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   Abstract
A novel approach to articulatory-acoustic feature extraction
has been developed for enhancing the accuracy of classifica-
tion associated with place and manner of articulation informa-
t ion.  This  “eli tis t”  approach is tes ted on a corpus of
spontaneous Dutch using two different systems, one trained on
a subset of the same corpus, the other trained on a corpus from
a different language (American English). The feature dimen-
sions, voicing and manner of articulation transfer relatively
well between the two languages. However, place information
transfers less well. Manner-specific training can be used to
improve classification of articulatory place information.

1.   Introduction

Current-generation speech recognition (ASR) systems often
rely on automatic-alignment procedures to train and refine
phonetic-segment models. Although these automatically gen-
erated alignments are designed to approximate the actual
phones contained in an utterance, they are often erroneous in
terms of their phonetic identity. For instance, over forty percent
of the phonetic labels generated by state-of-the-art automatic
alignment systems differ from those generated by phonetically
trained human transcribers in the Switchboard corpus [3]. The
quality of automatic labeling is potentially of great significance
for large-vocabulary ASR performance as word-error rate is
largely dependent on the accuracy of phone recognition [4].
Moreover, a substantial reduction in word-error rate is, in prin-
ciple, achievable when phone recognition is both extremely
accurate and tuned to the phonetic composition of the recogni-
tion lexicon [10].

A means by which to achieve an accurate phonetic charac-
terization of the speech signal is through the use of articula-
tory-acoustic features (AFs), such as voicing, place and
manner of articulation, instead of phonetic segments. An
advantage of using AFs is the potential performance gain for
cross-linguistic transfer. Because AFs are similar across lan-
guages it should be possible, in principle, to train the acoustic
models of an ASR system on articulatory-based features, inde-
pendent of the language to which it is ultimately applied,
thereby saving both time and effort developing applications for
languages lacking a phonetically annotated set of training
material.

As a preliminary means of applying AFs for cross-linguis-
tic training in ASR, we have applied an AF-classification sys-
tem originally designed for American English to spontaneous
Dutch material. This paper delineates the extent to which such
cross-linguistic transfer succeeds, as well as explores the
potential for applying an “elitist” approach for AF classifica-
tion to Dutch. This approach improves manner-of-articulation
classification through judicious (and principled) selection of
frames and enhances place-of-articulation classification via a
manner-specific training and testing regime.

2.   Corpora

Two separate corpora, one Dutch, the other American English,
were used in the study. 

2.1   VIOS (Dutch)

VIOS [11] is a Dutch corpus composed of human-machine
“dialogues” within the context of railroad timetable queries
conducted over the telephone.

A subset of this corpus (3000 utterances, comprising ca. 60
minutes of material) was used to train an array of networks of
multilayer perceptrons (MLPs), with an additional 6 minutes of
data used for cross-validation purposes. Labeling and segmen-
tation at the phonetic-segment level was performed using a
special form of automatic alignment system that explicitly
models pronunciation variation derived from a set of phonolog-
ical rules [6].

An eighteen-minute component of VIOS, previously hand-
labeled at the phonetic-segment level by students of Language
and Speech Pathology at the University of Nijmegen, was used
as a test set in order to ascertain the accuracy of AF-classifica-
tion performance. This test material was segmented at the pho-
netic-segment level using an automatic-alignment procedure,
that is part of the Phicos recognition system [12], trained on a
subset of the VIOS corpus.

2.2   NTIMIT (American English)

NTIMIT [5] is a quasi-phonetically balanced corpus of sen-
tences read by native speakers of American English whose pro-
nunciation patterns reflect a wide range of dialectal variation
and which has been passed through a telephone network (i.e.,
0.3–3.4 kHz bandwidth). This corpus is derived from TIMIT
(an 8- kHz version of NTIMIT), which was phonetically hand-
labeled and segmented at the Massachusetts Institute of Tech-
nology.

