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ABSTRACT
This paper proposesa new class of hidden Markov
model (HMM) called multiple-regression HMM (MR-
HMM) that utilizes auxiliary featuressuchasfundamental
frequeny (Fp) andspeakingstylesthat affect spectralpa-

rametergo bettermodeltheacoustideaturesof phonemes.

Thoughsuchauxiliary featuresareconsideredo bethefac-

torsthatdegradethe performancef speechrecognizersthe

proposedVIR-HMM adaptsts modelparameterd,e. mean
vectorsof output probability distributions, dependingon

theseauxiliary informationto improve the recognitionac-

curag. Formulationfor parametereestimationof MR-

HMM basedon the EM algorithm is given in the paper

Experimentsof spealer-dependentsolatedword recogni-
tion demonstratethatMR-HMMSs using Fy basedauxiliary

featureseducedheerrorratesby morethan20% compared
with the corventionalHMMs.

1. INTRODUCTION

Spectralparameterof phonemesre influencedby num-
ber of factors,not only gendey spealers, contets, but also
speakingstyles fundamentafrequeng (F,) andsoon. The
challengeof improving the recognitionaccurag of HMM
is regardedas a problem of how to neutralizethe influ-
enceby thosefactorsthat degradethe recognitionperfor
mance. So far, a numberof efforts have beenmadeto-
wardsspealkeradaptatiolMAP[1], VFS[2], MLLR[3]) and
contet-dependeninodeling(HMNet[4]), while only afew
towardsspeakingstyleand F; adaptatioror normalization.

In spolendialoguesystemsgvena singlehumancould
speakin mary different styles. For example, when the
systemmisrecognizeshe speechthe usertendsto speak
moreclearly, slovly to emphasizéhemisrecognizedavords.
These sorts of speaking styles that are different from
the normal utterancestyle causelower accurag of the
recognizer[k Thefirst stepfor this problemis to usesep-
arateacousticmodelsfor the specificspeakingstyles[6].
Next stepwhichis discussedh this papermwill beto explore
someadaptatioror normalizationtechniqueshopefullyon-
line or frame-synchronouadaptatiorof HMM againstthe
utterancevariations.

Basedon a knowledgethat spectraffeatureshave some
correlationwith Fp, Singerand Sagayamd7] shoved that

spectrumnormalizationby a phoneme-wisdinear regres-
sion model betweenF; and cepstralfeaturescould im-
prove thephonemeecognitionaccuray. Thisapproactas-
sumedthatthe regressioncoeficient did not changewithin
aphonemeBut it would bemorenaturalthatthe coeficient
canvary accordingto the changeof spectralfeatureseven
within acertainphonemeTo realizesuchdynamicprocess-
ing, spectrumnormalizationby F, and phonemerecogni-
tion shouldbe doneat the sametime. This canbe achieved
by embeddingthe adaptationor normalizationoperation
into the HMM formulation, in otherwords, developing a
new classof HMM thatadaptsts modelparameterdepend-
ing on Fy or otherauxiliary features. Among suchclass
of HMM, multi-regressiortHMM (MR-HMM), theonethat
employs multiple regressionto modify the model parame-
ters,i.e. meanvectorsof normaldistributions, is discussed
here.

It shouldbe notedthatthe proposedVIR-HMM is com-
pletely different from the existing autorgressve HMM
(AR-HMM) [8] which assumesghatobsenationvectorsare
drawvn from anauto-r@ressiorprocess.

This paperis organizedas follows: the next section
describesthe basic formulation of MR-HMM and EM-
basedparametereestimatioralgorithm. The third section
present&xperimentakesultsof spealkr-dependenisolated
word recognition.Finally, thelastsectionis devotedto con-
clusions.

