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ABSTRACT

Speech recognition systems for languages with a rich
inflectional morphology (like German) suffer from
the limitations of a word-based full-form lexicon.
Although the morphological and acoustical knowl-
edge about words is coded implicitly within the lex-
icon entries (which are usually closely related to the
orthography of the language at hand) this know-
ledge is usually not explicitly available for other tasks
(e.g. detecting OOV words). This paper presents
an HMM-based ‘word’ recognizer that uses mor-
phemes on the string level for recognizing sponta-
neous German conversational speech (VERBMOBIL
corpus). The system has no explicit word knowl-
edge but uses a morpheme-bigram to capture the
German word and sentence structure to some extent.
The morpheme recognizer is tightly coupled with a
prosodic classifier in order to compensate for some
of the additional ambiguity introduced by using mor-
phemes instead of words. Although the recognizer’s
morpheme accuracy of 85.3% is comparable to that
of our word—based decoder (word accuracy 86%) until
now the benefit of introducing the prosodic classifier
is not yet clear.

1. INTRODUCTION

Using lexica with fully inflected word forms in speech
recognition for languages with a rich morphology in-
troduces problems into the development and success-
full application of such systems. This paper presents
an HMM-based speech recognizer that uses mor-
phemes instead of words.

The proposed architecture easily copes with problems
that can usually not be addressed in an elegant man-
ner, e.g. a speech recognizer might know of the (com-
pound number) word ‘einhundertsiebenundzwanzig’
(one hundred twenty seven) but not of the
word ‘einhundertachtungzwanzig’ (128) because num-
bers are not exhaustivly enumerated in lexica.
But even if numbers were modeled by means

other than the (orthographically correct) full-
form (e.g. by a regular grammar using their
corresponding sub parts) the inherent problems
of composition (‘Montagstermin’ (a meeting on
monday), ‘Dienstagstermin’ (on tuesday)), deriva-
tion (‘absagen’/‘Absage’ (to cancel/cancelation),
‘ansagen’/‘Ansage’ (to announce/announcement)),
inflection (‘erster’, ‘erstem’, ‘ersten’, ‘erste’ (differ-
ent cases/gender of ‘first’)) and ad-hoc word creation
(‘Diaabend-Weintrink-Revisionstreffen’) remain.

Although our recognizer can potentially produce the
correct solution (i.e. morpheme sequence) as long as
the input consists of morphemes known to the system
(the potential ‘coverage of the language’ is huge com-
pared to recognition systems using full-forms) the
task has become more difficult due to the additional
ambiguity that has been introduced into the model
by using smaller lexical units (on the acoustical as
well as on the string level, i.e., language model). In
order to compensate for some of the loss we incor-
porated a prosodic classifier and tightly coupled the
two systems. We expected to benefit from the addi-
tional acoustic information and the predictive power
of a ‘prosodiy language model’.

The following sections will first describe the standard
speech decoder and the prosodic classifier before we
explain in section 5 how the two were combined into
one morpheme-based speech recognizer. Section 6
will then focus on the evaluation of the overall sys-
tem performance compared to a word-based recog-
nizer using the same training and test data. Finally
we will present some results that show how difficult
the remaining problem of the reconstruction of mean-
ingful words from morpheme sequences is.

2. MORPHEME RECOGNIZER

We used an adapted version of the HTK /HVite V2.1!
speech recognizer for all experiments. The recognizer
uses a (pruned) Viterbi search to find the globally 1-
best path through the search net given the utterance.

In addition the recognizer can produce a lattice
by keeping the (locally) k best Viterbi hypotheses.

1Hidden Markov Model Toolkit of Entropic Research Lab-
oratory, Inc.



When run in this mode the result can either be a
lattice or an N-best list (derived by a backward A*—
search) of sentence level solutions.

We used a backoff bigram language model and (clus-
tered) cross—word triphone HMMs which were com-
piled into the (static) word level search net before
decoding.