3.   Training Regime

MLPs were trained on five separate feature dimensions: (1)
place and (2) manner of articulation, (3) voicing, (4) rounding
and (5) front-back articulation (specific to vowels), using a
procedure similar to that described in [7][8]. The front-end rep-
resentation of the signal consisted of logarithmically com-
pressed power spectra computed over a window of 25 ms every
10 ms. The spectrum was partitioned into fourteen, 1/4-octave
channels between 0.3 and 3.4 kHz. Delta (first-derivative) and
double-delta (second derivative) features pertaining to the
spectral contour over time were also computed. Altogether, the
spectral representation was based on a 42-dimension feature
space.

Articulatory-acoustic features were automatically derived
from phonetic-segment labels using the mapping pattern illus-
trated in Table 1 for the VIOS corpus (cf. [2] for the pertinent



mapping pattern associated with the NTIMIT corpus). The fea-
ture dimensions, “Front-Back” and “Rounding” applied solely
to vocalic segments. The approximants (i.e., glides, liquids and
[h]) were classified as vocalic with respect to articulatory man-
ner. The rhoticized segments, [r] and [R], were assigned a
place feature (+rhotic) unique unto themselves in order to
accommodate their articulatory variability [9] [13]. Each artic-
ulatory feature dimension also contained a class for “silence”.

The context window for the MLP inputs was 9 frames (i.e.,
105 ms). 200 units (distributed over a single hidden layer) were
used for the MLPs trained on the voicing, rounding and front-
back dimensions, while the place and manner dimensions used
300 hidden units (with a similar network architecture).

A comparable set of MLPs were trained on ca. 3 hours of
material from NTIMIT, using a cross-validation set of ca. 18
minutes duration (cf. [2] for additional details of this system).

4.   Cross-Linguistic Classification

Classification experiments were performed on the VIOS test
material using MLPs trained on the VIOS and NTIMIT cor-
pora, respectively (Table 2). Because ca. 40% of the test mate-
rial was composed of “silence,” classification results are
partitioned into two separate conditions, one in which silence
was included in the evaluation of frame accuracy (+Silence),
the other in which it was excluded (-Silence) from computation
of frame-classification performance.

Classification performance of articulatory-acoustic fea-
tures trained and tested on VIOS is more than 80% correct for
all dimensions except place of articulation (cf. below for fur-
ther discussion on this particular dimension). Performance is
slightly higher for all feature dimensions when silence is
included, a reflection of how well silence is recognized. Over-
all, performance is comparable to that associated with other
American English [1] and German [7] material. 

Classification performance for the system trained on
NTIMIT and tested on VIOS is lower than the system trained
and tested on VIOS (Table 2). The decline in performance is
generally ca. 10-15% for all feature dimensions, except for
place, for which there is a somewhat larger decrement in classi-
fication accuracy. Voicing is the one dimension in which classi-
fication is nearly as good for a system trained on English as it
is for a system trained on Dutch (particularly when silence is
neglected). The manner dimension also transfers reasonably
well from training on NTIMIT to VIOS. However, the place of
articulation dimension does not transfer well between the two
languages.

Table 1 Articulatory feature characterization of the phonetic
segments in the VIOS corpus. The approximants are
listed twice, at top for the manner-independent fea-
tures, and at bottom for manner-specific place fea-
tures. The phonetic orthography is derived from
SAMPA. 

