ¢ is the number of occurrences of w in the context
h), for events that have been seen, and P(w|h) =1t/(n +1) for unseen

events.

° Which method is best?

We have seen that there is a variety of methods for estimating robust N-gram
models, but which is the best one? This is easy - it is the method which gives
the model with the lowest perplexity on held-out data. In other words, the best
method can only be determined experimentally, and this is what was done. The

experiments are described in section 4.6.4.

¢ Representation as finite state network

Like any N-gram model, a backed-off N-gram model can be represented as a finite
state network. This is most easily illustrated by figure 4.2 on page 62. As the
figure shows, some transitions share the same value (unigram probabilities) — the
number of parameters in the backed-off model is typically far fewer than in a

“full” N-gram model.
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——» bigram probabilities

- unigram probabilities

8 } null nodes

Figure 4.2: Representation of a back-off bigram model by a finite state network
(not all arcs are shown)

4.4 Adaptation

A language model is trained on a corpus of data, and used to model some test data.
There will always be a degree of mismatch between the training and testing data®,
which can be for a number of reasons: the training data could be from a different
domain to the test data, about a different topic, from a different speaker or set
of speakers, and so on. To mitigate this mismatch, the model can be adapted to
the test data. T will first explain what T mean by adaptation and then consider
how it might be achieved. In the literature, adaptation is taken to mean changing
the parameters of a language model during recognition — T will call this on-line
adaptation. T will use the term “adaptation” more generally to mean modification

of model parameters after their initial estimation from training data.

8Perplexities of language models are generally greater on testing data than on training data.
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4.4.1 Adaptation to what ?

The causes of mismatch listed above are all motivations for adapting the model,

and each will determine what is adapted, and when.

e Domain

The most obvious problem we might want to overcome is that the model was
trained on data from a different domain. This could be because not enough data
from the target domain was available for training, or because we do not know

precisely what the target domain is.

e Speaker

Different people speak and write in differing ways, and this can cause mismatch

between the language model and the speech being recognised.

o Topic

Adaptation to topic is usually applied to recognition of longer passages, where use
can be made of effects such as word recurrence (see page 47). Topic can be seen
as similar to domain, but with more localised effects on the language — entities
mentioned may be topic dependent, and so there are strong effects on unigram
frequencies in particular. Adaptation to topic is a case where adaptation of only

some model parameters might be desirable — see below.

e Dialogue act

All adaptation considered so far has been either relatively long-term, or incre-
mental. Long term means that the language model remains fixed from utterance

to utterance, with parameter adaptation taking place between longer passages,
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or session of use. Incremental means that the model parameters do not change

radically from one utterance to the next.

There are striking differences in grammar between sentences, and we can take
advantage of this. What we would like to be able to do is adapt the language
model to each unknown utterance. To do this, we need to measure some property

of the unknown utterance to base the adaptation on.

Such a property is the dialogue act, which encodes the réle of the utterance
in the dialogue. T will use instead the term utterance type. This property can be
hand labelled by examination of a dialogue transcript. Utterance type encodes the
role of the utterance in the dialogue, and this is reflected strongly in the surface
form (word sequence). In order to detect the type of an utterance, some cues are

required.

Eckert et al. (1996) use dialogue step dependent language models — this is a
very similar approach to the one taken here, although the dialogue step system is
much simpler than that of conversational games, with only five steps being defined
for train enquiry task: initial, time, goal-city, source-city and date. A dialogue
step independent model was used in parallel with these five models, to enhance
coverage. Up to 6% word error rate reductions are reported. Vocabulary size is
around 1500 words, language model perplexities are around 20 and word error

rates around 25%;, all of which are very similar to the work in this thesis.

o Acoustic cues

Considering utterances in isolation, all the cues we have (assuming we are not
using additional data such as vision) are in the acoustic signal. Ideally, we would
like to use cues which can be extracted prior to doing speech recognition — although
a two pass approach is possible. Kowtko (1996) has examined the function of

intonation in task oriented dialogue — this is reviewed on page 93.
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o Contextual cues

In dialogue situations, as seen in section 6.2.1, the previous utterance(s) give
strong cues to the current utterance type. This can be exploited by a dialogue

model, which is discussed in detail in section 6.3.3.

4.4.2 Adaptation of what ?

Now that we have established cues for language model adaptation, what form is
this adaptation going to take 7 Here I will only consider probabilistic models

(such as N-gram models) where the parameters are estimated from data.

e All parameters

The simplest scheme would be to adapt all parameters — effectively selecting an
entirely different model. For example, using utterance type as the property on
which we are basing the adaptation, this means a particular (version of the)

language model for each utterance type.

¢ Some parameters

It is likely that some parameters of the language model will not need adapting.
This is easy to see, for the case of adapting to utterance type, in the difference

between statements and questions:

statement  You have a cottage
question ~ Have you a cottage ?

The inversion implies adaptation of probabilities for words likely to be in-
verted, but not for pairs like “a cottage”. However, explicitly adapting only some
parameters means identifying those parameters. This may be straightforward in
a word-class based scheme, where we may elect only to adapt probabilities of cer-

tain classes: for example, the frequency of Map Task entities could be adapted
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depending on the particular map in use. In non-word class system, it may be

simpler to opt for adaptation of all parameters.

4.4.3 Implementation

For some types of adaptation, we can “pre-adapt” the language model, for exam-
ple, to a new domain, with extra training material. In other cases, adaptation
can only be made gradually as recognition proceeds — for example, adaptation to

a previously unheard speaker. I will call these possibilities off- and on-line.

° Off-line

Language model estimation is generally computationally intensive, and ideally
carried out before recognition. Schemes which allow such off-line adaptation are
therefore preferable, particularly as language models become more complex and

vocabularies become larger.

° On-line

When off-line adaptation is not possible, or not optimal, language model pa-
rameters can be changed as recognition proceeds. The cues used for adaptation
must be present in the speech already processed. Typically this means the words

recognised so far. One way to use this cue is with a cache-based model.

o Models with a cache

One effect that can only be accounted for on-line is word recurrence: words which
have occurred recently are more likely to occur again. This is typically (Clarkson
& Robinson (1997) for example) modelled with a cache. A cache is simply a store

of all recently occurred words. The probability of words in the cache is boosted.
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As the distance (in words) back to the previous occurrence of a particular word

increases, the amount of “boosting” is typically reduced.

Using a cache is effective in producing language model adaptation to various
effects: domain, topic or speaker. However, at or near the start of a new recog-
nition run, when the cache is empty or only contains a few words, the effect is
either absent or very crude. Cache-based models may therefore be best suited to

longer passages.

4.5 Models designed for conversational or dia-
logue speech

The grammar of spontaneous speech is clearly different to that for written lan-
guage and the grammar of conversational or dialogue speech is obviously different
from other spontaneous speech. The Switchboard corpus (Linguistic Data Con-
sortium, 1993-7) is a good example of spontaneous dialogue speech. Meteer & Iyer
(1996) provide a good review of the problems facing annotation and modelling of
Switchboard data. They address the problems of disfluency and definition of the

sentence in conversational speech, summarised below.

o Disfluency

One of the biggest problems associated with annotating and modelling sponta-
neous speech is that it contains a very high proportion of disfluencies. These
range from simple effects such as repeating words, to longer term ones such as

rephrasing entire sentences, or repairing mistakes long after they occur. For ex-

ample, from the DCIEM Map Task corpus (Bard et al., 1995):

“...now I have .. hmm, below the ruined monastery I have an

overnight accommodation ... a little house.”
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where, had they been asked to write it down, the speaker probably would have

put“Below the ruined monastery, I have a little house.”

4.5.1 Annotation issues

Meteer & Iyer (1996) describe the problems in annotating disfluent speech. Three
categories of annotation problem are addressed: marking sentences; describing
restarts; and non-sentence elements. In labelling such a large corpus, care must
be taken to mark any information which may be of later use, since a second
labelling pass is not possible because of the cost involved. Meteer & Iyer use the
annotation scheme of Shriberg (1994) in which disfluencies are bracketed in such
a way as to allow “repair” by deletion of the speech subsequently repaired by the
speaker, leaving reasonably fluent speech. Filled pauses and other non-sentence

elements are explicitly marked as such. For example, from (Meteer & Iyer, 1996):

transcription  Show me flights from Boston on uh from Denver on Monday

annotlation Show me flights [from Boston on 4+ {F uh} from Denver on]
Monday
repaired Show me flights from Denver on Monday

In the repaired version, the section inside [...] is repaired by deletion of the portion

before the 4+. The pause filler “uh” is deleted during a separate clean-up process.

In the labelling of the DCTEM Map Task corpus used in this thesis, only word
level labels were used. Repaired or partial words are marked as such, along with
the labeller’s guess at what the full word would have been. No bracketing of
repairs and so on was available. The word labels were cleaned up considerably
before language models were built. This cleaning involved relabelling all partial
words and non-speech as described on page 38. This is a very crude scheme, but

greatly simplifies subsequent language modelling.
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4.5.2 Dividing the input speech

One problem facing recognition of conversational speech is that of deciding where
to divide the speech signal into chunks for processing. Smaller chunks are pro-
cessed faster and may give some advantage for language modelling — see section
5.2.2. The definition of a sentence is not clear in spontaneous speech. Utterances
are rarely grammatically well-formed, and there is typically a high proportion of
sentence fragments and even sentences split across turns. Meteer & Iyer (1996)
compare two segment hypothesising techniques: acoustic and linguistic. They
conclude that a (manual) linguistic segmentation is more advantageous for lan-
guage modelling (the models have lower perplexity) than an acoustic segmentation
using pauses, silence, non-speech and turn taking. However, models trained on
manually segmented data were not well matched to test data with automatically

hypothesised segment boundaries.

In the DCIEM Map Task corpus, I did not attempt an automatic segmenta-
tion into utterances for either testing or training data, and used only the manually
labelled move (see page 112 for a definition) units. Thus, mismatch between train-
ing and testing data is avoided. The problem of segmentation may be easier for
this corpus, since there is a stronger dialogue structure than in the Switchboard
conversations, so turn-taking is more explicitly marked by the speakers, both in
the intonation and words spoken. Furthermore, these dialogues are goal oriented
and take place between two cooperating participants, which means that the speak-
ers try harder to mark turn taking, and are less likely to do things which do not
help achieve the goal.
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4.6 Sub-language models

In hand-crafted grammars for natural language, such as in (Alshawi, 1992), sub-
grammars of often used. These are self-contained grammars which can be inserted
into the main grammar. For example, we might write a grammar for telephone
numbers, then treat “telephone number” as a single item in the main grammar.
Such sub-grammars greatly simplify the task of writing the grammar, and in the

case of probabilistic grammars, reduce the number of parameters.

With models of natural language estimated from data, something similar can
be done. If common structures, like telephone numbers, can be found and treated
as “sub-languages”, better use can be made of the training data. The sub-language
model only has to learn a simple grammar, and the number of items (lexical items
plus sub-grammars) in the main grammar is reduced. The problem is of course:
how do we define and detect these structures? In dialogue speech, there are natural
divisions when the speakers exchange control or start and end turns, although this
is confused by overlapping speech. These points are a starting point for defining

a useful unit of speech.

4.6.1 Finding units in spontaneous speech

In section 4.5.2, dividing the input speech was motivated by both the need to pro-
cess the input in reasonable sized chunks, and the finding that language models for
linguistically segmented speech had lower perplexity then ones for un-segmented
speech. The chunks are homogeneous — they are all of the same type, and the

same language model is used for them all.

To use sub-grammars, each of which models chunks of differing types, the cri-
teria for defining units is slightly different. As above, the unit must be something
whose boundaries are easy to determine, and which is long enough to exhibit use-

ful linguistic structure, yet short enough that there are a reasonable number of
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examples in training data. Additionally, we require that the units form clusters
in terms of grammar (and possibly other criteria, such as intonational tune; see
chapter 5). Furthermore, it would be an advantage if sequences of these units
exhibited some pattern so that cross-unit constraints can be used, as mentioned
in section 2.1. The terminology used here is as follows: an utterance is a chunk
of speech which contains just one of the units we will define; each utterance has

a type, selected from a finite set of types.

° Turns

Turns are a unit of dialogue in which a sub-goal of the dialogue is achieved. A
turn typically consists of more than one utterance, and involves both speakers;
for example, a question followed by a reply. The turn is a rather large unit, which
is problematic for our purposes. Because more than one speaker is involved, there
is structure within the turn which we may not be modelling well, and there will
typically not be many turns per dialogue in the training data which will make

modelling turn sequences difficult.

° Moves

The theory of conversational games (Power, 1979) was introduced in section 2.2
for utterance type classification. For the reasons given there, the move is an ideal
candidate for a unit of speech. Moves are smaller units than turns; there will be
sufficient moves in the data to train dialogue models (see section 6.3.3). Further-
more, the set of move types form a natural set of classes which are motivated by
dialogue theory and therefore, potentially, will form clusters in terms of language

too.

Move types form a small set — 12 in (Kowtko et al., 1993). Therefore there
will hopefully be a reasonable number of examples of each type in the training

corpus. As I will show, sub-language models for individual move types have lower
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perplexity (on the same test data) than a model trained on utterances of all move

types.

The set of move types in (Carletta et al., 1995) strikes a balance between units
of a convenient size and context independence. Smaller units (single phrases, for
example) would be more context sensitive and larger units would require a larger
set of types. As we saw in section 2.4.3, some of the move types in the set defined
in (Carletta et al., 1997b) do exhibit some context sensitivity — for example, the
surface form of a reply-no move which is a response to a yes-no-question move
will tend to be different than one which is a response to a move of another type
(Hockey et al., 1997). This could actually be exploited in a real system, because
if we know the effect on surface form of the eliciting move, then we can reflect this
in our language models and make the recognition task easier for ourselves (human

or machine!) by asking questions in the right way — see page 106.

