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ABSTRACT

We describe the modelling of articulatory movements using (hid-
den) dynamical system models trained on Electro-Magnetic Artic-
ulograph (EMA) data. These models can be used for automatic
speech recognition and to give insights into articulatory behaviour.
They belong to a class of continuous-state Markov models, which
we believe can offer improved performance over conventional Hid-
den Markov Models (HMMs) by better accounting for the contin-
uous nature of the underlying speech production process – that is,
the movements of the articulators. To assess the performance of
our models, a simple speech recognition task was used, on which
the models show promising results.

1. INTRODUCTION

Our investigation of dynamical system models is motivated both
by an interest in new models for speech recognition, and by the
availability of new articulatory measurement data.

For speech recognition, we are investigating alternatives to
Hidden Markov Models (HMMs) in which speech is generally seen
as a sequence of phones, each of which is typically modelled by a
three state model – three regions in which the observation is as-
sumed to remain constant � . We propose that models which take
more account of the continuous nature of the speech production
process should provide better modelling (and therefore recogni-
tion) of the speech signal. One such model is the Continuous
State Markov model (CSMM). Our models are a type of CSMM
in which constraints are placed on the state behaviour in the form
of a linear dynamical system. Our models belong to a larger class
of models [4], which includes HMMs, and dynamic segment mod-
els [2], for example.

These models will find applications in articulatory modelling
as well as speech recognition. Ultimately, we envisage models
which will be able to (probabilistically) recover articulatory tra-
jectories, or gestures [3, 7], from acoustic data. Dynamical system
models of a similar form to the models here have been successfully
used for intonation modelling [6], and have shown some potential
for speech recognition [1] – although the task used in [1] was prob-
ably too difficult for testing a novel acoustic model.

New data, described in section 1.1 below, is becoming avail-
able which allows us to train models of articulator dynamics. We
stress that these models are quite different from more literal mass-
spring models or finite element simulations of the articulators. The
models described in this paper are of articulatory measurements:
two-dimensional coordinates of selected points on the articulators.
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Figure 1: Example EMA data for the word “pod” . Tracks, reading
from the top, are velum height (y), upper lip y, upper lip x, tongue
tip y, tongue tip x, tongue dorsum y, tongue dorsum x, tongue blade
y, tongue blade x, lower lip y, lower lip x, lower incisor y, lower
incisor x. The y coordinate is vertical (increasing y means upward
movement), and the x coordinate is horizontal (increasing x means
forward movement).

1.1. Data

Physical measurements of articulatory behaviour have been
recorded using a Carstens Electromagnetic Articulograph (EMA)
system � . The data comprise two-dimensional co-ordinates in the
midsaggital plane of 7 selected points on the articulators (3 tongue,
2 lips, jaw and velum), each recorded 500 times per second. For
this study, a simple dataset was recorded, consisting of sixteen syl-
lables, each repeated up to sixteen times by a single speaker. The
syllables are all CVC patterns with C chosen from � d,p � and V
chosen from � a,e,i,o � . A total of 248 tokens were recorded, of
which a randomly chosen 64 were set aside for testing, leaving
184 training tokens. The velum position was represented by only
its y coordinate (that is, the vertical coordinate), all other points



have both x and y coordinates; thus the articulatory measurement
data is 13 dimensional. An example from this data set is show in
figure 1.

2. DYNAMICAL SYSTEM MODELS

2.1. Form of the model

The type of systems we are using to model the data are simply
described by equations 1 and 2.
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�

�� � (1)


���� ����� 
�� � (2)

where ��� is the state of the system at time � , 
�� is an observation,
� describes the dynamical behaviour of the state, and � maps the
state space to the observation space.

� � and
� � are uncorrelated

noise with Gaussian distributions, with means and variances ��� ,� � and ��� , � � respectively. In all our experiments, � and �
are constant over time. See [4] for an excellent overview of this
and related models as applied to speech recognition. The Markov
property of these models comes from equation 2: the observation
�� depends only on the current state ��� (plus some uncorrelated
noise). All our current experiments are with linear models (de-
scribed by � ) and linear transformations between hidden and ob-
servation spaces (described by � ).

Equations 1 and 2 describe a single model. For speech recog-
nition, we need a different model for each unit (syllable, for exam-
ple) we wish to recognise. Thus, each model is segment-specific
and has its own � , � , ��� ,

� � , ��� and
� � . Some parameters can

be shared between models – see section 2.4.1 below. Our system
uses the syllable as the unit, rather than the more usual phone, as
in [1].