3. PROSODIC CLASSIFIER

The prosodic classifier is an improved version of the
one described in [5]. It distinguishes whether a sylla-
ble is accented or not (A /0) and followed by a phrase
boundary or nor (B/0). This makes up four classes
AB, A0, 0B, 00 (prosodic labels).

The prosodic label of a morpheme is composed of the
accent label of the syllable carrying the standard lexi-
cal accent, and the boundary label of its last syllable.
If a morpheme has no syllable nucleus — like some
inflection morphemes — it gets the default label 00.

The classifier’s input is the speech signal, its fun-
damental frequency?, and a phoneme segmentation
within the analysis window, which defines the time
alignment and the phoneme symbol of the syllable
nuclei. The Fp is interpolated and decomposed[5].
Three short time energy features are derived from
the speech signal. Together with the Fy features this
makes 11 basic prosodic features for each frame de-
scribing the energy and Fy contour.

During automaticaly labelling of the training corpus,
a context of up to two preceeding and two succeeding
morphemes is used to get an analysis window of up
to five syllables (two left and two right from the syl-
lable being classified). During morpheme recognition
no right context is used. The final feature vector for
a syllable consists of the basic features at the center
of each syllable nucleus, the syllable nucleus dura-
tion, normalized duration (with respect to the intrin-
sic phoneme duration), and the frame distances be-
tween the syllable nuclei. If no right context is avail-
able (as is the case for decoding), an automatic detec-
tion of one right—context syllable nucleus is tried us-
ing the energy features. Even though the normalized
duration cannot be determined in this case, phrase
boundary detection is still clearly improved.

The classifier was initially trained with 668 manually
prosodically labelled [2] turns of the VERBMOBIL cor-
pus. The phoneme segmentation for the trainig data
was obtained by forced alignment with respect to the
most frequent pronunciation variants.

For each window type (12 in total) a gaussian distri-
bution classifier was trained: In a speaker—wise leave—
one—out procedure first the best of all features were
automatically selected (at most 41 of maximal 66).
Then a cluster analysis was performed. For the ini-
tial training set, the optimal number of subclasses
turned out to be 2 (we did not compute this for the

2The fundamental frequency Fy was determined with the
get_f0 program of the Entropic Signal Processing System.

whole training set yet). Thus e.g. the class A0 is split
into classes A0; and AOQ2 which may represent high
and low accents. The alternative would have been
to explicitly distinguish high and low accents before-
hand and train the classifier with these finer labels.
But the more classes we use, the less well they are
predictable by the prosody model (see next section).

4. PROSODY MODEL

The so called ‘prosody model’ is the link between the
HMM recognizer and the prosodic classifier. It mod-
els the relation between accentuation and phrasing on
the one hand, and morphotactics on the other hand.

Due to the very small corpus we did not use mor-
phemes themselves for that purpose, but rather mor-
pheme categories. Like words that behave in a syn-
tactically similar fashion can be united to one word
class, it might well be the case that morphemes that
behave morphologically similar (and thus fall into the
same morpheme categorie) can be treated the same
in terms of prosody (i.e. prosodic labels).

We decided to use the morpheme category system
developed at the University of Bielefeld [4]. For affix
classification it uses three features of which one is
accentability. In total 19 categories are distinguished.

For 5728 of the 44650 VERBMOBIL I lexicon entries
(see section 6.1) the categories of the morpheme seg-
ments could be obtained from a word-related mor-
pheme data base. 505 further entries were semi-
automatically added. This extended lexicon covers
more than 70% of the selected data. 75% of the miss-
ing 981 words occur only once or twice.

The word-related morpheme data base had no en-
tries for words consisting of only one morpheme. This
concerns mainly function words. For those words the
word category was taken instead, which was obtained
by an automatic POS tagging of the whole corpus.
Morpheme and word categories together make 53 cat-
egories plus one for non—speech.

Five of these categories contain many morphemes
with no syllable nucleus which might be followed by
a phrase boundary (e.g. -t, -s). Since these bound-
aries cannot be acoustically classified (see previous
section), they were shifted to the preceeding mor-
pheme in the initial training data and the category
containing the non-syllabic morphemes was split —
one category for ‘has a syllable nucleus’ and one for
‘has not’. This way these cases could be handled by
the prosody model.