Suhm & Waibel (1994) use speech-act dependent word bigrams. The speech
acts are identified by prediction of dialogue state (Ward & Young, 1993) and a
semantic parser. The speech act categories include give-info, suggest-time and
interject. The task is the English version of the Spontaneous Scheduling Task,
a forerunner of Verbmobil (Wahlster, 1993). As mentioned already, Eckert el al.
(1996) use dialogue step dependent language models, which is a similar system to

that used in this thesis.

e Word phrases

Speech, and especially spontaneous speech, contains many common phrases, such
as “Yes I do” or “I know”. N-gram language models do not capture the longer
common phrases, even though there are enough examples of them to estimate
probabilities reliably. Some attempts have been made to treat these common
phrases specially, typically as single lexical items. Suhm & Waibel (1994) find

common phrases automatically. Word sequences are found which, if treated as
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phrases, decrease language model perplexity. The huge space of possible word
sequences is reduced to a computationally possible set of candidates using a mu-
tual information criterion. The perplexities of word phrase bigrams (in which the
lexicon contains both word phrases and regular words) was found to be lower than
word bigrams. Perplexities were normalised to account for the fact that phrases
contain more than one word. In dictionary sizes of one or two thousand, using

around a hundred word phrases was optimal.

e Sub-sentence modelling

Meteer & Iyer (1996) observe that the information distribution in sentences (from
the Switchboard corpus) is non-uniform. They point out that sentences often
have a given/new or topic/comment structure, and that given information tends
to occur in the beginning of a sentence (establishing the topic), whilst new in-
formation tends to occur at the end (commenting on the topic). Their method
involves finding the dividing point in each sentence. The dividing, or pivot, point
is defined as the first strong verb, or last weak one. Some sentences do not have
a verb, and these are divided into two categories: complete (for example, “Yeah”
and “OK”) and incomplete. Distinct language models are used for each category:
before pivot, after pivot, no pivot (complete) and no pivot (incomplete). The
distribution of types is very uneven - in their data there are around 300 000 words
in each of the before and after pivot categories but only 10 000 words in the no

pivot (incomplete) one.

Meteer & Iyer then build a finite state model of conversations in terms of these
four categories. The model is a simple loop. Refinements are made to account for
sentences which begin turns, and for sentence connecting elements. This model
only uses within sentence constraints since sentences are not themselves cate-
gorised; it has bigram transition probabilities, which is somewhat simpler than

the best dialogue model chosen on page 124.
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4.6.2 Decimating the training data

Unfortunately, using sub-language models based on move types means dividing the
training data between the models. So the advantages of better language modelling
are potentially offset by lack of training material. However, the strategies for
compensating for lack of data described in section 4.3.1 can be applied to alleviate
this problem. I will show in chapter 7 that the trade-off is in favour of utterance

type-specific language models.

4.6.3 Use

How do we use a language model composed of a set of sub-language models? For
our telephone number grammar example, the sub-grammar is simply inserted into
the main grammar, expanding the “telephone number” item in terms of words.
The same thing can be done here, but now our main grammar simply contains
one item for each move type, and each item has its own sub-language model. This
is made clearer in figure 4.3. The transition probabilities between the models are
given by a dialogue model (see section 6.2) — in the example shown this is just a

bigram model.

One thing remains: how do we compute the probabilities in the main grammar?
These are the probabilities of the various move types following each other — a
dialogue model, as described in chapter 6. Of course, figure 4.3 shows only a
bigram language model but, since any N-gram model can be represented as a
finite state network (see page 51), the idea is the same for an N-gram dialogue

model.

4.6.4 Language model estimation

The type of utterance is incorporated into the language model using the utterance

type classification scheme introduced in chapter 2. Before conducting lengthy
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Language model
e — for ‘acknowledge’

P(check | acknowledge}

P(acknowledge | check)

Figure 4.3: How sub-language models form a single model (only some models are
shown)

recognition experiments, it is necessary to show that there is likely to be an im-
provement in word accuracy. We do this by examining language model perplexity,
and show that a reduction in perplexity compared to the baseline model can be
achieved. The baseline language model described in section 3.3.2 has a perplexity
on the test set of 23.6. Perplexity and word error rate are correlated, although

the exact relationship is unpredictable.

9 in the corpus has been labelled with one of 12 move types

Each utterance
introduced on page 22. The corpus is thus divided into 12 smaller sections. The

amount of training data available in each is shown in table 4.3 on page 76.

9FEach utterance contains exactly one mowve.
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move type sentences words
acknowledge 2607 6363
align 319 1753
check 598 4359
clarify 246 2149
explain 733 6521
instruct 1407 17991
query-w 262 1863
query-yn 703 5748
ready 784 1574
reply-n 262 770
reply-w 331 2937
reply-y 1020 2824
total 9272 54852

Table 4.3: Move type-specific LM training set sizes
¢ Smoothing the models

Because of the sparse training data, some of the utterance type-specific LMs will
be poorly estimated. To alleviate this problem, we can interpolate the probabili-
ties of the type-specific models with probabilities from a more reliably estimated
model : the general model. Section 4.3.2 introduced the estimation—maximisation
(EM) method for computing interpolation weights as implemented in (Rosenfeld
& Clarkson, 1997).

To compute the EM interpolation weights, a test data set is required — the
held-out method introduced on page 49 is used. We will need a further held-out
set for selecting between models as described later, so some of the training set is

set aside for that before splitting the remainder into training/testing portions.

o The interpolation weights

Table 4.4 shows the weights'® used in smoothing the LMs. Weights close to 1 mean

10Averaged over the three held-out combinations described earlier, and rounded to one sig-
nificant figure because the three estimates typically exhibit variation. Rosenfeld (Rosenfeld,
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move type weight
acknowledge 0.8
align 0.5
check 0.4
clarify 0.3
explain 0.5
instruct 0.7
query-w 0.6
query-yn 0.6
ready 0.9
reply-n 0.9
reply-w 0.4
reply-y 0.8

Table 4.4: The interpolation weights

that the smoothed model will be closer to the unsmoothed move type-specific LM
than the general model. The practical method T have used for combining two
language models is to weight the training data. The models are estimated by
counting the N-grams occurring in training data. These counts can be combined
by a weighted sum thus (a, b is an observed bigram, C'(-) is a counting function'!
and w is the weight):

C a,b) =

w'Ctype—speciﬁc data(@0) + (1 —w).Cyi gataleb)

combined model(

The combined model is then estimated from the counts C. . 1ined model(*)-
The size of the weight w reflects two things: how well trained the unsmoothed
model is for that move type, and how well the general purpose model models that
move type. If moves of a particular type have a very specific grammar, and the
LM for that type is well trained, we would expect a weight close to 1; this is the

case for “acknowledge”, “reply-n” and “reply-y” in particular. Conversely, for

move types like “clarify”, whose grammar is less specific to that move type (and

1994, page 25) observes that the weights need not be very accurately specified, and suggests 5%
accuracy is good enough. T have used 10%.
"The counts are normalised for training corpus size
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more like a “general” grammar), and/or which have insufficient training data (see

table 4.3), the weight will be closer to 0.

Examples of some move types have grammars which appear, on casual inspec-
tion of the data, to be similar to the general purpose grammar. If the LMs for
these types are well trained, their weights will be close to 1 — instruct, for example

— indicating that they do indeed have a particular grammar, if not as obviously

as “reply-y”, say.

e Perplexity

The individual perplexities of the move type-specific language models are shown
in table 4.5. The figures shown are for the test set, for consistency with other
results shown here. As mentioned above, the test set was not used to choose the

best language model.

Test subset Perplexity
Language model used

move type general type-specific  smoothed
acknowledge 4.3 (3.3) 3.5 (2.0) 3.4 (2.0)
align 22.1 (19.9)  31.7 (24.3) 22.1 (19.8)
check 32.4 (21.2)  35.5 (27.5) 32.3 (21.1)
clarify 46.8 (29.0) 60.6 (46.2)  46.8 (29.0)
explain 40.7 (31.0) 424 (32.4)  41.3 (31.8)
instruct 414 (29.4) 37.2 (27.1) 37.7 (27.6)
query-w 36.6 (26.4) 34.6 (24.3) 32.3 (22.2)
query-yn 20.5 (16.6) 19.3 (15.6) 19.0 (15.3)
ready 4.0 (3.5) 2.6 (2.5) 3.0 (3.0)
reply-n 7.5 (6.1) 3.0 (3.1) 3.8 (3.8)
reply-w 24.0 (24.4) 32.3 (34.6)  25.0 (25.4)
reply-y 7.0 (4.9) 4.6 (3.8) 5.1 (4.1)

Italic figures in parentheses are the mean figures for held-out experiments — that
is, the figures actually used to select amongst the models. These figures are for
models using a set 5 vocabulary and are computed from the mean entropy over 3
held out portions of the training set. Bold figures indicate the models selected.

Table 4.5: Perplexity of general and move-specific models over the test set.
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In table 4.5, we see that the perplexities vary widely between move types. The
move type-specific language model perplexities are sometimes much higher (worse)

by 1S

than those for the general model. This is the case for “align”,“clarify” and “reply-
w” in particular. I presume this is because of insufficient training data for these
types. Furthermore, the smoothed language models do not always have lower

perplexity than the corresponding unsmoothed ones. The EM method described

in section 4.3.2 only guarantees not to increase perplexity on the training set.

We can now select one of three language models for each move type: the general
model, the unsmoothed move type-specific model or the smoothed model. The
choice is based on perplexity on a held-out portion of the training data, and the
general model was chosen for “clarify”, “explain” and “reply-w”, the unsmoothed
models for “instruct”, “ready”, “reply-n” and “reply-y”, and the smoothed models
for the other move types. We call the resulting model composed of these move
type-specific models the “best choice” model. The figures in table 4.5 would

suggest the same decision, based on the test set.

e Results
Model test set perplexity
general (baseline) 23.6
original move type-specific 22.1
smoothed move type-specific 21.5
best choice move type-specific 21.0

Table 4.6: Language model perplexities

By combining the perplexities of the move type-specific LMs (by computing the
overall mean entropy on test data), we can estimate the perplexity of the new

language model which consists of move type-specific sub-models.

Table 4.6 shows those results. The baseline system is the general purpose
LLM; the original move type-specific model consists of the unsmoothed move type-

specific LMs; the smoothed move type-specific LM uses only interpolated L.Ms;
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Language model Log probability
acknowledge -1026.4
clarify -996.8
instruct -906.9
query-yn -989.0
reply-n -1863.7
reply-y -1574.8
align -987.0
check -1019.8
explain -996.8
query-w -992.8
ready -1750.5
reply-w -996.8
general -996.8

Correct transcription: “Go approxzimately one inch to the left of the telephone
booth.” Correct move type is instruct.

Figure 4.4: Language model component of recogniser output log probability for
an example utterance according to various language models

the “best choice” model is as described above. Again, perplexities are quoted for

the test set.

There has been a sufficient perplexity reduction (especially for the best choice
model) to expect improved word accuracy speech recognition. Of course, the
perplexities above assume 100% move type classification, and this will not be the
case in a fully automatic system where we will choose the LM corresponding to

the recognised move type.

o Parameters

In the 12 backed-off move type-specific language models there are a total of around
50 000 parameters'?, compared to around 10 000 in the general model (page 42),
and a total of 9.7 million (12 x 900%) bigram probabilities.

1241k bigrams plus 9k unigrams
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o Example

To illustrate the move type classification power of the move type-specific language
models, figure 4.4 shows an utterance and its log probability according to the
various language models which make up the best choice model, plus the general
model. Note the the log probabilities shown are the language model component of
the recogniser output, in other words, they are for slightly differing word sequences
— see table 7.3 on page 145 for the corresponding word sequences. The example
utterance in table 4.4 is of type instruct and it can be seen (in bold) that the

instruct language model assigns the highest probability to the utterance.

o The chosen model

The “best choice” model from above has the lowest perplexity on held-out data
— in particular, its perplexity was lower then that of the “general” model — so it
was chosen as the model for the integrated system. Experiments using this model

in the system are described in chapter 7.



Chapter 5

Intonation

5.1 Introduction

In section 2.1 T introduced the concept of categorising utterances by type as a way
of using constraints at and across the utterance level in speech recognition. These
constraints could include intonation, and I proposed that one effective way to use
intonation was as an indicator of utterance type. Durational information (whether
of segments or phrases) could also be used, particularly in relation to boundary

detection. Here I will briefly review uses of both intonation and duration.

The use of intonational information to aid speech recognition assumes some
relationship between intonation and syntax or semantics. I describe some aspects
of this relationship, and some of the attempts to use intonation in relation to
structure (syntax) and content (semantics). First, some examples of these re-
lationships are given, and some of the frameworks for describing intonation are

outlined.

o A note regarding the work in this chapter

The work using Taylor and Wright’s intonation recognition system (Wright &
Taylor, 1997), was carried out by Taylor and Wright and not by myself - the

82
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division of labour was described in the introduction on page 9. Furthermore,
much of the other content of this chapter is adapted from Taylor, King, Isard
and Wright (1998,pending). The intonation recognition provides input to the

integrated system, and contributes to utterance type classification.

5.2 Review

5.2.1 Frameworks

Some sort of framework for describing intonation is required before we can attempt
to model 1t. Normally, accounts of intonation attribute meaning to either entire
contours (Sag & Liberman, 1975; O’Connor & Arnold, 1961; O’Connor & Arnold,
1973) or to types of accent, sometimes with rules for composing intonational
meaning from accent combinations, for example (Pierrehumbert & Hirschberg,

1990).

For automatic processing, accent detection and contour classification can be
done in two stages. This means that the intermediate description is in terms of
accents and boundaries. I will concentrate on schemes which compose intona-
tion contours from such elements. The differences between systems are either in
the categorisation systems for these accents and boundaries, or in the model for

composing intonation contours using them, or both.