2.2. Model configurations

We considered two forms for the models. In the first, the articu-
lators themselves are treated as a linear dynamical system – only
equation 1 is used, with 
 substituted for � . In the second, an
“internal model” [5] is used – described by equation 1; the artic-
ulator positions are a linear transform of the state of this “inter-
nal” model – described by equation 2. In this system, � is the
hidden state of the model; it cannot be observed. This second
configuration has the advantage that the dimension of the hidden
state space can be different from the dimension of the articulatory
state space (which is determined by the number of articulators be-
ing modelled). In all our experiments, we used all 13 articulatory
measurements (see figure 1); future experiments will explore ways
of reducing the data dimensionality a priori, and of introducing
Electro-palatograph (EPG) data.

2.3. Interpretation

Although we make no claims that the hidden space in the second
of our model configurations relates to anything physical, it is in-
teresting to examine how the dimension of the hidden space – that

is, the number of free variables required to describe the state of
the system - affects performance. At this time, our measure of the
models’ performance is accuracy on a simple classification task, as
described in section 3 below. The best accuracies for systems with
various hidden space dimensions are shown in figure 4.

2.4. Training

The models were trained by a simple Expectation-Maximisation
algorithm (see, for example, [4] for mathematical details). This
is a two step algorithm: in the first step (the E step), statistics are
accumulated over the training tokens using the existing model pa-
rameters; in the second step (the M step) the model parameters are
updated using those statistics.

2.4.1. Parameter tying In equations 1 and 2, the model parame-
ters are different for each model. It is possible to share some of the
parameters between models – we call this parameter tying. One
interesting possibility is to have a single H matrix and observation
noise process

�
for all models. This means that all models share

the same hidden space: � ,
� � and � � are tied across all models.

Implementation of parameter tying is trivial in the EM framework
- parameters to be tied simply pool statistics during the E step.

2.4.2. Number of training iterations The EM algorithm only
guarantees to increase the likelihood of the training data, given the
models, each iteration. It is therefore possible to over fit the train-
ing data, and lose performance on the test data. Training can be
stopped when the models’ performance on a validation set is max-
imised. At this time, we have insufficient data to use a validation
set, and use the test data itself to determine when training should
be stopped (that is, how many iterations of the EM algorithm to
perform).

3. EXPERIMENTS

3.1. A simple task

The measure we chose to assess the performance of our models is
a simple syllable classification task. As described in section 1.1
above, the dataset comprised 16 different syllables (dap, pop, pid,
and so on). The task was to classify (from endpointed data) un-
known syllables as one of the 16 types. All types were equally
likely, so the chance level of success would be 1 in 16, or 6%.

3.2. Acoustic-only observations

Clearly, articulatory measurements are not a practical proposition
for automatic speech recognition; in the real world, we only have
acoustic observations. One of our hypotheses is that using an ar-
ticulatory state space for the dynamical system model will lead to
improved performance even when the state space is hidden. In
other words, if the state space is articulatory during training, we
might expect improved recognition from acoustic-only data.



system observations state space
A articulatory articulatory
B articulatory hidden
C LPC LPC
D LPC hidden
E LPC articulatory �

� observable in training, but hidden during testing.

Table 1: The various systems

3.3. Experimental models

A number of systems were trained, as shown in table 1. Section 2.2
gave details of the configurations: systems A and C have observ-
able state spaces, and systems B and D have a hidden space which
can be optionally shared amongst all models, via parameter tying.
System E uses a state space initialised from system A. Acoustic
data was parameterised as Linear Prediction Coefficients (LPC) at
the same frame rate (500Hz) as the EMA data

�
.

system accuracy
A 70%

B
non-tied H 89%
tied H 81%

C 66%

D
non-tied H 59%
tied H 41%

E
constant H 31%
non-tied H 30%
tied H 36%

Table 2: Classification test results. In systems B and D, the hidden
state space dimension was varied to give the best result.

3.4. Results

3.4.1. Linear dynamical system model Models with observable
state spaces were trained on both EMA and LPC data. The results
in table 2 (systems A and C) indicate that the EMA data can be
successfully modelled as a linear dynamical system, with a classi-
fication rate of 70% on the test set. This is an encouraging result
and indicates that, firstly, our proposed system with a hidden ar-
ticulatory state and only acoustic observations has some chance of
success, and secondly, that even the very simple model used here
fits the data remarkably well.