The acoustic prosodic classifier trained with the ini-
tial training set was used to classify the whole cor-
pus. Each morpheme is tagged with its category and
prosodic label. There are 53 -4 + 6 = 218 possi-
ble combinations, of which 178 actually occur in the
training set. With these sequences of morpheme cat-
egories combined with prosodic labels a backoff tri-
gram model is trained, which has a perplexity of 9.8
on the training and 10.9 on the test set.



The prosody model does not only yield the prosody
factor (see next section) in combination with the
a posteriori probability given by the prosodic clas-
sifier. It was also used to predict new prosodic labels
for the training set. Again a classifier trained with
these labels classified the corpus and with the result-
ing labels yet another prosody model was trained, and
so on. This way the prosody model and the prosodic
classifier are iteratively adapted to each other. The
benefit of the prosody factor during morpheme recog-
nition is maximal, when the agreement of prosody
recognition and prediction is maximal.

During classification and during prediction biases
both for the accent super class (A0 + AB) and the
break super class (0B + AB) were introduced to
guarantee that they are in the same proportion to
their inverse class. Otherwise the less frequent la-
bels would vanish during the iterative adaptation of
prosody recognition and prediction.

During 10 iterations the overall recognition rate for
all four classes unfortunately stays nearly constant at
72%. While the recognition rate for the accent super
class rises from 61% to 65%, the recognition rate of
the less frequent break super class falls from 67% to
43%.

5. INTEGRATION

We decided to apply the prosodic analysis whenever
the Viterbi search hypothesized a morpheme end. At
this point in the search process all phone bound-
aries are available and thus the segmentation infor-
mation of the current and the preceeding morpheme
can be passed to the prosodic classifier. Until now we
have integrated the prosodic classifier into the 1-best
search only.

Let us denote morphemes with lower case characters
z,y,2 and the corresponding categories with upper
case characters X,Y,Z. An upper right index indi-
cates that a morpheme z may belong to different cat-
egories Z' ... Z". The probability R, of z belonging
to a certain Z°€ is

R.= P(Z¢z2)- P(Z°|X*,Y?)

assuming that the preceeding morphemes x and y be-
long to the categories X and Y°. The probability
P(Z°|z) is obtained by counting out the pairs (mor-
pheme, category) within the training set. The proba-
bility P(Z¢|X?,Y?) is estimated by a backoff trigram
model.

The prosodic classification of a morpheme z gives the
a posteriori probability P;; for each prosodic class
ij € {00,0B, A0, AB}.

The prosody model yields for a certain prosodic label
ij and a certain category index ¢ the probability

Qije = P(Z5|X %, Y))

assuming that the preceeding morphemes z,y be-

longed to categories X, Y? and have been prosod-
ically labelled with ef and gh respectively.

The prosody factor is obtained by maximizing the
product of these three probabilities over all prosodic
labels 7j and all category indices:

PFac = maz; j.c (Pij - Qijc - Re)

The prosody factor is then used like an additional
language model. A bias is applied in order to bal-
ance between the prosody factor and the morpheme
bigram language model.

It should be noted that our current implementation
violates the Viterbi assumption: the static structure
of the search net entails a dependency on the preceed-
ing morpheme only (as is sufficient for a bigram) —
since we are using long term dependencies (segmen-
tation of the two preceeding morphemes, morpheme
category trigram) and we are applying the prosodic
factor in a “post mortem” fashion at the end of a
morpheme, the true globally best Viterbi path is only
approximated.?

6. EXPERIMENTS

6.1. The Data

We used the German part of the VERBMOBIL I cor-
pus [3]. It consists of 13939 turns on 8 CD ROMs.
3638 turns containing spelling sequences, non—words
or aborted words were discarded, as well as 2874 turns
that were not covered by the lexicon extended with
morpheme categories (see section 4). Of the remain-
ing 7427 turns 911 were used for testing, 6516 for
training.