Duration effects can be at the segmental level (often referred to as micro-
prosody) or at syllable or phrase levels. Only a brief review of the use of duration
is given here, since the system of Taylor and Wright discards most timing in-
formation (such as the time between accents, although accent duration itself is

used).
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e Accent and boundary descriptions

At a local level, description of pitch accents and boundary tones can be either
symbolic or parametric. That is, there can be a finite set of possible accent

shapes, or a continuously variable space.

o ToBI

ToBI (Silverman et al., 1992; Beckman & Ayers, 1994) is a symbolic description
scheme with a fixed set of accent and boundary tone labels. Each label describes
a different shape of accent. The distribution of ToBI symbols in real data is very
uneven, and this means that, despite the number of possible accent labels, the
ToBI scheme does not result in particularly descriptive labellings. The following

is taken from (Taylor et al., 1998 pending):

In a study on ToBI labelling (Pitrelli et al., 1994), labellers agreed
on pitch accent presence or absence 80% of the time, while agreement
on the category of the accent was just 64% and this figure was only
achieved by first collapsing some of the main categories (e.g. H* with
L+H*). Second, the distribution of pitch accent types is often ex-
tremely uneven. In a portion of the Boston Radio news corpus which
has been labelled with ToBI, 79% of the accents are of type H*, 15%
are L*+H and other classes are spread over the remaining 6%. From
an information theoretic point of view, such a classification isn’t very
useful because virtually everything belongs to one class, and there-
fore very little information is given by accent identity. Furthermore,
not all H* accents have the same linguistic function, and so there
are intonational distinctions that are missed by only using a single
broad category. Finally, recognition systems which have attempted

to automatically label intonation usually do much better at the ac-
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cent detection task than at classifying the accents (Ross & Ostendorf
(1995), for example).

o  Rise-fall-connection analysis and tilt parameterisation

In contrast to ToBI, Taylor’s rise-fall-connection (RFC) analysis of intonation
contours (Taylor, 1992; Taylor, 1993; Taylor, 1994) is parametric. RFC analysis
begins by locating rises and falls in a smoothed Fy contour. Piecewise quadratic
curves are fitted to each rise or fall. These curves can be described by their rise and
fall durations and rise and fall amplitudes. These are the RFC parameters. From
the RFC parameters, Taylor’s tilt parameters are computed for each intonational
event, these are: tilt; Fy amplitude; duration and start Fy. Tilt is a quantitative
description of the accent shape, and ranges continuously from 1 for a pure rise,
through 0 for a rise-fall to -1 for a pure fall. The events are located in a separate
procedure which is independent of the tilt analysis. This can be done with neural
networks or HMMs, for example. For the purposes of event detection, there is
only one category of accent and one boundary tone. Additional symbols are used
for cooccurring accent and boundary tone, and connecting elements. This system

is discussed further in section 5.3.

o Targets

Accent and boundary description schemes are implicitly idealised — the canonical
forms represented by the symbols are never perfectly realised. In a target scheme,
this idealisation 1s made explicit: Fy is described by targets which it approaches

but never achieves.

Campbell (1994) compares Taylor’s RFC model with a target-based model;
both are used in combination with a segmental duration model. He concludes

that neither model (of Fp) contributes much to automatic annotation of ToBI
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labels, and that simple Fy features, such as the local average Fy and the Fj change
across syllables, can do just as well.! However, Campbell’s results are reported as
percentage of correctly detected accents, and although this figure is higher using
only raw Fy features rather than one of the models, the number of false accent
detections is also higher. Campbell notes that the more sophisticated models tend
to use too much detail — for example, too many accent labels are assigned by the
RFC analysis. This reduces the chance of generalisation from training to testing

data, since there are too many unique training label sequences.

e Contours composed of intonational events

All of the theories considered here are of the same type: they describe intonation
as an idealised sequence of events. The events are typically pitch accents and
boundary tones, although there is no real restriction on the type of events that

can be generated by such finite state models.

None of the models proposed is directly useful in recognition of intonation
because they are not stochastic and therefore have no parameters which can be
trained from data. However, a simple extension, adding probabilities of transi-
tions and observations, results in a Markov model which is trainable from data.
Extending the description to a Markov model does not impose any further re-
strictions of the type of the events. If each state in the model is then allowed to
generate any of the symbols, we get a Hidden Markov Model (HMM) in which

there are many ways of generating a given observation sequence (accent sequence).

Figure 5.1a shows Pierrehumbert’s intonational grammar (Pierrehumbert, 1980).
This can be rewritten as figure 5.1b in which symbols (intonational events) are
emitted from states rather than arcs. A self transition on the second state allows

more than one pitch accent to be generated. Figure 5.1c shows Ladd’s (1996)

The Tilt and ToBI systems are quite different, so it is perhaps not surprising that tilt
parameters are no better for automatic ToBI labelling than other parameterisations.
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H- H%
<: L- ><: L°/:>

(b) O = =0 =0
boundary pitch phrase boundary
tone accent tone tone
O =0 =0 =0 =0
boundary pre-nuclear nuclear phrase boundary
tone pitch pitch tone tone
accent accent

(d)

O =0 =0 =0

pre-head head nucleus tail
Figure 5.1: Finite state models of intonation structure, from (Taylor et al.,

1998,pending)

amended version of Pierrehumbert’s model. The traditional description of British

English intonation contours is shown in figure 5.1d.

o Modelling the British School scheme

The Fy contour in each segment is described as one of a finite set of patterns;
there are 15 patterns in the 1961 O’Connor & Arnold scheme (1961). Jensen
et al. (1993) modelled the stylised patterns of O’Connor and Arnold using HMMs,
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omitting the four symbols for minor events. The data used was a small set of
sentences recorded by a single speaker?. In a transcription task, 67% accuracy
was achieved (accuracy accounts for false insertions) which is a usable recognition

rate, but speaker dependent.

e Global contour descriptions

Descriptions of intonation can be of entire contours, or intonational funes as in

(Sag & Liberman, 1975), where the tunes are used to disambiguate speech acts.

e Syllable level

Isolated pitch contour patterns have been modelled using HMMs (Ljolje & Fall-
side, 1987b; Ljolje & Fallside, 1987a). Monosyllabic words were recorded with
one of four simple pitch patterns: rise, fall, rise-fall, fall-rise. HMMs were then
trained to recognise these patterns using four parameters: Fy, Energy and their
first derivatives. Accuracy was 93%, but these patterns were very simple, and
isolated (so the task was classification, not recognition). Associating intonation
patterns with syllables means that, for automatic intonation recognition, a seg-

mentation of the signal is required, as in (Strom et al., 1997), for example.

o Segmental level

At the segmental level, the use of intonation is limited because intonational events
are generally associated with whole syllables or longer units. However, Iy clearly
has some consistent effects on segment properties which can be exploited.

On the other hand, duration information can be extracted at the segment

level. The durations of segments within a syllable are governed by some rules, see

(Campbell & Isard, 1991) for example, and syllable durations and timing reflect

?This is not realistic data, because the speaker could produce the desired contours on demand.
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global utterance properties such as speech rate. In short, prosodic effects at the

utterance level are reflected in segment durations.

o Pitch

Bartkova (1997) uses both segment duration and pitch movement in a word spot-
ting system to evaluate the likelihood of recogniser output. Keywords are likely to
occur in a stressed position at a prosodic boundary, and therefore Fjy information
can be used to assess the hypotheses output by a keyword spotter. Unfortunately,
the word spotting application is not an ideal candidate for this technique since
only isolated words are available to the prosodic rescoring algorithm (the remain-

ing speech having been classified as non-keyword by the recogniser and therefore

discarded).

o FEnergy

Accents can be detected without using Fy. Kondo (1995) uses accent dependent
models for connected digit recognition. The grammar is modified to constrain
allowable sequences of accented/non-accented digits and improvements in recog-
nition accuracy were obtained. Fy was not used as a parameter in this work, with

accents being distinguished using energy alone.

5.2.2 Relation to structure

Intonation gives cues to the structure of utterances, and their relationship to one
another. That is, intonation carries information about both the content of the

current utterance, and its role in, say, a dialogue.
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e Syntax

Intonation and prosody clearly relate to syntax, since in spoken language all cues
to structure must be signalled acoustically. Furthermore, since spoken language
is rarely “grammatical”, these cues to structure are crucial to the listener for

disambiguation and rapid processing.

o Word boundaries

In spontaneous speech, where word boundaries are generally not marked with
pauses, there are durational and intonational cues instead. Muteanu et al. (1997)
use Fp, energy and duration of pitch events to recognise and classify such bound-
aries. In this system, high reliability is preferred over high detection rate, and
around half of the boundaries are correctly identified. These boundaries are in-
tended as anchor points for speech recognition and higher level processing — a

similar idea to the division of speech into utterances.

o Syntactic boundaries

To date, the use of duration and intonation in connection with syntax has been
to select between alternative parses of a single word string rather than between
alternative word string hypotheses. Strangert (1997) shows that prosody is used
to signal boundaries. Dogil et al. (1997) discuss the relationship between prosody
and discourse structure, concluding that those intonational boundaries which are
significant in the discourse are more strongly marked than those which are not.
This leads to the possibility of segmenting discourse into smaller sections, as
discussed in Warnke et al. (1997); this was considered in more depth in section

1.2.2.

So, pause information is useful in speech recognition for breaking the input

into smaller chunks for faster processing, better language modelling (see chapter
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4) and integration of longer term constraints (see section 2.1). These chunks bear
some relation to syntactic units, which may be helpful in later parsing or language
modelling. Takagi & Itahashi (1995) divide the input spontaneous speech into
utterances using silence detection, and then use language models for utterances,
with “pause” as a pseudo-word. The recognition rate (quoted only for content

words) increases using these two techniques.

We have seen that spontaneous speech has natural breaks, allowing division
into smaller units (the definition of these units was considered in section 4.6.1).
These units are a convenient size for both modelling and processing; reliable iden-

tification of pauses provides anchor points for speech decoding.

o Analysis by synthesis models

A significant problem in training models of prosody, and indeed of syntax, is the
generation of sufficient training data. Typically, hand labelled data is used, but
this is expensive. Hunt (1993; 1996) presents prosody-syntax models which can be
trained without the need for prosodically labelled data, although correct syntactic

trees are required for each training utterance.

Hunt’s prosody-syntax models derive from those of Veilleux et al (Veilleux
& Ostendorf, 1992; Ostendorf et al., 1993) which have the form of two prosodic
label generators (decision trees, for example). One generates (a probabilistic dis-
tribution of) prosodic labels from acoustic features, and the other from syntax.
A comparison of the two prosodic descriptions indicates the likelihood that the
syntactic parse used was correct. The prosodic description system is based on a
discrete set of break indices. Data labelled using this system is required to train

the two generators.

Hunt’s models are different in that they use a scalar prosodic representation

for the comparison. Two versions of this description are generated, one from
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syntax, the other from the acoustic signal, and they are compared as before. Hunt
demonstrates that models can be trained without explicit prosodic labels, and the
scalar intermediate representation is then learned by the model. In other words,
rather than use prosodically labelled data to specify the intermediate description,

this description can be learned by the model itself

A high correlation is shown between the syntactic representation and low
level acoustic features and thus high accuracy in resolving syntactic ambiguity
is achieved using those acoustic features. The acoustic features used include num-
bers of syllables in words, pause durations, and features of the pre-boundary
syllable such as number of phonemes, nucleus duration, energy measures and so
on. These all require a phonetic transcription, and for training this is obtained

by forced alignment recognition.
e Dialogue

Intonational cues to dialogue structure are part of a mechanism for controlling con-
versational interaction between two people. Speakers can indicate regions where
the listener should pay attention, perhaps because new information is being given;
intonational cues are given to indicate phrasing or breaks. In a dialogue situa-
tion, these cues may signal that the speaker either wishes to continue, or wishes to
hand over to the other person. The perceived relationship between intonational
markers (pitch accents and boundary tones) and information structure has been

shown, for example by van Donzel & Koopmans-van Beinum (1997).

Buder & Eriksson (1997) claim that the the rhythms of conversational speech
are carried across turn boundaries. That is, the two speakers somehow “fit” their
speech together; they also claim that the effect is present in all languages. The
timing of these rhythms are controlled in part by the need to breathe (breath

phrases) and partly by some social constraints.

The relationship between intonation and dialogue structure is also of interest
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in speech synthesis (Black & Campbell, 1995; Bruce et al., 1995; Hirschberg et al.,
1995).

5.2.3 Relation to content

° Word level

The information content of words is reflected in their intonation. In particular,
focus is often marked by pitch events — (Elsner, 1997), for example. Typically,
new information is more intonationally marked, and more clearly spoken, than

already given information.

° Utterance level

This is the area of focus for our work: the use of intonation information at the
utterance level. Utterances can be classified by content and function, as discussed

in section 2.2. Without knowing the words, intonation is a major cue to utterance
type.

The signalling of utterance type by both global properties of Fy and local
terminal pitch rises is examined in (van Heuven et al., 1997). Examples of state-
ments and 3 types of question (yes-no, wh- and declarative) were automatically
classified. The yes-no and declarative questions were found to be the two most

confusible types.

o Dialogue role

Kowtko (1996) has shown that intonation carries some, if not sufficient, cues, to
the type (as defined on page 22) of Map Task utterances. Kowtko’s thesis at-
tempted to describe the function of intonation in task oriented dialogue. The
foundation of this work was the theory of Conversational Games (Kowtko et al.,

1993). The findings from (Kowtko, 1996) lead us to believe that there are sufficient
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acoustic cues to utterance type to allow automatic classification of utterances into
types using the acoustic signal. Furthermore, it was also clear from Kowtko’s work
that the relationship between intonation and utterance type is not a straightfor-
ward mapping, and that dialogue context plays an important role. In other words,
an utterance’s role in the dialogue can be signalled by intonation, but the intona-
tional pattern used depends on the dialogue context. Since Fy is straightforward
to extract®, and process into a usable form (as shown in chapter 5), intonation

seems to be an ideal candidate cue to utterance type.

A more comprehensive modelling of pitch events has been performed by Wright
and Taylor (1997) where hidden Markov models (HMMs) are used to model se-
quences of pitch accents and boundary tones. A HMM is constructed for each
of 12 types of utterance and trained on spontaneous speech data from a dialogue
context. Classification accuracies of over 60% are reported when used in conjunc-
tion with an N-gram utterance type sequence model (around 40% accuracy for

isolated utterances). This model is discussed further in section 5.3.

5.2.4 Using prosody and intonation for speech recognition

As already mentioned, prosody and intonation provide extra information which
we can utilise in speech recognition. But what do prosody and intonation do for
speech recognition — for human listeners as well as machines? Hess et al. (1996)
provide a useful review, in which they claim that they do two things for us:
they disambiguate and constrain. In the speech recognition—as—search paradigm
I introduced earlier, these amount to the same thing. In automatic recognition
systems, the sheer number of sentence possibilities is a major problem. Additional
constraints reduce the size of the search space leading to faster and better solu-
tions. At many levels, from the segmental to semantic, intonation and prosody

distinguish between ambiguities.

3We are using high quality and relatively clean speech.



5.2. REVIEW 95

o Segmental level: segment duration is a distinguishing feature

o Word level: lexical stress differentiates, for example, the noun and verb

forms of “permit”, “construct” and “segment”.

e Phrase level: intonation puts in the “punctuation marks” which provides

syntactic constraints

e Sentence level: modality is often intonationally marked. Modality constrains

syntax

e Discourse level: Topic changes and new words are signalled by intonational

marking — for example (Wichmann et al., 1997).

o higher levels: for example, the speaker’s mood.