3.4.2. Hidden linear dynamical system model Models with
hidden state spaces were trained on EMA and LPC data. The di-
mension of the hidden space was varied. Additionally, versions of
both systems in which the hidden space was shared amongst mod-
els (by tying � ,

� � and ��� across all models – indicated in table
2 simply as tied H) were trained. In table 2, the results are given
for models using EMA observations (system B) and LPC observa-
tions (system D). The best system was the hidden state model with
EMA observations, with a test set accuracy of 89% (hidden state
order was 7, trained for 4 iterations of EM).

Our experiments with parameter tying did not generally show
improvements in accuracy. Simply tying � ,

� � and ��� across
models may not be sufficient. This only ensures that the state space
(that is, the space of � ) has a fixed relation to the observation space.
We could go further, and say that the dynamical behaviour of �
should be the same in all models, since all speech is produced by
the same “internal model” operating in the same hidden space –
see section 4.1.
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Figure 2: Error plot for test token “ded”. Solid line is for model
“ded”; dashed line is for model “pep”. Frame rate is 500Hz.

Figure 2 shows the mean squared modelling error for one of
the test tokens (the syllable “ded”) using models for “ded” and for
“pep”. The model was type B, with non-tied H, the hidden state
space dimension was 7 and the models were trained for 4 itera-
tions of EM (each iteration uses each training token once). The
error plotted is the squared difference between the observation and
the model prediction, averaged across the 13 EMA channels. The
correct model has a lower total error over the token: it matches
the data better than the incorrect model. The regions of greatest
error for the incorrect model are, unsurprisingly, in the onset and
coda where the observed “d” does not match the model’s “p”. Fig-
ure 3 shows the effect of number of training iterations on test set
accuracy.
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Figure 3: Test set accuracy vs. training iterations for hidden linear
dynamical system model of order 7 with EMA data as observa-
tions.



System E was not successful. We tried three variations: keep-
ing � ,

� � and ��� the same as system A (constant H in the table)
and retraining � ,

� � and ��� in both tied and un-tied versions. The
most likely reason for this failure is the non-linear relationship be-
tween articulatory and LPC spaces - see section 5.
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Figure 4: Effect of hidden space dimensionality on accuracy.

4. ANALYSIS

4.1. Interpretation of model parameters

The dynamical behaviour of the (hidden) state of the system is de-
scribed by � , with the variability about this predicted behaviour
represented by the Gaussian noise process

�
. Since we chose to

make � segment-specific (and optionally tie � over all models) �
can be seen as having two distinct components: one is the hidden
dynamical system common to all models sharing the same hid-
den space – in other words, the underlying production mechanism;
the other is a segment-specific component representing the state
behaviour when a particular speech unit (syllable, in this case) is
produced. The segment-specific part of � can be interpreted as the
gesture required to produce the speech unit being modelled. The
possible complexity of this gesture is governed by the form and
size of � .

In future work we intend to explicitly separate these two com-
ponents of � , which will allow us to tie the dynamical behaviour
component across all models – based on the fact that the underly-
ing mechanism of speech production is a constant across speech
segments. This leads to two choices for the segment-specific com-
ponent of the models: articulatory targets, or gestures. We are
currently investigating this topic, with the intention of defining an
inventory of articulatory units in terms of targets and/or gestures.

5. CONCLUSIONS

The most successful models were the hidden state models with ar-
ticulatory observations. The models with an articulatory hidden
state and acoustic observations were not successful. From this we
draw two conclusions: the articulatory data is well modelled by a
linear system – in other words, the underlying physical mechanism
of speech production is sufficiently linear not to require non-linear
models; however, the acoustic observations (LPC in this case) do
not have a linear relationship to the articulatory parameters. This

is not really surprising. The direction of our future work is there-
fore to keep the underlying (hidden state space) models linear, but
explore non-linear mappings to the observation space. Equation 2
will be replaced by a non-linear relationship – a neural network,
for example. Neural networks mapping between acoustic and ar-
ticulatory spaces are a current research topic at CSTR.
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Notes

� The observation may include dynamic parameters known as delta co-
efficients

� Facility located at Queen Margaret University College, Edinburgh; see
http://sls.qmced.ac.uk/research/EMA/ema.htm

�
We avoided the most common parameterisation of the acoustic signal

used in speech recognition – Mel-scale Cepstral coefficients – because this
has a very non-linear relationship to vocal tract parameters
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