2. MULTIPLE-REGRESSION HMM

2.1. Outlineof MR-HMM

Fig. 1 shavsthecorrelationbetweerog Fy andthe7th mel-
cepstralcoeficient (MCEP) of a phonemesamplesef (/e/
precededdy /s/ andfollowed by /i/ ). It canbe seenfrom
thefigurethatthe 7th MCEP hasa neggative correlationwith
log Fy. This sortof influenceof Fy hasbeenobsenedon
formant frequenciesof vowels, andit hasbeenexplained
from thebiomechanicaindphonologicaboint of view [9].
This evidenceimpliesthat F;, canbe of helpto recoverthe
original spectralfeaturesfrom the obsened spectralpara-
meters.

Since the correlation betweenthe spectral features
and F; varies dependingon contets, phonemesor sub-
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Fig. 2. Ideaof Multiple-RegressiorHMM using Fy asan
auxiliary feature.

phonemesnhormalizationof spectrumparameterdy using
Fy shouldbedonesimultaneouslyvith speectrecognition.
MR-HMM givessuchframewvork by changingits parame-
tersaccordingo Fy andotherpossiblefeatures.

Fig. 2 shavsabasicideaof MR-HMM. Thebottombox
in thefigureillustratesthei th MCEP coeficientasaninput
featureto HMM, F, asanauxiliary feature,aswell asthe
meanvaluesof outputprobabilitydistributionsof eachstate
of both MR-HMM and standardHMM. In the framework
of corventionalHMMSs, the meanvalue of eachstatedoes
not change while, in the MR-HMM, the meanvalue of a
certaintime instancet changedasedon theregressioriine
(theupper3 boxesin thefigure)givenasafunctionof Fy(t),
i.e.thefundamentafrequengy attimet. Let u beanelement
of ameanvector theny attimet is modeledas

p = o + 71 log Fy(t), (1)

whererg,r; arethe regressioncoeficients. In a general
casewhere M auxiliary features(predictor variablesin

termsof multiple regression)are given, the above formu-

lationis now rewrittenas

p=ro+mré +-+ruéu. (2

In the senseof adaptingthe model parametersMR-
HMM is similarto MLLR for spealer adaptatiorexcepting

to the point that MLLR usesthe samefeatureparameters
with the onesusedfor recognitionwhile MR-HMM utilizes
auxiliary featuresthat are not useddirectly for recognition
but usedfor adaptingthe modelparametersn-line.

2.2. Probability evaluation in MR-HMM

SinceMR-HMM differs from standardHMM only on the
point that the former usesauxiliary featuresto calculate
probability distributions but the latter not, mostpartsof its
formulationis samewith HMM. So,the notationsa;; (state
transitionprobability) and; (initial stateprobability) used
herehave the samemeaningwith thosein HMM.

Let p and U be the mean vector and the covari-
ancematrix of a Gaussiandistribution, respectrely. The
output probability density function b;(x¢|€:) of states
for a given N-dimensional obsenation vector x; =

[*1¢, T2, -+, xne)', @and M-dimensionalauxiliary vector
& = [&1e, &ty - -, Eare]', is definedas
bi(xe|&:) = ;16—%(-'Et—ﬂl(St))lUi_l(wt—[,l,(ﬁt))7
@n? U}
3)

wherep(&:) is givenby
p(ée) = Ribs, 4)

é:t = (lagt) = (15£1t7£2ta o '5€Mt)la

whereR; isanN x (M + 1)-dimensionamultiple regres-
sion matrix.

The probability of observinga vector sequenceX =
(z1 - - - xT) whengiven an auxiliary vectorsequencé =
(&1 ---&7) is expressedas

FXINE = D F(X,6008)
0cO
T
= D mobo (/&) [] aoir0.bs, (@el€e),
0c® t=2

where) denotes setof parametersf MR-HMM, 6 means
a statesequencdé,,---,6r) and ® expresseghe set of

all possiblestatesequences.f(X,8|)\) is the probability
densityof observingX with 6 giveng andA.

It is easyto seethattheforward/backvardalgorithmand
Viterbi algorithmcanbe usedto evaluatethe above proba-
bility by just replacingthe outputprobability densityfunc-
tion of corventionalHMM with the onegiven by equation

@3).