Prosodic and intonational information can be used in the speech recognition
process in one of two ways: two passes or an integrated method. Typical two-
pass approaches are to use prosody and/or intonation to segment the speech or
mark prosodic phrase boundaries prior to recognition, and to use intonation in a
rescoring pass after speech recognition. In an integrated approach, Fy and speech
recognition are used simultaneously to obtain some combination of word sequence,

syntactic or prosodic phrasing and intonational description.

e Two-pass approaches

Hirose et al. (1994) propose two schemes for using Fy information to improve
speech recognition. Their first method is to find syntactic boundaries using only
Fy and energy, although in this they only go as far as detecting the boundaries
and do not apply this to actual word error rate reduction. The method is basically
a rule-based analysis of macro- and microscopic features of Fy. The pitch contour

is segmented at dips (minima) in the energy contour, and rules are applied to
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generate candidate syntactic boundaries at dips in Fy. A number of thresholds
are used in the rules, and these can be adjusted to control insertion errors (a
problem typical of automatic accent or boundary detection). The system detects
just over 80% of syntactic boundaries with an insertion rate of 30%. The second
method in (Hirose et al., 1994) involves analysis by synthesis to choose amongst
sentence hypotheses. Candidate word string hypotheses are used to generate Fj
contours. Contours are only produced for the parts of hypotheses where there
is ambiguity (about the words). The sentence hypothesis whose synthesised Fj
contour most closely matches the real contour is selected. In (Hirose & Sakurai,
1996), the Iy contour is smoothed to eliminate microprosodic effects, and speaker

adaptation of the I generating model 1s used.

A common observation in speech recognition is that longer utterances are
more likely to be incorrectly transcribed, and they also require more CPU time
and memory to process. Vereeken el al. (1997) propose that chopping utter-
ances into smaller prosodic phrases prior to recognition would therefore increase
the subsequent accuracy. The basis for finding these prosodic phrases is based
on a syllabification of the speech followed by finding silences longer than 150ms,
breaths, clicks and other background noises. Small reductions in phonetic recog-

nition error rate are reported.

e Integrated approaches

The interface between the speech recognition component and “higher” compo-
nents such as the parser, semantic interpreter and so on, is quite important. Asin
all fields of pattern recognition, such interfaces started off as what I will call “hard
decision” and have moved to “soft” or probabilistic ones. For speech recognition
this means moving away from simply passing the most likely word sequence out
of the recogniser, to giving either an ordered (and possibly scored) list of alterna-

tives, or a lattice — see figure 5.2 on page 97 — which efficiently represents various
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alternatives. So-called “phonetic typewriters” attempt to recognise the phone se-
quence, which can then be decoded into a word sequence (Kohonen et al., 1988;
Jitsuhiro et al., 1995), but it is now widely accepted that this is not the best
approach. The recognition of segments and their decoding into words must be
integrated. The main advantage claimed for the phonetic typewriter approach
is that the recogniser is “vocabulary free” — that is, there is no lexicon or word
string language model. Unfortunately, these are the very components which can

significantly improve recognition accuracy.

how B

tha )
T

Figure 5.2: A lattice representation of word string hypotheses

Integrating prosodic or intonational information into speech recognition should
therefore be in a probabilistic framework, which means that the “score” assigned
by the model of prosody or intonation should be combined with the acoustic and
linguistic “scores” as a product of probabilities (or, more likely, as a sum of log
probabilities), rather than be used as some threshold in a decision rule. Of course,
the models will not actually estimate true probabilities, but this does not matter;

this is explained in the description of the practical solution on page 135.



5.2. REVIEW 98

o Use of microprosody

Dumouchel and O’Shaughnessy (1993) describe the use of segmental prosody in a
large vocabulary recogniser. The use of Fy, intensity and duration in this system
is purely at the segmental level. All other things (such as intonational context)
being equal, low vowels tend to have low Fp, and high vowels tend to have higher
Fo. Open vowels are more intense (have more energy) than close vowels. These
effects are modelled as normal distributions and used to assign probabilities to
sentence hypotheses via a (weighted) product of acoustic, language model and
prosodic probabilities. This method of integration into a speech recogniser has a
solid theoretical (Bayesian) foundation. Only a small improvement was reported
(3% increase in recognition rate, although the absolute rate was not given, and it is
not stated whether this figure is relative or absolute). Clearly, this use of prosody
is very limited; nothing is made of effects spanning more than one segment (a

phone or diphone in this case).

5.2.5 Summary

In conclusion, because intonation is such a complex phenomenon, and relates to
many things — from segment type to the speaker’s mood — the best way to inte-
grate intonation with speech recognition is for utterance type identification. This
conclusion is supported by the literature, including analysis-synthesis methods
such as those in (Campbell, 1994) where the intonation contour is treated as a
property of an utterance rather than of individual syllables. This approach has
the further advantage that intonation modelling is independent of the segments
in the speech, and therefore does not require speech recognition. I will show

that this approach is effective using the experimental system in chapter 7.



5.3. AUTOMATIC INTONATION RECOGNITION 99

5.3 Automatic intonation recognition

5.3.1 Introduction

This thesis presents a novel method for using intonation and other information
for automatic recognition of spontaneous dialogue speech. Speech recognition is
treated as a search problem, to find a solution satisfying a set of constraints. These
constraints are combined in a weighted probabilistic fashion, and therefore this
method requires a probabilistic model of intonation that estimates the probability

that an unknown utterance is of each of a set of utterance types.

Here T describe an automatic intonation recognition system developed by Tay-
lor and Wright and described in (Taylor, 1993; Wright & Taylor, 1997). The
system estimates the probability of an utterance being of a particular type in
an entirely bottom-up fashion from the speech signal. It consists of two distinct
processes: in the first, pitch accents and boundary tones are first found and then
given parametric descriptions; in the second, these pitch accent and boundary
tone (collectively known as intonational events) descriptions are modelled, and
probabilities of move types are computed. These two processes are called event

labelling and intonational tune modelling.

5.3.2 Event labeller

In section 5.2.1, intonational event description schemes were divided into two
categories: symbolic and parametric. Taylor’s tilt (Taylor, 1998) scheme is one of
the latter. The method for event labelling consists of two components: an event

detector, and subsequent parameterisation.
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e Detection

For the purposes of intonational event detection, there is only one class of pitch
accent (a), and one boundary tone (b). Further symbols are required for accent
and boundary tone together (ab), connections between them (c) and silence (sil).

The Fy contour is heavily smoothed before accent detection.

Taylor’s most recent system (Wright & Taylor, 1997; Taylor et al., 1998, pend-
ing) uses Hidden Markov Models (HMMs). One model is trained for each of the
symbols above. The state observations are Fj, energy and their first and second
derivatives. Assessing the performance of such systems is problematic. Not only
must events be reliably detected, insertion of spurious events must be minimised
and the events must be in the right places. The system described in (Taylor
et al., 1998,pending) was assessed by computing the overlap between detected
events and hand labelled ones. 74% of events overlapped by 50% or more. How-
ever, if minor events are ignored, this figure is 86%. Unfortunately, there are a
significant number of insertions, making the accuracy only 32%. This may not
be as bad as the figures suggest, because most inserted events will be minor ones.
This will be represented in the subsequent parameterisation. Since the models
of utterance type intonation contours are trained on the output of the automatic
event detector, these inserted events may not degrade performance much. This
is because the rate of minor event insertions is similar for all utterance types, so

these events will not be used by the intonational tune models.

e Parameterisation

The event recogniser produces a sequence of labels and their start and end times.
Each event so labelled is then parameterised using the Tilt intonation theory
(Taylor, 1998). Thus each event is represented by 4 parameters: tilt; Fy amplitude;

duration and start Fy. These parameters form the input to the second process —
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they are the observations from the utterance type intonation contour models.

5.3.3 Intonational tune to utterance type

Models of the intonational tune (that is, the event sequence output by the event
detector) for each utterance type are used to compute the probability of each
utterance being each of the types (Wright & Taylor, 1997). Both training and
testing data has been pre-segmented into utterances. These utterance type in-
tonation contour models generate sequences of parameterised events in the same
way that models of phonemes for speech recognition generate spectral descrip-
tions of the speech signal. As in speech recognition, HMMs are used. One HMM
is trained for each utterance type (for example, the 12 move types of the Map
Task). The observation vectors of the HMMs consist of the 4 parameters listed
above. Models for all utterance types have 3 states. The precise placement of the
events in time is discarded, but their chronological order is retained. Because the
space of possible intonational tunes is infinite, the HMMs compute only relative
log likelihoods of the utterance types. However, the likelihoods computed by the
intonational utterance type classifier will become part of a weighted sum in the
log domain in the move type sequence classifier described in chapter 2 anyway,
so normalisation is unnecessary. Referring to equation 7.8, the intonational ut-
terance type classifier computes L!. Results of utterance type classification using
this system based on intonation alone are given on page 141, and as part of the

whole system in table 7.1 on page 141.



Chapter 6

Dialogue

6.1 Introduction

Having decided that automatic classification of utterances into types is the goal,
and that dialogue-motivated types should be used to allow dialogue context con-
straints to be imposed, I now consider dialogues, in theory and practice. The
purpose of this chapter is to produce a dialogue model which will be a constraint

for automatic classification of utterances into types.

o  Organisation of this chapter

I will start by outlining some of the situations in which dialogues arise. I then
consider modelling spoken dialogues;such models can be used as constraints for ut-
terance type classification, and consequently for speech recognition. A selection of
theoretical frameworks from the literature for analysing dialogues are considered,
and I summarise Power’s theory of conversational games. 1 then show how part
of this theory can be used for statistically modelling dialogues. Then, I describe
the database chosen for experimental work (for speech recognition and language
modelling, as well as dialogue modelling), and go on to describe the building of
dialogue models using this data. Results are given for a selection of models, and

the best model is taken forward into chapter 7 where it is used in the system to

102
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improve speech recognition accuracy.

° Task

For automatic recognition of read text, the only applications are dictation or com-
mand and control. In the case of dialogue speech, several tasks can be defined,
depending on whether the computer is an active participant or passive “over-
hearer”, and what the relationship between the participants is. As we saw in the
introduction, goal oriented dialogues are of particular interest, for applications
such as information retrieval, co-operative planning (TRAINS, for example), and

clarification dialogues in machine translation systems (such as Verbmobil).

o Giver/follower tasks

Typically, goal-oriented dialogues involve two participants. One of the partici-
pants tends to give instructions, the other to follow them. Even in co-operative,
mixed-initiative dialogues, one participant has overall control, or “the last word”

we might say. In the TRAINS system, the human operator has ultimate control.

The Map Task (Anderson et al., 1991; Bard et al., 1995) dialogues are mixed-
initiative, goal oriented dialogues, but with a marked contrast between the two
participants — the giwer and the follower. The instruction giver generally has
control of the dialogue, and initiates “sub-dialogues” to achieve sub-goals. On
page 112, I will introduce the theory of conversational games which can be used

to analyze such dialogues.

In the human-computer interaction scenario, the computer could be either
one of the active participants, or a passive “overhearer”. If the computer were
the giver, the task might be an automatic route planning service in which the
user is being instructed in the best route by the system. An application in which

the computer is the follower might be the TRAINS system. An example of the
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overhearer task is Verbmobil. So, all these variants have real world applications,
and since they are closely related, I will address the “overhearer” problem since it
is the most general and involves recognition of both giver and follower, therefore
including both variants of the participant task. Should the computer be a partic-
ipant in the dialogue, it will always know with 100% accuracy what it said, and
what its intention was; therefore this task is easier than the overhearing one. Also,
as mentioned on page 105, there are problems with collecting data for training and
testing human-machine systems which are can be avoided by using human-human

dialogues.

o Information transfer tasks

One of the most common uses for human computer interfaces is the accessing of
information, typically from a database stored on, and searched by, the computer.
A dialogue is a good way to elicit requirements from users, avoiding the need for
them to formulate database queries (typically in a specialised language) them-
selves. The information transfer then is in fact two way - the computer asking the
user questions in order to refine a query, and the user getting information from

the database.

An early example of this application was the Resource Management task -
a very constrained task involving simple requests for information about naval
resources. Although this is really a command and control task rather than a two-
way dialogue, the intended application was a hands-free information management
system. The vocabulary, and indeed grammar, was fixed and the speech used was

read text. This task proved very popular as a benchmark — see section 3.2.2.
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A more realistic example of a goal oriented dialogue might be:

“Do you have any information about Edinburgh ?”

“Is that Edinburgh, Scotland 27

“Yes, it is.”

“I have information about hotels, festivals and the castle.”
“Tell me more about hotels.”

“What type of hotels ¢”
“What types are there 7”
and so on ....

The query is resolved through an interaction with the computer. Without this
interaction, the system would simply have to display all available information in
response to every query, which will often mean presenting large amounts of data
— as anyone who has ever searched the World Wide Web will know. Refining the
query through a goal oriented dialogue is an efficient way to resolve the particular

query that the user is making.

¢ Human-human dialogues

Although the task of recognising both halves of human-human dialogues was cho-
sen for practical reasons, there clearly are applications for the recognition of dia-
logues between two people. One application can be found in Verbmobil (Wahlster,
1993) where the system is required to follow the dialogue between two participants,
in order to build a model of the dialogue and provide contextual information for

possible translation requests.

Since people are better at speech recognition and understanding than ma-
chines, human-to-human speech is generally more difficult for speech recognisers
because the language is less restricted, pronunciation is less precise, speech is
‘sloppy’” and so on. It has been observed that when people talk to machines, their
speech is somewhat different from that used between two people; to quote Eckert

et al. (1995), “real users behave weird”! If we wish to investigate the use of dia-
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logue structure and the other constraints outlined in the introduction on page 6,
we need to collect data — and find ourselves in something of a Catch 22 situation:
we cannot collect realistic human-machine dialogues without an automatic speech
recogniser and dialogue system! Of course, this is not quite true, as we could
simulate such dialogues using a Wizard of Oz arrangement. It seems easier to use
human-human dialogues since there will be two channels of spontaneous dialogue

speech plus data for dialogue modelling.

¢ Manipulating the dialogue

The constraints placed on an utterance by the preceding dialogue can be manip-
ulated. That is, utterances can be designed to elicit particular responses. For
example, questions can be phrased in such a way as to restrict the possible range
of responses, and therefore those responses will be easier to recognise. This even
gives an advantage when the response is outside the set of expected ones, since

such responses will typically be intonationally marked as “non-default”.

o Questions and answers

The most obvious place where the respondent’s utterance can be controlled, in
type, word content and intonational marking, is when asking questions. Let us
assume the machine is asking the question, and a human is responding. For
an example, we will use the Map Task: one participant needs to determine the
presence of some feature on the other participant’s map. Here are three ways of

asking the question:

1. “What do you have below the cottage?”
2. “Do you have a meadow below the cottage?”