Consonants Manner Place Voicing

[p] Stop Bilabial -

[b] Stop Bilabial +

[t] Stop Alveolar -

[d] Stop Alveolar +

[k] Stop Velar -

[f] Fricative Labiodental -

[v] Fricative Labiodental +

[s] Fricative Alveolar -

[z] Fricative Alveolar +

[S] Fricative Velar -

[x] Fricative Velar +

[m] Nasal Bilabial +

[n] Nasal Alveolar +

[N] Nasal Velar +

Approximants Manner Place Voicing

[w] Vocalic Labial +

[j] Vocalic High +

[l] Vocalic Alveolar +

[L] Vocalic Alveolar +

[r] Vocalic Rhotic +

[R] Vocalic Rhotic +

[h] Vocalic Glottal +

Vowels Front–Back Place Rounding

[i] Front High -

[u] Back High +

[y] Front High +

[I] Front High -

[e:] Front High -

[2:] Front Mid +

[o:] Back Mid +

[E] Front Mid -

[O] Back Mid +

[Y] Back Mid -

[@] Back Mid -

[Ei] Front Mid -

[a:] Front Low -

[A] Back Low -

[Au] Back Low +

[9y] Front Low +

Approximants Front–Back Place Voicing

[w] Back High +

[j] Front High +

[l] Central Mid +

[L] Central Mid +

[r] Central Mid +

[R] Central Mid +

[h] Central    Mid +

VIOS – VIOS NTIMIT – VIOS

FEATURE + Silence - Silence + Silence - Silence

Voicing 88.9 85.4 79.1 86.0

Manner 84.9 81.3 72.8 73.6

Place 75.9 64.9 52.1 38.5

Front–Back 83.0 78.0 68.9 66.9

Rounding 83.2 78.4 70.3 69.3

Table 2 Comparison of feature-classification performance
(percent correct at frame level) for two different sys-
tems – one trained and tested on Dutch (VIOS–
VIOS), the other trained on English and tested on
Dutch (NTIMIT–VIOS). Two different conditions
are shown – classification with silent intervals
included (+Silence) and excluded (-Silence) in the
test material.



One reason for the poor transfer of place-of-articulation
feature classification for a system trained on NTIMIT and
tested on VIOS pertains to the amount of material on which to
train. Features which transfer best from English to Dutch are
those which have been trained on the greatest amount of data in
English. This observation suggests that a potentially effective
means of improving performance on systems trained and tested
on discordant corpora would be to evenly distribute the training
materials over the feature classes and dimensions classified (cf.
Section 7 for further discussion on this issue).

5.   An Elitist Approach to Frame Selection

With respect to feature classification, not all frames are created
equal. Frames situated in the center of a phonetic segment tend
to be classified more accurately than those close to the segmen-
tal borders [1][2]. This “centrist” bias in feature classification
is paralleled by a concomitant rise in the “confidence” with
which MLPs classify AFs, particularly those associated with
manner of articulation. For this reason the output level of a net-
work can be used as an objective metric with which to select
frames most “worthy” of manner designation.

The efficacy of frame selection for manner classification is
illustrated in the left-hand portion of Table 3 for a system
trained and tested on VIOS. By establishing a network-output
threshold of 0.7 for frame selection, it is possible to improve
the accuracy of manner classification between 5 and 10%, thus
achieving an accuracy level of 84 to 94% correct for all manner
classes except stop consonants. The overall accuracy of man-
ner classification increases from 85% to 91% across frames.
Approximately 15% of the frames fall below threshold and are
discarded from further consideration. (representing 5.6% of
the phone segments)

The right-hand portion of Table 3 illustrates the frame-
selection method for a system trained on NTIMIT and tested
on VIOS. The overall accuracy at the frame level increases
from 73% to 81% using the elitist approach (with ca. 19% of
the frames discarded). However, classification performance
does not appreciably improve for either the stop or nasal man-
ner classes.

6.   Manner-Specific Articulatory Place Classification

Place-of-articulation information is of critical importance for
classifying phonetic segments correctly [4] [7], and therefore
may be of utility in enhancing the performance of automatic
speech recognition systems. In the classification experiments
described in Section 4 and Table 2, place information was cor-
rectly classified for only 65–76% of the frames associated with
a system trained and tested on Dutch. Place classification was
even poorer for the system trained on English material (39–

52%). A potential problem with place classification is the het-
erogeneous nature of the articulatory-acoustic features
involved. The place features for vocalic segments (in this study,
they are low mid, and high) are quite different than those per-
taining to consonantal segments such as stops (labial, alveolar,
velar). Moreover, even among consonants, there is a lack of
concordance in place of articulation (e.g., the most forward
constriction for fricatives in both Dutch and English is poste-
rior to that of the most anterior constriction for stops).

Such factors suggest that articulatory place information is
likely to be classified with greater precision if performed for
each manner class separately (cf. [2]). Figure 1 illustrates the
results of such manner-specific, place classification for a sys-
tem trained and tested on Dutch (VIOS). In order to character-
ize the potential efficacy of the method, manner information
for the test material was derived from the reference labels for
each segment rather than from automatic classification. 