2.3. Parameter estimation of MR-HMM

Theparametersf MR-HMM includingthemultiple regres-
sionmatrix R; canbetrainedbasedon a maximumlikeli-

hoodoptimizationcriterionaswell asHMM. Thoughboth

EM algorithmandViterbi training algorithmareapplicable
to MR-HMM, only the EM basedeestimatioris described
here.



Table 1. Hand-sgmentedohonemeaecognitionresultshy MR-HMM comparedvith the conventionalHMM

auxiliary % errors % reduction
models features features || Vowel | V-Cons|UV-Cons| ALL Vowel | V-Cons |UV-Cons| ALL
C - 17.6 28.4 385 18.7 - - - -

C+P - 17.6 28.1 36.4 18.5 -0.3 2.2 2.4 0.8
HMM C+AP - 174 29.0 35.7 18.3 0.9 -1.7 7.1 2.0
C+R - 18.2 30.0 39.1 19.1 -35 —4.6 -2.1 -1.9
C+P+R - 18.4 29.7 38.0 19.1 —-4.7 -3.1 -14 -2.3
C+AP+R - 184 30.3 36.4 18.9 —-4.6 —-5.7 5.3 -0.7
C P 16.9 28.3 338 17.6 3.7 1.7 121 5.9
C AP 17.4 28.2 315 17.8 1.2 1.1 14.9 4.9
MR-HMM C R 15.2 201 215 14.5 131 30.0 44.3 21.6
C P+R 15.2 19.7 19.9 14.3 133 31.3 484 231
C AP+R 14.8 19.2 19.8 14.0 15.5 33.3 492 24.4

(C: MCEP(13)+AMCEP(13),Vowel:/a,i,u,e,o/V-Cons:/b,d,g/UV-Cons:/p,t,k/ ALL:26 phonemes)

The following reestimatiorformulasof parametersire
derived by iteratively maximizing an auxiliary function
givenby

QA ;\) = Z f(X,0(2) log(f(Xaelj‘))a

e®

where) and) denotethe currentparameterandthe reesti-
matedparametergiespectiely.
A setof parametereestimationformulasis described

by

(Z %(i)mté;> (Z%(Uétéi) .

R, =
o > ~
Z Ye(i)(xe — Ri&e)(2e — Ri&:)'
l'j_ — t=1
* T ’
Z%(i)
t=1
7 = 71(4), a;; = M

Y mea)

where~y; is the probability of beingin states att, v:—1 (4, )
is the probability of beingin state; att — 1, andstatej at
t. Both~; andv;_1 (4, j) arecalculatedby thesamemanner
with the corventionalHMM.

In casethat no auxiliary featuresare given, the above
equationsare equivalent to those for the corventional
HMM.

3. EXPERIMENTS

3.1. Experimental setup

Theformulationof MR-HMM givenin theprevioussection
doesnotrestrictthe sortsof auxiliary featureghatareused
asthe explanatoryvariablesof multiple-regression. Since
thisis thefirst attemptto evaluatethe MR-HMM for speech

recognition,Fy waschoserasa basicauxiliary feature.To
excludetheinfluenceof otherfeaturesuchasspeakingate,
andto comparethe recognitionaccurag betweernthe MR-
HMM and corventionalHMMs, read-speeclilatabasaut-
teredin normalspeakingstylewasused.

The proposedMR-HMM was evaluatedin spealer-
dependenhand-sgmentedphonemerecognitionand iso-
latedword recognitionexperiments.

Speechdataof 4 people(2 male and 2 female) were
collectedfrom the ATR A-set at a samplingfrequeng of
16 kHz. 13 mel-cepstratoeficients(MCEPs)and13delta
mel-cepstralcoeficients (AMCEPSs)were calculatedwith
a frame length of 25msand a frame shift of 5ms. Both
MCEPsand AMCEPsincludetheOth coeficients. F, were
calculatedwith aframelengthof 40msanda frameshift of
5ms.To extract Fy, the cepstrunmethodwasemplgyed. In
the experimentswe tried threeauxiliary featuresthatwere
log Fy with linear interpolationfor urvoiced sounds(P),
AP, andthe power of low-frequeng-bandspectrum(R) as
asimpleindicatorof voiced-soundxistence.