3. “You've got a meadow below the cottage, haven’t you?”
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The wh-question in question 1 above will elicit a wider range of responses
than the other two forms. Question 2 is a yes/no-question, and therefore restricts
the expected range of responses to “Yes” and “No” type answers. 3 gives an
alternative yes/no-question which will elicit the same range of responses as 2,
but more intonationally differentiated: if the answer is negative, then we would
expect strong intonational marking since the default answer (that is, the most
predictable one) is affirmative. Here are some corresponding responses which

might be expected:

1. “I have a lake there.”
2. “No, I don’t.”

3. “No, I don’t.”

and here are some unexpected, but not impossible, ones:

1. “What cottage?”
2. “I have a lake there.”

3. “I have a meadow below the old mine.”

where bold words are intonationally marked. From the above examples, we can
see that both the vocabulary and syntax of the response are affected by the type
of question. In speech recognition terms, we combine vocabulary (words used,
and their frequencies) and syntax into the language model. So we can say that
the language models for responses to various types of question will be different.
This was explored in section 4.6. See section 2.4.3 for more about the effect of the
preceding utterance on syntax. Dialogue manipulation in Verbmobil (Wahlster,

1993) is described on page 17.
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o Instructions

Frequently, instructions are phrased as questions, in order to force a response. This
keeps the dialogue “flowing” and allows the instructor to efficiently check that the
instruction has been understood, and obeyed. For example, simply giving the

instruction:
“Cross the river.”

does not require a response, and may lead to confusion about whether the instruc-
tion was understood, or who now has initiative in the dialogue. Rephrasing the

instruction as:
“Can you cross the river?”
forces a response, such as:

“No, I can’t.”

Participants in spoken dialogues use these techniques to ensure that they remain
“in sync” with the other participant, that initiative handover is clearly signalled
and so on. Any model of dialogue must allow for this, and not be too rigid about
expecting simple question-answer or instruct-acknowledge sequences. T will now

consider modelling dialogues, taking this into account.
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6.2 Dialogue modelling

6.2.1 Introduction

As we saw earlier, one situation where speech recognition might be useful is the
interaction between human and machine in dialogue form. Therefore, since we
know that the speech we are trying to recognise is part of a dialogue, we can
bring extra constraints to bear, and as in all speech recognition situations, the

more constrained the task, the easier it will be.

In chapter 2, constraints were introduced at the utterance level, in terms of
utterance type. Therefore, we now need a model of the dialogue in terms of utter-
ance type. At this level, a dialogue can be seen simply as a sequence of utterances
of various types. This sequence has both local and global structure. If the utter-
ance type set we choose is the move type set of Carletta et al. (Carletta et al.,
1995), then these local constraints are described by the theory of conversational
games (Power, 1979), which I summarise on page 112. The global constraints are
imposed by overall dialogue structure because the dialogues are goal oriented and
not open ended. However, in the framework of conversational games, the local
constraints are stronger than global ones, which is preferable since the limited
number of training dialogues available precludes any chance of modelling global
structure. The form of dialogue model is basically restricted by the method intro-
duced in chapter 2, and this lack of data. Tt is, however, worth reviewing dialogue
modelling in general. As in the field of natural language modelling, there is a
vast array of models in the literature, yet almost none of them lend themselves to
use in automatic recognition systems which rely on the Viterbi algorithm, which
will be used a solution to equation 7.7 on page 135. The main problem with
much of the descriptions of dialogue in the literature is that they are just that —

descriptions rather than models.
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When humans listen to and comprehend speech, they use contextual informa-
tion from many sources. In conversation in particular, the topic and local context
play a vital role. For example, the topic affects the expected distribution of word
frequencies or, more generally speaking, the language model. The local context,
such as the type of preceding utterances, affects the expectation of the current
utterance type. For example, here are some likely and unlikely pairs of successive

utterances (uttered by the same speaker):

Most of the plays are very good. Some of the actors could

likely be better though.

Most of the plays are very good. What did you have for

unlikely dinmer ?

The same applies to pairs of utterances from differing speakers:

Most of the plays are very good.

likely Yes, but some of the actors could be better though.

Most of the plays are very good.

inlikel . .
Y What did you have for dinner ¢

6.2.2 Theoretical frameworks

o Template models

Where the structure of a dialogue is rigid, and known in advance, a simple slot-
filling approach can work well. This would be the case when the computer (in the
case of human-computer interaction) held the initiative and was simply obtaining
information to fill the slots by asking questions. This type of approach is efficient,
but very limited in its ability to cope with unexpected events. Further semantic
interpretation of the dialogue is made easy as the information gathered from the

user is already held in appropriate slots.



6.2. DIALOGUE MODELLING 111

e Finite state models

Bennacef et al. (1995) model dialogue as a sequence of speech acts using finite
state networks (derived from context free grammars). These networks are not
probabilistic. The speech acts are identified through semantic processing of the
word string output from speech recogniser. The dialogue model provides informa-
tion on the current dialogue state to a dialogue manager, but this does not allow

improvement of the word accuracy of the recogniser itself.

e Plan based models

Simple plan-based models work well for short dialogues. A simple dialogue plan
might consist of three phases: a beginning, a middle and an end. These phases of
the dialogue might be called opening, negotiation and closing. The phase of
the dialogue affects the type of utterances. In the opening phase, for example, we
might expect greetings and responses (“Good morning”, “Hello”), in the negotia-
tion phase questions and answers (“Are you free on Monday?”, “No, but Tuesday

is okay”), and in the closing phase, agreement (“See you on Tuesday”).

However, in more protracted dialogues, like those in the Map Task, this model
is too simple. This is because the goal is more complex than the simple example
above. The Map Task goal (of drawing a route on a map) is typically achieved
by participants through a series of simpler sub-goals. Simple plan based models
could be nested, with one for each sub-goal in the dialogue (in the Map Task,
this might be the drawing of one segment of the route). The plan based model
can be extended to cover a variety of canonical sub-dialogues, which Power calls

conversational games. This is the basis of Conversational Game Theory.



6.2. DIALOGUE MODELLING 112

° Conversational Games

Power (1979) introduced Conversational Game Theory as a way of describing and
analysing (spoken) dialogues. In this theory, the dialogue is treated as a sequence
of, possibly nested, games. For example, if A and B are the two participants in

the dialogue:

A “Go across the wooden bridge.”

B “Okay.”
In this case, A is the instruction giver and B the follower. The conversational
game theory analysis of the example would be that it it an Instructing game
containing the two moves “instruct” followed by “acknowledge”. There are 6
types of game (identified by their opening move type) and 12 types of move in the

theory — the 12 move types were introduced in section 2.2 on page 21 for utterance

type classification. The move types reflect the role of utterances in the dialogue.

Here is a slightly more complicated example:

A “Go across the wooden bridge.”

B “I don’t have a wooden bridge.”

A “Do you have a stone bridge?”

B “Yes, I have. Shall I go over the stone bridge?”
A “Yes, do that.”

B “Okay.”
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In this example, there are nested games inside the Instructing game. The conver-

sational game analysis is:

A “Go across the wooden bridge.”
instruct

B “I don’t have a wooden bridge.” Ezxplaining game
explain

A “Do you have a stone bridge?”

query-yn
Query-yn game
B “Yes, I have.” Instructing
game
reply-y

“So shall T go over the stone bridge?”
check

Checking game
A “Yes, do that.”

reply-y

B “Okay.”
acknowledge

Of course, this theoretical example is much simpler than real-life: speakers do not
always take alternating moves; they speak over one another; games (and indeed
moves) are not always completed. The theory of conversational games offers two
useful ideas: games and the moves. The 12 move types in (Kowtko et al., 1993),
as described on page 21, offer an attractive utterance type classification scheme
(discussed on page 21). Modelling games explicitly for use as a dialogue model,
and hence as a constraint for speech recognition, has many problems. These are
due mainly to the differences between theory and real data listed above, but there
is the additional problem that, because games consist of a number of moves, there

will not be a large number of example games in the data from which to estimate
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a model. This was mentioned in section 6.2.1, in which I described the modelling
of dialogues, and the problems associated with doing so from limited amounts of

data.

6.2.3 Practical dialogue modelling

¢ Requirements

Firstly, what are the requirements for the dialogue model? These requirements
are due to the method which will be used to apply dialogue context constraints

to speech recognition; refer to equation 7.7 on page 135.

e probabilistic
e data-driven — model parameters can be estimated from data
o left context only — preceding dialogue used to predict current state

finite state representation

The finite state requirement is imposed for the same reason as for language
modelling in speech recognition — see page 45. An important consideration in
selecting a dialogue model is the amount of data, if any, needed to estimate it.
Models which account for global dialogue structure are likely to need a greater
number of dialogues for reliable estimation than models which only account for
local effects, because (especially in long dialogues, like those in the Map Task)

there are many utterances per dialogue — see table 3.2 on page 39.
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e Models with only local dependency

The frameworks described so far are top-down models of dialogue to varying de-
grees. They describe the structure of the dialogue. Instead of attempting to
model whole dialogues top-down, we can express constraints purely at a local
level. Whilst this will not capture the structure of the entire dialogue, it may
prove more useful and practicable. The definition of “local level” is the key. In
section 4.5.2, the problem of segmenting dialogues into useful “chunks” was con-
sidered. The utterance definition adopted was the move unit of Power’s (Power,
1979) theory of conversational games. Although Power’s description is top-down
(games are composed of moves), the modelling of dialogues as simply sequences
of moves will capture at least some of the structure of these games. That is,
conversational game theory can be approximated by a model of move sequences.
This might be compared to the approximation of SCFG grammars by N-gram
models (see page 57). In other words, a theoretical model which does not fit the

limitations of the algorithm can be approximated by one that does.

o Game move sequence modelling with N-gram models

For modelling sequences of moves, there is only really one choice: N-gram models.
As described in section 4.3, these models condition probabilities on left context
only, and can be represented as finite state networks, thus they are suitable for use
in the Viterbi algorithm. In the case of language models, the left context would
be the immediately preceding N-1 words; here, it may be any events occurring
before the current utterance. 1 will refer to this left context as the predictors. A

variety of predictor combinations are evaluated in section 6.3.3.
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6.3 The DCIEM dialogues

The task chosen for experimental work was the DCIEM Map Task corpus (Bard
et al., 1995), a corpus of of spontaneous task-oriented dialogue speech collected
from Canadian speakers of English. This corpus includes some dialogues recorded
under conditions of sleep deprivation, but only the “normal” condition dialogues

are used for this work.

The DCIEM Map Task (Bard et al., 1995) closely follows the original HCRC
Map Task (Anderson et al., 1991). In Map Task dialogues, the two participants
have different réles: one is the instruction giver and the other is the instruction
follower. T will refer to these as giver (g) and follower (f) from now on. The giver
has the task of guiding the follower along a route on a map. Each participant has
their own copy of this map and the two maps may differ slightly (in the type and
position of features) in order to make the dialogues more interesting, as shown in

the example pair of maps in figure 6.1 on page 117.

6.3.1 Speech data

The speech in this corpus was recorded using high-quality microphones under con-
trolled conditions (no external noises). Each speaker was recorded on a separate
channel, and although there are occasions where the other speaker can be heard,
we can treat the two channels as only containing the speech of one of the speakers.

The amount of data available is shown in table 3.2 on page 39.
6.3.2 Labelling
e Utterance level

The corpus has been marked up using the theory of conversational games in-

troduced by Power (1979) and adapted for Map Task dialogues as described in
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Figure 6.1: Example maps

(Carletta et al., 1997b) using the set of games and move types defined in (Kowtko
et al., 1993). Proposals for the standardisation of such coding schemes can be

found in (Carletta et al., 1997a).

For this marking up, the speech has been divided into utterances, each con-
taining a single conversational move. Although there are a certain number of
overlapping moves, such problems were ignored in this work, and we treat the
division into utterances as reliable and fixed. Automatic methods for division
of conversational speech into utterances are becoming available: Warnke et al.
(1997) for example. The problems of overlapping moves are subject to current

research (Bull, 1997).
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° Word level

The corpus has word level transcriptions for all dialogues. Since the speech is
spontaneous, there are a fair number of disfluencies such as aborted words, restarts
and so on, plus non-speech such as coughs and clicks. For our purposes, all non-
speech noises were mapped to a special “word” called NW. Some other words (see
table 3.1 on page 38) were retained but subsequently ignored when calculating
recogniser accuracy. More sophisticated treatment of disfluencies was not possible

within the scope of this work — see page 37.

e Intonation

20 of the dialogues have been hand labelled using a simplified scheme which col-
lapses all pitch accents to a single label. The accents are subsequently described
in terms of the Tilt scheme, a parametric description of accent shape. F, was
obtained automatically using the super resolution pitch determination algorithm
(Medan et al., 1991) (rather than from a laryngograph). More details about this

part of the corpus can be found in chapter 5.

6.3.3 Dialogue modelling

A variety of N-gram dialogue models, as introduced on page 115, was considered.
First, “simple” N-grams (all predictors and the predictee are move types) were
examined. Figure 6.2 on page 119 shows what is meant by predictors and pre-
dictee. Three methods of using mixed predictors are described, one of which was

investigated experimentally.
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predictors predictee
move;_3 1MOVe_y IMOVE;_1 move;
time —

Figure 6.2: Predictors and predictee in N-gram models; move; is the move cur-
rently being recognised.

e Simple N-grams

The vocabulary for the simple models was simply the set of move types. N-gram
models were trained for various values of N. Table 4.3 on page 76 shows the
number of sentences in the training set — from that table it can be seen that the
total number of moves in the training set is around 9200. For a unigram model,
the vocabulary size is 12, and for all other N, the vocabulary size is 14 because of
the symbols for start and end of utterance. Therefore, for N = 3 there are around

2700 N-gram probabilities to estimate, and for N = 4 there are over 38 000.

N Test set perplexity
1 9.1
2 6.3
3 6.1
4 6.8

Table 6.1: Perplexities of simple N-gram dialogue models

Table 6.1 shows the test set perplexity using simple N-gram dialogue models of
various orders. For N > 2 a floor probability had to be used for unseen N-grams
because there were N-grams in the test data which never occurred in the training
data. The perplexity of the 4-gram model is greater than that of the 3-gram,
indicating that the limit on N has been reached for the amount of training data

available.
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e Mixed predictors

There is no constraint on the type of predictors in an N-gram model — they do not
have to be of the same type as the thing being predicted. One available predictor

is speaker 1dentity, and this can be incorporated into the N-gram model in 3 ways.