 Five separate MLPs were trained to classify place-of-artic-
ulation features – one each for the consonantal manner classes
of stop, nasal and fricative – and two for the vocalic segments
(front-back and height). The place dimension for each manner
class was partitioned into three features. For consonantal seg-
ments the partitioning corresponded to the relative location of
maximal constriction – anterior, central and posterior. For
example, the bilabial feature is the most anterior class for
stops, while the labio-dental feature corresponds to the anterior
feature for fricatives. In this fashion it is possible to construct a

Trained and Tested on Dutch Trained on English, but Tested on Dutch

Vocalic Nasal Stop Fricative Silence Vocalic Nasal Stop Fricative Silence

All Best All Best All Best All Best All Best All Best All Best All Best All Best All Best

Vocalic 89 94 04 03 02 01 03 02 02 01 88 93 03 02 05 03 03 02 00 00

Nasal 15 11 75 84 03 02 01 00 06 03 46 48 48 50 02 01 02 01 01 01

Stop 16 12 05 03 63 72 07 06 10 07 22 24 10 08 45 46 21 20 02 02

Fricative 13 09 01 00 02 01 77 85 07 04 21 19 01 00 07 04 70 77 00 00

Silence 04 02 02 01 02 01 02 01 90 94 07 05 04 02 08 05 09 06 72 81

Table 3 The effect (in percent correct) of using an elitist frame-selection approach on manner classification for two different systems
– one trained and tested on Dutch (VIOS), the other trained on English (NTIMIT) and tested on Dutch (VIOS). “All” refers
to using all frames of the signal, while “Best” refers to the frames exceeding the 0.7 threshold. 

Figure 1 Comparison of place-of-articulation classification
performance for two different training regimes, one
using conventional, manner-independent place fea-
tures (grey), the other using manner-specific (black)
place feature as described in Section 6. The feature
classification system was trained and tested on the
VIOS corpus.



relational place-of-articulation customized to each consonantal
manner class. For vocalic segments, front vowels were classi-
fied as anterior and back vowels as posterior. The height
dimension is orthogonal to the front-back dimension and corre-
sponds to the traditional concept of vowel height (most closely
associated with the frequency of the first formant).

Figure 1 illustrates the gain in place classification perfor-
mance (averaged across all manner classes) when the networks
are trained using the manner-specific scheme. Accuracy
increases between 10 and 20% for all place features, except
“low” (where the gain is 5%).

Assigning the place features for the “approximants” (liq-
uids, glides and [h]) in a manner commensurate with vowels
(cf. Table 1) results in a dramatic increase in the classification
of these features (Figure 2), suggesting that this particular
manner class may be more closely associated with vocalic than
with consonantal segments.

7.    Discussion and Conclusions

Articulatory-acoustic features provide a potentially efficient
means for developing cross-linguistic speech recognition sys-
tems. The present study demonstrates that certain AF dimen-
sions, such as voicing and manner of articulation, transfer
relatively well between English and Dutch. However, a critical
dimension, place of articulation, transfers much less well. An
appreciable enhancement of place-of-articulation classification
results from manner-specific training, suggesting that this
method may provide an effective means of training ASR sys-
tems of the future.

Several challenges remain to be solved prior to deploying
manner-specific, place-trained classification systems. Cur-
rently, for a (relatively small) proportion of phonetic segments
(6%) the elitist approach discards all frames, thus making it
difficult to recover place information for certain segments of
potential importance. 

 A second challenge relates to the dependence of the
method on the amount of training material available. AFs asso-
ciated with large amounts of data usually are classified much
more accurately than features with much less training material.
Some means of compensating for imbalances in training data is
essential.

Finally, some means of utilizing AFs for speech recogni-
tion needs to be developed beyond the current method of
merely mapping articulatory features at the frame level to the
appropriate phonetic segment. Although the elitist approach
provides a significant improvement of AF classification accu-
racy, linear mapping of the resulting AFs to phonetic segments

increases phonetic-segment classification by only a small
amount, (from 65% to 68%) suggesting that phonetic segments
should not be the sole unit used for automatic speech recogni-
tion.
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