For the VERBMOBIL I corpus there existed already
a lexicon containing orthography, morpheme seg-
mented orthography, and morpheme segmented pro-
nunciation [1]. This lexicon was used to segment the
corpus into morphemes and to obtain the morpheme
based pronunciation lexicon.

Although it is clear that the acoustical ambiguity
of our model is increased by using morphemes in-
stead of words we hoped that we would benefit on
the string level. From table 1 and 2 it seems that the
predictive power of the language model (perplexity
29.15 instead of 70.20) and the restriction imposed
by the word (i.e., morpheme) inventory should make
the classification problem easier in the case of mor-
pheme recognition. Unfortunatly it turns out that the
overall entropy of the morpheme—coded test set given
the corresponding bigram is still greater compared to
words.

6.2. Results

The recognition results are listed in table 3. Since
we did not use a development set all weights, biases

3This is similar to the way others have implemented ‘cheap
trigrams’.



token | types | bigrams

train 99.1K | 2.5K 27.9K

wrd test 15.2K | 1.1K 7.1K
OO0V | 179 (1.17%) 153

train 154.5K | 1.3K 18.5K

mor test 22.2K | 0.7K 6.2K
OOV | 76 (0.34%) 59

Table 1: Word—coded (wrd) and morpheme—coded
(mor) data: 86.8% of the morpheme pairs were seen
in the training set while it were only 74.0% for the
word pairs (bigram hits on token).

test train
perpl. | entr. | perpl. | entr.
test | 17.66 | 4.14
wrd | train | 70.20 | 6.13 | 30.23 | 4.92
both | 31.37 | 4.97
test | 16.77 | 4.07
mor | train | 29.15 | 4.87 | 20.03 | 4.32
both | 21.90 | 4.45

Table 2: Perplexity/entropy measures (for test set
and training set) of language models trained on vary-
ing sets. Types not seen in the training data were
added and backed—off by the language model (uni-
gram count was 1.0)

and insertion penalties were optimized on the test set.
OOV types were added to the recognizer inventory
and backed—off by the language model.

Even though the accuracy of the morpheme recog-
nizer is close to the word accuracy? it turns out that
the greater number of morphemes results in a lower
word accuracy when trying to reconstruct words from
morphemes.

For this reconstruction we used the same word list
as for the word recognizer. For any sequence of mor-
phemes in the 1-best morpheme solution that made
up a known word this word was added to the mor-
pheme sequence (using the respective start and end
points of the morpheme sequence — thus building a
graph). Finaly the morphemes were removed (while
preserving the connectivity of the graph) and the
graph was compared to the word—based reference (see
‘rcb’ in Table 3).

Although we used a tighter beam for the prosody ex-
periments due to the great number of experiments
that had to be run in order to optimize the various
parameters, the results show that the integration of
the two classifiers did not improve the recognition ac-
curagcy.

41t is difficult to judge the results for graphs since the den-
sities differ and usually can not be set to a specific value in
advance.

corr. acc.

wrd 1-best | 88.0 86.0
graph (k=2) | 93.7 | 92.9 (4.8 hyps/ref)
1-best | 87.8 85.3

mor | graph (k=2) | 94.1 | 93.4 (6.6 hyps/ref)
incl. pros. | 87.2 84.2

rch mor 1-b | 82.6 | 81.4 (2.1 hyps/ref)
incl. pros. | 82.2 | 80.9 (2.0 hyps/ref)

Table 3: Word (wrd) and morpheme (mor, including
prosodic classifier) recognition results for 1-best and
graph evaluation (graph density). Row ‘rcb’ shows
the word recognition for the recombined morpheme
sequences.

7. CONCLUSION

We presented a morpheme recognizer that was tightly
coupled with a prosodic classifier. We outlined the
training and the integration of the prosodic com-
ponent and presented preliminary results. So far
recognition accuracy has not significantly changed
and future investigation will focus on improving the
prosodic component and including right context for
the prosodic prediction.
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