Each item in the N-gram is drawn from a finite set of possibilities: this is the
alphabet. The alphabet of move types consists of the 12 types in (Kowtko et al.,
1993). The alphabet of speaker identities is simply {f, g} — that is, {follower,
giver}. Special symbols must be introduced to represent dialogue boundaries

(start and finish) — these will be called lENTER and !EXIT.

o Method 1 : product of alphabets

Since each move has one type and one speaker, one way to use both as predictors

is to take the product of the two alphabets. This gives 24 symbols, as shown in

figure 6.2.
follower_acknowledge giver_acknowledge
follower_align giver_align
follower_check giver_check
etc..

Table 6.2: Possible alphabet for dialogue N-gram model

To these we must add !ENTER or !EXIT (for predictor and predictee alphabets
respectively). However, this method will fail to use current speaker identity as a
predictor, since it will be predicting it! For example, a bigram model using this
alphabet will contain the bigram (follower_acknowledge, giver_check) in which
giver_check is the predictee. The current speaker identity (giver) is part of the

predictee rather than the predictor; it must be moved from predictee to predictor.
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speaker identity: cee 83 Si_g Si—1 S;
move type: e My My_g  My_1 MYy
time — current
move
m; type of current move (predictee)
S identity of speaker of current move

m;—; type of most recent move by other speaker
where 7 is the smallest solution to s;—; # s;

Figure 6.3: Notation for heterogeneous N-grams

o Method 2 : mixed predictors

An alternative to taking the product of the alphabets is to have a different alpha-
bet for each of the N-1 predictors in the N-gram. The length of the N-gram (i.e.
N) can be varied, as can the alphabet for each predictor. There is no requirement
for chronological ordering of the predictors. The notation T will use is given in

table 6.3. s is speaker identity (follower or giver) and m is move type.

This method is the optimal way to use a mixed predictor set, since no “impos-
sible” N-grams will be estimated. An impossible N-gram has a speaker identity
in a move type “slot”, for example. However, the software (Taylor et al., 1997a)
used to estimate and use the dialogue model restricted the model to one in which
all predictors are drawn from the same alphabet (although the predictee alphabet

can be diﬁerent).

Instead of extending the software to implement method 2, an approximation
was devised which utilised software tools which were already available — this is
method 3. This method will in fact have exactly the same outcome as method 2

since the N-gram models are not smoothed or backed-off.
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o Method 3 : a practical approximation to method 2

Because it was more practical to estimate models in which all predictors come
from the same alphabet, which is different to the predictee alphabet, method 3
was devised. Now, the predictor alphabet is the union rather than product of the
move type and speaker identity alphabets. The predictor alphabet contains the
move type set (12 types), the speaker identity set (2 types) and the special symbol
representing the start of an utterance: a total of 15 types. The predictee alphabet
comprises the move type set plus the special symbol representing the end of an
utterance: a total of 13 types. This is suboptimal in that, for each predictor,
only a subset of the predictor alphabet is used. This leads to the estimation of
some “impossible” N-grams, but this will not matter as, firstly, this will not affect
estimation of the useful N-grams, and, secondly, the recogniser will not use these
“impossible” N-grams. Now that the alphabet for predictors has been defined,
there remains the selection of which items in the dialogue history to use to fill the
predictor slots. Some candidate predictors are given in table 6.3, where m;_; is

as defined in figure 6.3.

mi—1 S

mi;—2 Si—1
m;_s Si—2
mi—j 5,-3

Table 6.3: Candidate predictors

The perplexity of models using various combinations of these predictors were
compared. All model probabilities were estimated simply from N-gram frequencies
(as in equation 4.1), with no backing-off (see discussion below) or other parameter

smoothing. The results are shown in table 6.4 (figures given are on the test set).

Tonly the possible ones are counted
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Model Predictors N-grams' | Test set perplexity
I S;—1 mi;_1 S; 676 5.5
11 Mi—g  Si—1  Mi—1  S; 8788 5.8
111 mi;—o mi;—1 S; 4394 6.2
v m;_; Si—1 S; 676 5.2

Table 6.4: Dialogue model perplexities

¢ Summary of perplexity results

Table 6.5 summarises the results from table 6.1 and table 6.4 (as elsewhere, per-
plexity is quoted for the test set). Heterogeneous model IV is the best model. The
perplexities of the simple bigram and heterogeneous model 1T are similar, with
the heterogeneous being slightly better due to the addition of current speaker
identity as a predictor. The difference is remarkably small, and indicates that
either the current speaker identity alone is not a powerful predictor of move type,
or model III has too many parameters to be estimated from the training set (the
training set contains 10k moves, as shown in table 3.2 on page 39, and model II1

has 5k parameters).

Model 1V is like model I, but replaces the type of the previous move (m;_;) with
the type of most recent move by other speaker (m;_;). This reduces the perplexity
from 5.5 to 5.2, which indicates that m;_; is a stronger predictor of the current
move type than m;_;. This is not surprising, since, in a dialogue, each speaker is
generally responding to the other speaker’s most recent move. One might guess
that j is almost always 1, making m,;_y = m;_;. This is clearly not the case, as can
be seen by examining the training data, where givers have an average 1.3 times
as many moves as followers, showing that the giver, at least, takes two successive
moves a significant number of times in a dialogue. An example taken from the

training data is given below.
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participant move type words

giver instruct “And stop there.”

giver explain “And right across.”

follower query-w “Do I go east or west of the well?”

giver explain “To the east there should be local residents.”
follower acknowledge “Right.”

follower reply-y “Yeah.”

e The best dialogue model

The heterogeneous model using current speaker identity (s;), identity of speaker
of preceding move (s,-1) and type of most recent move by other speaker (rm;_;)
had the lowest perplexity on a held-out portion of the training set (and on the test
set, as shown in table 6.5, bottom line, although this figure was not used in the
selection of this model), so was chosen as the dialogue model for the full system

experiments described in section 7.3.

Model Test set perplexity
simple trigram 6.1
simple 4-gram 6.8
heterogeneous 4-gram (model 1V) 5.2

Table 6.5: Dialogue model perplexities (12 move types)

o The model in detail

Heterogeneous model 1V achieved the lowest perplexity. The predictors seem intu-
itively reasonable. Clearly current speaker identity has a strong predictive power:
giver and follower have quite different distributions of move types. The m;_; pre-
dictor is clearly especially appropriate in dialogue situations, where utterances are

typically responses to, or follow on from, the other speaker’s previous utterance.

We can examine the N-gram frequencies in the chosen model — table 6.6 on
page 126 shows a fragment of it. Remember that “'ENTER” is the special symbol
for the start of the dialogue, and the speaker (by convention) for “ENTER” is
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always the giver (g). Frequencies of 0 are not shown in the table.

Referring to table 6.6, the most common move types used to start a dialogue
are query-yn and ready (lines 7 and 8 of the table), although instruct (line 5) is
not uncommon. The most common response by far by the giver to an explain by
the follower is acknowledge (line 10). The follower usually answers query-yn with
a reply-n or reply-y (lines 28 and 30), with reply-y being twice as likely. This

indicates that the giver tends to ask questions which get a positive response.

There are 50 training dialogues, but in the upper section of table 6.6 it can be
seen that the number of N-grams with predictors {{ENTER g g} is greater than
50. This is because the giver typically has more than one consecutive move at the
start of a dialogue, and my convention is that m,_; is IENTER if (i — j) <0, and

that sg = g.

o Backing-off

On page 58, I discussed the use of backing-off as a technique for estimating longer
span N-gram (word) models from sparse data. This technique could also be ap-

plied to the estimation of a dialogue model.

The purpose of backing-off 1s to obtain a better estimate of the probability of
low frequency N-grams. A very simple alternative to backing-off is to use a floor
probability. This was found to have negligible effect on the perplexity of model V.
Also, the frequencies of N-grams in the chosen dialogue model (see table 6.6), are
generally either high, indicating that the model parameters are robustly estimated
from the training data, or very low. The negligible effect of the floor probability
indicates that those N-grams with zero frequency in the training data really do not
occur. We can infer that the dialogue model perplexity would not be significantly
reduced by a better estimate of the probabilities of those N-grams with zero or

very low frequency in the training data. In other words, I would not expect the
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predictors predictee line
frequency
mi—; Si_1 S ™m; number

'ENTER ¢ g acknowledge 2
'ENTER ¢ g align 6
'ENTER ¢ g check 1
'ENTER ¢ g explain 7
'ENTER ¢ g instruct 12 5
'ENTER ¢ g query-w 1
'ENTER ¢ g query-yn 31 7
'ENTER ¢ g ready 44 8
'ENTER ¢ g reply-y 1
explain  f g acknowledge 220 10
explain  f g align 12
explain  f g check 35
explain  f g clarify 4
explain ~ f g explain 35
explain  f g instruct 43
explain  f g query-w 6
explain  f g query-yn 24
explain  f g ready 26
explain  f g reply-w 2
explain  f g reply-y 3
query-yn g f acknowledge 45
query-yn g f  check 18
query-yn g f  explain 22
query-yn g f instruct 1
query-yn g f  query-w 18
query-yn g f  query-yn 16
query-yn g f  ready 3
query-yn g f  reply-n 121 28
query-yn g f  reply-w 67
query-yn g f  reply-y 213 30

Table 6.6: A fragment of the chosen dialogue model

126
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perplexity of the chosen model to be significantly improved through backing-off.

Furthermore, backing-off becomes more complicated when the predictors are
of mixed types, since the choice of which predictor to drop is not a clear one. This
raises another interesting point. For word N-gram models, the decision to drop
the leftmost (“oldest”) predictor is based on intuition rather than experimental
evidence. [ suggest that the choice of which predictor to drop when backing-off
should be based on training data. For example, the choice should result in the

lowest perplexity model on held-out data.

Given that the choice of which predictor to drop can be made experimentally,
a longer span dialogue model could have been trained through the use of backing-
off techniques. A simple trigram model has around three thousand parameters
to be trained from only 10 thousand tokens and has a higher (worse) perplexity
than model TV; this indicates that the data is too sparse to train a simple trigram
model. A proper investigation of the problems touched on above is outside the
scope of this thesis, and since I do not expect backing-off would have a significant
effect on model IV, T will restrict the dialogue model to be a non-backed-off N-

gram model.



Chapter 7

System performance

7.1 Introduction

The component parts of the experimental system have been developed in the
preceding chapters: a speech recogniser, a dialogue model and a set of utterance
type-specific language models. In this chapter, I describe the integration of these
components, and I will show that the performance of the system is better, in
terms of word accuracy, than the baseline speech recogniser. I will also show
that the system performs utterance type classification more accurately than any
individual component. As already noted, the modular architecture allows testing
of individual components, and means that these components can be treated as
“black boxes” in the whole system — the method that each component uses to
perform its task is not important: for example, the accent detector might be
neural net or HMM based. The interfaces between the modules are simple —
either the passing of log likelihoods or pitch accent parameters. Note that from
now on, utterances are moves, and the two terms will be used interchangeably.
The utterance type set is the Map Task set of 12 move types from (Kowtko et al.,
1993).

128
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o Organisation of this chapter

I begin with a formal derivation of an equation whose solution gives the most
likely utterance type sequence for a dialogue. Then I describe various experiments
using the strategy from page 6 — namely, find the most likely utterance types for a
sequence of utterances (i.e. a dialogue), then determine the word strings for each
utterance. Conclusions about the results in this chapter can be found in chapter
8. The strategy used was outlined at the end of chapter 2, and the DCIEM corpus

used in all experiments was described in section 6.3.

o Division of labour

The modular system architecture allows development of each component in par-
allel. This architecture is indeed essential, since the various components are not
all the work of the same person. To repeat from page 9: the accent detection
and parameterisation component was the work of Paul Taylor (1992; 1993; 1994);
the utterance type intonational HMMs were the work of Helen Wright (Wright &
Taylor, 1997); all other components (speech recogniser, language models, dialogue

model and system integration) were the work of the author.

o Division of computation

It is worth noting that the only part of the system which is seriously computation-
ally expensive is the actual speech recognition, not least because the recogniser
has to be run once for each move type on each utterance. The detection of ac-
cents and classification of intonational patterns into move types, and the Viterbi
search through the dialogue, are trivial by comparison. Typically, for each move
in a dialogue, speech recognition took 2 1/2 minutes (in total, for 12 runs per
move); accent detection and labelling took about 1 second; intonational tune-

to-type recognition took only 12 seconds per dialogue. The Viterbi search took
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approximately 13 seconds per dialogue (the average number of moves in each of

the five test dialogues is 212). These times are for a Sun Ultra 1.

e Implementation

The software used for the experiments was a mixture of code written specially
using the freely available Edinburgh Speech Tools (EST) written by Taylor, King
and Black (1997a), the commercial HMM toolkit HTK from Entropic (Young
et al., 1996) and the public domain CMU language modelling toolkit from Rosen-
feld and Clarkson' (1997).

Both the EST and the CMU toolkit were used for estimating language models
and their perplexities. The CMU toolkit supports several backing-off methods
and was preferred for language model estimation. The EST generates language
models in a compact form and allows differing predictor/predictee alphabets. The
EST Viterbi search algorithm was modified to use these mixed alphabet language
models, and to allow certain predictors to be “given” (such as speaker identity).
The EST was therefore used to estimate the dialogue model and perform dialogue

decoding to find the most likely move type sequence.

HTK effectively limits N-gram language models to bigrams. This limitation
could have been overcome by writing additional tools®. However, since the speech
recognition component already takes much more computation than the rest of the
system®, and because trigram language models would increase the computational
requirement (yet are not guaranteed to give better results, given the small training

set) over that for bigram models, this was not thought to be worthwhile.

"Many thanks to Philip Clarkson for prompt bug-fixing of the toolkit.
2HTK file format documentation permitting.
3Computation time is closely related to language model complexity.
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7.2 Formal derivation

I will derive an equation for finding the most likely utterance type sequence for
a dialogue. Move types, as already described, are used for the utterance type
system, but the derivation is actually independent of the particular system chosen

— provided that the system assigns exactly one type to each utterance.