In training, the odd numberedwords out of the 5240
Japaneseommorwords,andthe516phoneticallybalanced
wordswereused. In testing,the even numberedvordsout
of the 5240wordswereused. The phonemecategoriesfor
recognitionwere / N, a, b, tf, d, e, f, g, h, i, 3, k, m, n, o,
p,Q,I‘,S,Lt,fS,u,W,j,Z/.

3.2. Phoneme Recognition Experiments

Table.1 shows the experimentalresults,in which context-
independent3-state,single-mixtureleft-to-right HMM is
employedwith adiagonalkcovariancematrix for eachoutput
probability distribution.

In all thecasesMR-HMM reducedhe errorratessuc-
cessfullycomparedwith the baselineHMM that doesnot
useary auxiliary features.Surprisingly the featureR con-
tributesto increasethe recognitionaccuray than P does.
Since the value of R hasa connectionwith pitch exis-
tence thisresultsindicatethatHMM parametershouldbe
adapteddependingon pitch existenceand suchadaptation



Table 2. Isolatedword recognitionresultsby MR-HMM
comparedvith the corventionalHMM

models | features auxiliary % errors| % reduction
features
C - 4.7 -
C+P - 5.2 —12.3
C+AP - 4.7 -1.6
HMM C+R - 4.8 —2.9
C+P+R - 53 —15.3
C+AP+R - 51 —-9.3
C P 4.2 8.6
C AP 4.4 4.4
MR-HMM C R 34 23.0
C P+R 34 23.0
C AP+R 35 211

(C: MCEPs(13)AMCEP(13))

is automaticallytaking placein the MR-HMM whengiven
thefeatureR. Thoughthoseauxiliary featuresareeffective
for MR-HMM, they are not for the corventionalHMM in
which they areincorporatednto the obsenationvectors.

3.3. Isolated Word Recognition Experiments

Table.2 shavs the experimentalresults,in which context-
dependentsingle-mixture left-to-right modelwith a diag-
onal covariancematrix for eachoutputprobability distribu-
tion wasused. The ML-SSSalgorithm[10] wasemployed
to train the context-dependenHMMs with 406 statesand
MR-HMMs having the sametopologieswith the corven-
tional HMMs. In testing,the even numberedwvordsout of
the5240wordswereusedexceptingthe225wordsthatcon-
tain phonemesot appearingn thetraining data. The lex-
icon was comprisedof all testingwords. Half of testing
wordswereusedfor the evaluation.

It canbeseerfrom thetablethatMR-HMM reducedhe
errorrateby 8.6%(P), 23.0%(R) comparedvith thebase-
line HMM. Ontheotherhand,cornventionaHMM failedto
reducethe errorseventhey werefed ary of thoseauxiliary
features.This might be causedy the “curseof dimension-
ality” problem,i.e. addingary of auxiliary featuresandin-
creasinghe dimensionof featurevectorof HMM canlead
therecognitionsystento poorerresults.

Fig. 3 illustrates the average variancesof the out-
put probability densitiesof MR-HMM in comparisorwith
thoseof corventionalHMM. We can seethat MR-HMM
hassmallervarianceshan corventionalHMM, especially
in the lower order MCEPSs. This resultindicatesthat MR-
HMM representshe informationof the training datamore
efficiently thancorventionalHMM.

4. CONCLUSION

The proposedVIR-HMM s a generalframenork for incor
poratingextra featuresinto HMM not like the way of just
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Fig. 3. Averagevariancef models.

combiningthe new featureswith the existing features.Al-
though Fy and R wereconsideredn this paper otherfea-
turesthathave somecorrelationswith the existing features
canbe emplgyed. The authorsare extendingits formula-
tion to adaptnot only the meanvectorsbut alsothe covari-
ancematricesof the distributions. Furthermore the pro-
posedmodelis applicableto speectsynthesigo controlthe
speakingstyle.
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