7.2.1 Notation

the dialogue

U the sequence of utterances in D
Ny the number of utterances in D
U the zth utterance of D
U = {ui,uz,...un,}
C spectral observations, e.g. cepstra, for D
¢ spectral observations for utterance wu;

C = {a,c,...cny}

F other acoustic observations, such as Fy and energy;
I will call this simply intonation.

fi intonation of utterance w;

F = {fl7f27"'fNU}

\\% the word sequence for D

=

the word sequence for utterance u;

W = {W,W,,...Wx,}
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M
M

132

the number of words in W;
the yth word in W,

{wﬂ, Wiy - wiNWZ-}

the sequence of move types for D
move type of utterance u;
{my,mq,...mn,}

the sequence of speaker identities for D
speaker identity for utterance wu;

{s1,82,...5n,}

the move type set
[/Ml, M?, e '/MNM]

M

7.2.2 Dependence and independence

e Acoustic model

— only uses spectral observations

— independent of speaker, utterance move type, intonation

e Intonation model

— only uses intonation observations

— independent of speaker, spectral observations
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e Language model

— dependent on move type

— independent of across—utterance context, speaker identity
¢ Dialogue model

— dependent only on speaker identity sequence

7.2.3 Finding the most likely move type sequence

We want to find the most likely move type sequence M*, given the speaker identity

sequence, spectral observations and intonation by solving:

M* = argmax P(M|S,C, F)
M
= argmax P(M)P(S,C, F|M)
M

because P(S,C, F) is a constant for a given D. The independence assumption
that speaker identity has no effect on spectral or intonation observations is clearly
false, but we already make this assumption in our speaker-independent models for

speech and intonation recognition. Assuming that S, C' and F' are independent:

= argj{/[naXP(M)P(ﬂM)P(C M)P(F|M)

= argmax P(S)P(M|S)P(C|M)P(F|M)
M
and since P(9) is a constant for any given D - that is, independent of M:

= argﬁlaxP(LM|S)P(C|LM)P(F|M) (7.1)
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Now I will take each of the terms in equation 7.1 in turn. The first term, P(M|S),
of equation 7.1 1s given by the dialogue model. We can incorporate the word

sequence W into P(C|M). Letting W' range over all possible word sequences:

P(CIM)

VZV:IP(C|VV’)P(VV’|J\4)

R~ II‘}‘%XP<0|W,)P(W,|LM) (7.2)
where the replacement of summation by maximisation is a change from total

likelihood to maximum likelihood. Intuitively, we can be reasonably certain that

Z P(CIW)P(W'|M) max P(C|W")P(W'|M)
w/
for a given M. The value of W’ which solves equation 7.2 is simply the result of

speech recognition; this value is W.

2

P(C|M) ~ P(C|W)P(W|M)

where

Ny
PCIW) = T] PlelW) (73)
=1
which is given by the HMMs in the speech recogniser, and

Ny
PWIM) = T P(Wilm) (1.4
=1
which is given by the move type-specific language models. The third term of

equation 7.2 is simply the intonation model

P(F|M) = ﬁp(]ﬂmz—) (7.5)
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So equation 7.1 is:

M* = argmax { P(M|S) - P(C|M) - P(F|IM) } (7.6)
M N —’ —— S—_— ——’
dialogue speech intonation
model recogniser model

which, using equations 7.3, 7.4 and 7.5 becomes

M v =1
dialogue intonation
speech
model . model
recogniser
(7.7)

e Practical solution

In the case of the dialogue model, true probabilities can be estimated because
the space of possibilities is finite and discrete (it is the move type set M). This
is only true because the dialogue is pre-segmented into utterances, which means
that the move type sequence is of a fixed length. If the dialogue were not already
segmented, the optimisation expressed by equation 7.7 would additionally involve
a search for the optimum segmentation of the dialogue into moves. The second and
third terms in equation 7.6 cannot be directly estimated. In practice, we can only
estimate likelthoods, and these will be represented in the log domain. Also, we wish
to account for the differing reliability of the estimates. Therefore, the estimates of
the terms in equation 7.7, in the form of log likelihoods will be weighted. We can
consider these weights to be measures of the relative contribution, or “importance”
of each term, reflecting the reliability of the various estimators of move type. If,

for instance, the dialogue model is a particularly good predictor of utterance type,
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then it will have a higher weighting.

Equation 7.6 can be rewritten as:

Ny
M* = argmax { wplP? + Z(TUSL;S + w[[/g) } (7.8)
M

=1

where L” is the log likelihood from the dialogue model, LY and L! are the log
likelihoods for utterance ¢ from the speech recogniser and intonation model re-
spectively along the Viterbi path. wp, ws and w; are the weights for the three
terms — of course there are only two degrees of freedom, so one of the three could

be omitted (set to unity).

Equation 7.8 can be solved efficiently by the Viterbi (Forney, 1973) algorithm
provided the dialogue model is restricted to a finite state model. The combi-
nation of probabilities from different information sources via a weighted sum in
the log domain is common practice in speech recognition, as well as in integrated
approaches to the use of intonation or prosody: Dumouchel and O’Shaughnessy
(1993) use microprosodic observation probabilities in this way, as explained on

page 98.

The strategy employed is to run the intonation recogniser over each utterance,
finding LZ-I for m; = My, My, ... Mn,,. The speech recogniser is also run Ny
times for each utterance, each time with a different one of the move type-specific
language models, giving values for L7 for each move type. The corresponding
pairs of log likelihoods are scaled and summed. The Viterbi algorithm is used to
find the most likely utterance type sequence, given the dialogue model, solving

equation 7.7.
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o Finding the weights

The weights in equation 7.8 can be determined experimentally on held out training
data. There are two degrees of freedom, and a simple search over a grid of values
can be used to find the optimum weight values. The results of this experiment

are reported on page 139.

o An alternative approximation

Andreas Stolke (personal communication) suggests an alternative to the approx-
imation of equation 7.2: that the sum over all possible word sequences be ap-
proximated by summing over an N-best sentence list from the speech recogniser.
This is obviously a closer approximation than made here?, but does require the

recogniser to produce N-best lists, which is computationally expensive.

7.3 Integrated system experiments
7.3.1 Move type classification

In chapter 2 I established utterance type classification as one objective of the
dialogue speech recogniser, in the belief that by recognising utterance type, word
accuracy could be improved. Classification of utterances into types is also an
end in itself, for the reasons already mentioned. The experimental strategy was
therefore to maximise utterance type classification accuracy, then measure word

accuracy.

The system architecture can be seen in figures 7.1 and 7.2. The modules in
figure 7.1 provide the input to the system in figure 7.2 on page 139. Interfaces
between modules are at the utterance level — that is, the speech recogniser and

intonation module process whole utterances at a time. The three information

“The two approaches are the same for N-best lists of length 1 !
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Intonational intonation move type
events recogniser likelihoods
Acoustic move type
observations likelihoods
4\ Sp%Ch / \ J
recogniser ) .
] / \ word
anguage
models Sequences

Figure 7.1: System modules

sources used for utterance type classification operate independently — the intona-
tion module does not require the speech recogniser output because it does not use

a segmentation of the speech signal.

The core of the system is a Viterbi search for the most likely utterance type
sequence for a whole dialogue — a solution to equation 7.6. For a finite state
dialogue model, as described on page 124, this means finding the most likely path
through the dialogue model, given the observations from the speech recogniser
and intonation recogniser. The probability along a path through the network is
the product of the transition and state observation probabilities along it. The
transition probabilities are given by the dialogue model, and the observation log
probability for each state is a weighted sum of speech recognition and intonation
recognition log probabilities. Because there are three components making up the
total probability (see equation 7.8), there are two weights which can be varied
to account for the relative contribution of each information source. Experiments
were carried out with various combinations of dialogue model and weights to
determine the move type classification power of each component. Since the move

type recognition problem is a classification task, there are no insertion or deletion
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____________________________

Figure 7.2: System architecture

errors (we assume that a dialogue can be divided into moves perfectly prior to the
classification procedure). Therefore, accuracy and percent correct are the same

thing.

o Finding the weights by experiment

On page 137, I noted that the weights in equation 7.8 on page 136 can be found by
experiment. The weights were determined by this method using held-out training
data. It is interesting to examine the sensitivity of the move classification accuracy
to the weight values. An experiment was carried out to determine this relationship,
and the results are shown in figure 7.3. The figure gives move classification results
for the test set. The dialogue model weight was fixed at 5 and the acoustic

model/language model and intonation weights were varied. Each contour line
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in the figure represents a particular move classification accuracy. It can be seen
that the weights do not need to be set very precisely to achieve the best move
classification result. The weights need only be within £10% of the optimum to
get equally good results.

Move classification (%)

Intonation weight

L

N

|
20 25 30 35 40 45 50
Acoustics and language model weight

Figure 7.3: Sensitivity of test set move classification results to the choice of weights
in equation 7.8

o Task perplexity

Although the move type classification problem is a choice of one from twelve,
the uneven a priori distribution of types means that the task is easier than a
choice from 12 equiprobable classes. This distribution can be used to compute
the perplexity of the task - a measure of how difficult move type classification is
before applying any of the constraints (intonation, speech recognition or dialogue

model). The task perplexity is equal to the perplexity of a unigram model, which
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condition word move type
error rate (%) accuracy (%)

Baseline 24.8 -
Correct move type every time 23.5 -

Automatic move type classification:

— acoustics and LM 24.1 40
— acoustics, LM and DM 24.1 57
— intonation only 25.7 42
— intonation and DM 24.7 63
— DM only - 35
— acoustics,LM,intonation and DM 23.8 64

Table 7.1: Summarised move type classification and word error rate results. Train-
ing data is set 5. LM means the language model and DM means the dialogue
model.

on the test set is 9.1 (from table 6.1 on page 119).

e Using intonation

It is possible to classify the utterances using only intonation, or intonation plus
a dialogue model, without doing speech recognition. This independence of the
intonation model from the word or segment sequence is one of its advantages over
systems which require a segmentation of the speech signal prior to intonational
analysis. Without a dialogue model, intonation classifies 42% of moves correctly,

and with the best dialogue model this rises to 63%.
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e Using speech recognition

Two varieties of language model (LM) were used: unsmoothed and smoothed. The
smoothing was by interpolation with the general language model. As expected,
the smoothed models give better word accuracy (see later in this chapter) but do
not classify the move types as well as unsmoothed ones. The experiments with
both unsmoothed and smoothed language models were performed only on set 4

training/testing data.

For set 5 training data, the “best choice” language model (see page 79) in
combination with the best dialogue model (mixed predictor 4-gram model on
page 124) correctly classified 57% of moves. Without a dialogue model this figure
is only 40%, although word accuracy is good (the error rate is 24.1% — see table
7.1). Since the LM for three of the move types was in fact the general model, it
is not surprising that the move type classification power is much lower than the

unsmoothed model.

e Using only the dialogue model

It is possible to classify the move types from only the speaker identity sequence
using the dialogue model alone. The 4-gram dialogue model correctly classifies
35% of moves. A unigram dialogue model (which does not use speaker identities),

gets 24% of move type classifications correct®.

e Intonation and speech recognition together

By combining the output of intonation and speech recognition components ac-
cording to equation 7.8, both estimators of move type probability distributions
can be used for move type classification. The move type classification results do

not improve much on the previous experiment without speech recognition, with

"By predicting acknowledge all the time, because 24% of moves are acknowledge!
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64% of moves being correctly classified. However, the word error rate in this case
is reduced over the baseline. A summary of results for various combinations of

intonation, speech recognition and dialogue model is shown in table 7.1 on page

141.

A confusion matrix for move type classification is shown in table 7.2 for the
best combined move recognition and word accuracy condition. Each row details
the moves of a particular type. Each column in that row indicates how many
moves of that type are classified as each of the 12 possible types. For example, 9
explain moves were classified as check moves. The bold figures along the diagonal
are for correctly classified moves. Off-diagonal figures are errors. It can be seen
that errors tend to concentrate at certain points — showing that some pairs of move
types are more confusible than others. For example, only 2% of align moves are
correctly classified since they are mostly misclassified as instruct or ready. The
distribution of errors is quite encouraging, since errors appear to be somewhat
predictable, rather than random (which would appear as an even distribution of

numbers off the diagonal in the confusion matrix).

7.3.2 Speech recognition

When the most likely move type is determined for an utterance, the word string
produced by the speech recogniser, using the language model for that type, is

taken as the recognised word string for that utterance.

The hypothesis in chapter 2 was that sufficiently accurate move type classifi-
cation would improve word accuracy results. This is proved correct (refer to table

7.1), although the method of move type classification has a significant effect.

If move types are classified using speech recognition alone (which combines
move type-specific language model and acoustic models), then only 40% of moves

are correctly classified but the word error rate is 24.1% which is better than the
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acknowledge 208 0 1 0 2 2 0 1 28 0 1 16 80%
align 4 2 2 0 2 12 0 4 28 1 1 0 3%
check 11 1 28 1 1 3 2 13 1 1 3 2 41%
clarify 0o 0 0 7 O 7 0 0 0 0 3 0 2%
explain 20 1 9 4 41 11 0 11 1 6 5 0 3%
instruct 4 1 1 2 6 172 0 2 1 0 3 3 8%
query-w 9 0 4 0 1 24 2 0 0 0 2 16%
query-yn 6 1 13 0 5 5 1 .54 0 0 1 0 62%
ready 22 0 0 0 1 3 0 1 46 1 0 4 5%
reply-n 4 0 0 0 1 00 0 023 1 0 79%
reply-w 3 0 0 2 5 41 0 0 0 6 2 2%
reply-y 21 1 0 0 3 3 0 1 0 1 2 76 70%

Table 7.2: Confusion matrix for move type classification

baseline figure of 24.8%. The low move type classification rate is attributable to
the language model smoothing, and so is the low word error rate! With the aid
of a dialogue model, the move classification without intonation rises to 57%, but

the word error rate remains 24.1%.

Using intonation and a dialogue model, the move recognition rate is 63%, but
the word error rate is 24.7%. The best combination of move accuracy and word
error rate is obtained when intonation, speech recognition and dialogue model are
all used to estimate move type probabilities; move type classification accuracy is
then 64% and word error rate 23.8%. This is the lowest word error rate achieved

using the novel method introduced in this thesis.

For each utterance, the system generates 12 word sequences. One of these is
selected using move type classification. It is interesting to examine one of these

lists of word sequence hypotheses — see table 7.3 on page 145.
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o Significance of results

The word error rate was reduced from 24.8% to 23.8% by the new method, and a
word error rate of 23.5% is possible with 100% move classification accuracy. These
error rate reductions were analysed using a paired two-tailed t-test (Iman, 1994).
This test requires matching data pairs from two experiments. Here, the pairs being
compared comprise the word error rates (for a particular test utterance) for the
baseline system and for the new method. The error rates were weighted according
to the number of words in the correct transcription of that utterance. The pairs
(of utterance word error rates) must be independent of each other. In the baseline

and 100% move classification accuracy cases this is a safe assumption, and the

error rate reduction from 24.8% to 23.5% is highly significant (p < 0.0005).

For the new method, the dialogue model used means that the word error rates
for consecutive utterances are no longer independent. As we saw in section 2.2 on
page 21, the 12 move types fall into two classes: 6 game initiating types, and 6
other types. It is reasonably safe to assume that within each class, the utterances
are independent. This is because, generally, consecutive moves are not of types
from the same class. In fact, the improvement in word error rate is entirely due
to improvement on game-initiating moves where the baseline word error rate of
26.0% is reduced to 24.7% by the new method, and this reduction is significant
(p < 0.001). For non-initiating moves, the word error rates increases marginally
from a baseline of 19.2% to 19.3% but this difference is statistically insignificant
(p > 0.2).
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condition word move type
error rate (%) accuracy (%)

Baseline 34.4 -
Correct move type every time 33.5 -

Automatic move type classification:

— acoustics and LM 33.9 41
— acoustics, LM and DM 34.0 57
— intonation only 34.9 42
— intonation and DM 34.5 64
— DM only 36.1 36
— acoustics,LM,intonation and DM 34.0 64

Table 7.4: Summarised move type classification and word error rate results. Train-
ing data is set 4.

7.3.3 Effect of training data

Results obtained for the two training sets (set 4 and set 5) can be compared.
There is approximately two and a half times more data in set 5 than in set 4

available for training acoustic, language and dialogue models.

o Language modelling

Figure 7.4 shows the results from table 3.4 on page 41: the perplexities of general
language models trained on various amounts of data. A strong dependency on
training set size can be seen, but the perplexity of the language model decreases
more slowly as the amount of data increases — it appears to be converging. There-
fore, although the data here is very sparse, the difference in perplexity between

a back-off bigram model trained on set 4 (27.6) and one trained on set 5 (23.6)
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test set
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Figure 7.4: Perplexity of language models trained on data sets of various sizes

indicates that perplexity is unlikely to decrease much further even with a large
amount more data. However, with more data, more complex models with more
parameters can be estimated (a longer span N-gram model for example), which

could have lower perplexity.

o Acoustic modelling

The acoustic models are tied-state cross-word triphone models. The set of tri-
phones required to cover the vocabulary of the system is independent of the
amount of training data. To control the number of parameters in the system,
the degree of state tying can be varied. More training data means that more
parameters can be estimated, which means that less tying is required — making
the HMMs more context-specific which improves acoustic modelling. The tying
threshold, which is set during acoustic model training, could be better optimised,

but this would be very time consuming.
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condition word move type
error rate (%) accuracy (%)

Baseline 24.8 -
Correct move type every time 24.8 -

Automatic move type classification:

— acoustics and LM 24.5 43
— acoustics, LM and DM 24.4 67
— intonation only - 29
— intonation and DM 26.5 52
— DM only - 45
— acoustics,LM,intonation and DM 24.4 67

Table 7.5: Summarised move type classification and word error rate results for
the alternate set of 13 move types. Training data is set 5.

7.3.4 Move type merging and splitting experiments

The alternative set of 13 move types from page 29 was used in exactly the same
way as the original 12 types. The same procedures were used for estimating
language models, and the experimental system was run in exactly the same way.
The results can be seen in table 7.5. The baseline result 1s, of course, the same
as before. Surprisingly, the case where the move type is given (100% correct)
produces no improvement in word error rate over the baseline. This indicates
that the new set of types either do not form clusters in terms of language model,
or there is no longer sufficient training data to estimate language models for this
many types. From table 4.4 we can see that, when smoothing the move type-
specific language models, the weights for reply-y and reply-n in the original set of
12 move types were close to 1. This means that those language models were well

trained and quite different from the general purpose model, implying that a word
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error rate reduction would be expected when using these models. In the revised
set of 13 move types, reply-y and reply-n were each split into 3 types. Table 4.3
shows that, for reply-n in particular, there is probably not sufficient training data

to train language models for the split reply move types.

The automatic detection experiments did produce small word error rate im-
provements, but not as good as those for the system using the original 12 move
types. This error rate reduction is evidently by accident rather than design, since

the 100% move classification accuracy experiment gave no error rate reduction at

all.

The best move classification accuracy of 67% is marginally better than the re-
sult for the original 12 types shown in table 7.1 on page 141, but the corresponding
word error rate is worse. The task perplexity® using the alternative set of 13 move
types is 6.8 which is considerably lower than for the original move type set which
has a perplexity of 9.1. This indicates that the task of move type classification
for the alternate type set is easier, so the improvement in classification rate from

64% to 67% is poor.

Only one alternate move type classification system was used in the full ex-
perimental system. This was the set which gave the most promising results for

intonation modelling (Wright, personal communication).

6Perplexity of a unigram model on the test set.



Chapter 8

Conclusions

o Organisation of this chapter

In this final chapter, I will analyse the results from the previous chapter. T will then
describe the limitations of the approach taken, both in terms of the novel method
proposed and the experimental work. Then I will describe some possibilities for
improvement of the system and its components. Finally, I will suggest how the

work described in this thesis might be taken forward.

8.1 Analysis of results

The use of constraints at the utterance level, via utterance type classification, has
produced reductions in word error rate along with useful utterance type classifi-

cation accuracy.

o Utterance type classification

The experimental system classified utterances into the 12 Map Task move types
with an accuracy of 64%. This figure is high enough to be useful in a dialogue
system, where the utterance type class could guide a dialogue manager or syntactic

or semantic analysis.

151
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o Word error rate

The word error rates achieved by the system are around 24%. This figure is
much higher than read-text systems such as those described in section 3.2.1, but
compares well with other spontaneous dialogue speech recognisers such as that
in (Suhm & Waibel, 1994), Verbmobil — (Plannerer et al., 1994; Reichl & Ruske,
1995), for example — and the Sphinx-II system (Huang et al., 1993) employed in
TRAINS.

Assessment of a spoken dialogue system is not easy. Word error rate is not
the ideal measure of performance, even for the recogniser component. Typically,
the output from the recogniser will be the input to further linguistic and semantic
analyses, so raw word error rate is not necessarily an indicator of the recogniser
output quality. Boros et al. (1996) introduce concept accuracy as a better measure
of speech recogniser performance, and as a method of simulating the evaluation
of the speech recognition component of a spoken language system in isolation.
This method requires a parser and semantic processor, so was not suitable for
evaluation of the method described in this thesis since these components were
not available. One possibly more useful measure of recogniser performance in a
spoken language system context, might be key word or content (open class) word

accuracy (entities, in the Map Task), although this also has limitations.

o Limitations of approach

The utterance type classification approach does have limitations. It can be seen
from table 7.1 that even with 100% type classification accuracy, the decrease in
word error rate over baseline is from 24.8% to 23.5%, which is a 5.2% reduction in
error. This leaves only a small interval for the method described here to operate
in, and in fact, the method achieves a 4.0% error rate reduction to 23.8%, which

is over three quarters of the possible reduction achievable by 100% move type
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classification accuracy.

Since the method achieves an error rate reduction so close to the maximum,
the only way to improve the results would be to widen the word error rate interval

between baseline and 100% move classification accuracy. This could be done with:

e more training data, especially for language models
e improved utterance type set

e more sophisticated language models and dialogue model

8.2 Analysis of method

The method has shown promising results on a reasonably difficult recognition task.
Classification of utterances into types is a general framework for using constraints
at the utterance level, and does not depend on any of the particular methods for
utterance classification. Intonation, speech recognition and dialogue modelling

are just three examples of such methods.

o Novelty of approach

Interest in recognition, and understanding, of dialogue speech has risen recently
(CLSP, 1997). Use of generalisations above the word level has been on the agenda
for speech recognition research for some time, but only recently have serious at-
tempts been made to address the problem (Meteer & Iyer, 1996). This has been
due in part to the lack of suitable data; in the early 1990’s speech recognition
research was driven by the available corpora, the Resource Management Task
and Wall Street Journal in particular. With the relatively recent release of the
Switchboard and CallHome (Linguistic Data Consortium, 1996a) corpora, interest

in spoken dialogue has increased.
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With this increase in interest has come the realisation that state-of-the art
speech recognisers, such as (Woodland et al., 1995), are limited in their approach
when it comes to spontaneous speech. Such systems achieve remarkable perfor-

mance on clean, read text but do not do nearly as well on real, disfluent speech.

o Task

The data used in this work (the DCIEM Map Task corpus) was not recorded
specifically for speech recognition research, but the only real alternative available
when this work started was the Switchboard corpus, and the reasons for not using

that corpus include:

e training a baseline speech recogniser for this task is a major project on its

own because

— there is a very large amount of data to process which makes training

acoustic and language models very time consuming

— the speech is telephone quality (bandlimited)

o the dialogues are only loosely structured

e the dialogue mark-up scheme was only recently defined (following our work

here, in fact) and the dialogues annotated

e intonation recognition work is harder on telephone quality speech (Jurafsky

et al., 1997)
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8.3 Room for improvement

o Intonation

The accent detection algorithm used in the system described here is still “work in
progress”, (Wright & Taylor, 1997). The hidden Markov models of intonational
tunes used to classify utterances into move types using accent sequences are also
a subject of current work by Wright (Wright & Taylor, 1997). The mapping from
intonational events to move types is clearly a very complex one, and in fact may

only be possible for some types (Kowtko, 1996).

Since the method of utterance type classification and the classification scheme
itself are not specified by the method introduced in this thesis, a variety of algo-
rithms can and have been tried. Wright is currently investigating decision trees

and neural nets as alternatives to HMMs.

The intonation component is possibly the most fragile, although, like the
speech recogniser, it is speaker independent, which is always difficult when dealing
with Fy. However, as we have shown, even though the classification power of the
intonation component is quite low, it can provide a useful contribution when com-
bined probabilistically with the other components in an utterance classification

task.

o Language modelling

The move type-specific language models were shown to have lower perplexity
than a general-purpose model, especially when smoothed by interpolation with
that general model. This smoothing works because the general model was trained
on more data (12 times as much on average) than the move type-specific models,

and therefore has better estimated parameters.
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There is another version of the corpus used here: the original HCRC Map Task,
which consists of the same task but with Scottish (Glaswegian) speakers. This
corpus could provide significant additional amounts of training data for language
modelling, although there are some problems with using it mainly in that the

speakers speak a very different kind of English to the Canadian speakers in the
DCIEM corpus.

The effects of the mismatch in both vocabulary and grammar can be mitigated
— section 4.3.2 described some methods for overcoming such mismatches, but ap-
plication of them to the DCIEM/HCRC Map Task corpora was beyond the scope
of this thesis. One particular problem is that, whilst pronunciation dictionaries
for American and Canadian English are readily available, a dictionary would have

to be generated specially for the HCRC data.

The language models were conditioned on utterance type, but not on any of
the other possible variables: speaker identity, map pair and task condition. Whilst
conditioning the models on speaker identity is undesirable, since the system then
becomes speaker dependent and unable to cope well with new speakers, the map
pair and task condition variables are each drawn from a finite set of possibilities

and could be used to condition language model probabilities.

Eye contact has a significant effect on the dialogue structure, as described
below, and presumably some effect on language. The map used in the dialogue
clearly also has an effect, since the entities are different for each map. This
situation lends itself to the use of word class models, where the entities across

maps are generalised, perhaps into a few broad categories.
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o Speech recognition

The acoustic models (HMMs) were the same for both baseline and utterance type
classification systems — tied-state cross-word triphones. The number of parameters
in the models is controlled by the degree of tying. As noted in section 7.3.3, the
time for one iteration of training and testing is quite long, optimising the tying
thresholds is difficult. It is possible that some improvement could be obtained by

fine-tuning the state tying stage of model estimation.

As mentioned below, the HCRC Map Task corpus could provide additional
data from the same domain, but in the case of acoustic models, this is of no ben-
efit since the speaker characteristics are so different for the two corpora. Speech
recognition work on the HCRC Map Task is currently going on (McKelvie, per-

sonal communication).

o Dialogue modelling

Just as the language models could benefit from additional training data from the
HCRC Map Task corpus, so could the dialogue model. In this case, the mismatch
between the two corpora would be much less significant. Indeed, the similarity
of dialogue models for the two corpora would provide support for the theory of
conversational games, or at least the choice of 12 move types made in (Kowtko

et al., 1993).

Another possibility for dialogue model improvement would be to increase the
context of the N-gram model, which would mean having to back-off some probabil-
ities. Since the predictors are effectively mixed, this backing-off would be slightly
more complex than the simple word N-gram case for language modelling. In
backing-off, an N-gram probability is estimated using an (N-1)-gram probability,

and defining the (N-1)-gram when the predictors are of mixed types is non-trivial.
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As mentioned above, the language models could be conditioned on other vari-
ables than utterance type. The presence or absence of eye contact has a significant
effect on the dialogue; when eye contact i1s allowed the task is accomplished more
quickly, in fewer moves, and with fewer words. In the HCRC Map Task cor-
pus (Anderson et al., 1991), dialogues conducted without eye conduct contain an

average of 13% more words than those with eye contact.

This has implications for human-computer interaction. When the information
under discussion is available to both participants, goals can be achieved more
quickly — this would be the case in systems like TRAINS where the current “state
of play” is represented graphically to the user. For speech-only interfaces (over
the telephone, for example), this information sharing may not be possible, and
goal oriented dialogues may be less successful. In this situation, one or both
participants must take the initiative to set achievable sub-goals in order to achieve
the main goal. Mized initiative dialogues are thought by some to be the key to

co-operative human-computer interaction.

Another possible extension to the dialogue model would be to use conver-
sational game theory explicitly, in which dialogues are composed of games, and
games consist of moves. Such a model would have to account for embedded games
as well as terminated moves and games. In other words, it would have to be a
robust interpretation of the theory of Conversational Games in order to model

real world data.
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8.4 Further work

o Multiple language models

It was found that, unsurprisingly, unsmoothed move type-specific language models
had more move type classification power than smoothed ones. However, since
smoothed language models had lower perplexity, they were used to achieve lower
word error rates. It would be possible to use the unsmoothed models simply as
estimators of move type in the same way intonation was used. This does not
fit the probabilistic framework of equation 7.7 because the same information is

essentially being used twice.

o The utterance type classification system

The experiment with the alternate set of 13 move types showed two things. The
first was that the new method introduced in this thesis does not depend on the
original set of 12 move types — it works with a different set of types too. The
second is that, although the alternate type set produced a small improvement
over the baseline, it was not as good as that when using the original type set.
From this I conclude that the set of 12 move types introduced in (Kowtko et al.,
1993) provides a very useful level of description of dialogue motivated utterance
types and that these types are distinguished not only by their dialogue role, but

by their surface form and intonation as well.
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