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Abstract— This paper describes a Hidden Mark ov Model
(HMM )-basedmethodof automatic transcription of MIDI (Musi-
cal Instrument Digital Interface) signalsof performed music. The
problem is formulated asrecogniti on of a given sequenceof fluc-
tuating note durations to find the most likely intended note se-
quenceutili zing the modern continuousspeech recognition tech-
nique. Combining a stochastic model of deviating note dura-
tions and a stochastic grammar representing possiblesequences
of notes, the maximum likelihood estimate of the note sequence
is searched in terms of Viterbi algorithm. The sameprinciple is
successfully applied to a joint problemof bar line allocation, time
measure recognition, and tempo estimation. Finally, durations of
consecutive � notesarecombinedto form a “rh ythm vector” rep-
resentingtempo-free relative durations of the notesand tr eated
in the sameframework. Significant impr ovementscomparedwith
conventional “quantization” techniquesareshown.

I . INTRODUCTION

Automatic transcription of music performedon MIDI mu-
sic instrumentshaswide applicability includingscoreprinting,
automaticplaying of music pieces,aids for music composi-
tion andarrangement,andeducationalpurposes.Theproblem,
however, is not simple even though the pitch of eachnote is
known in theMIDI format;musicnotedurationsin humanper-
formancefluctuateandintendedtime valuesarenot easilyre-
trievedfrom theobservation.

Theconventionalwayof treatingthisproblemisquantization
of observednotedurations,musicbeingplayedsynchronously
with metronomeat a specifiedtempo[1]. It basicallyfits frac-
tionalnotedurationsto thespecifiedtimeresolution. This sim-
ple methodis not applicableto music performanceswithout
metronomeandchangingtempo.Transcribedscorefar fromthe
intendedscoreis often(almosteverytime)experiencedamong
the users. Becauseof low performanceof this method,new
quantizationmodelshave beeninvestigated[2].

On theotherhand,trainedhumanscaneasilytranscribeper-
formed(relatively simple)musiceven whenthe temposlowly
changes. This problem, thus, is consideredto essentially
involve rhythm patternrecognition utilizing top-down infor-
mation, while the above previous works took bottom-up ap-
proaches.

Fromthis pointof view, we previously introducedstachastic
modelingbasedonHiddenMarkov Model(HMM) for recogni-
tion of therhythm patternfrom givenperformedmusic[3] [4]
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Fig. 1. Distributionof performednotedurations.

sincetherhythmrecognitionproblemis analogousto continu-
ousspeechrecognition andHiddenMarkov Model(HMM)[5]
fits both problems. This framework was extendedto tran-
scribemusicfrom performancewith changingtempo(without
metronome),tempoestimation,bar line allocation,and time
measurerecognition all at the sametime. Our approach,first
publishedin JapanesebeforethisEnglishpublication, hasbeen
alreadyappliedto onsettimequantizationin jamsessions[6].

We alsodiscuss“rhythm vector”, a tempo-freerhythm ob-
servationfeature,in combinationwith HMM to enablerhythm
recognitionof performancewithout estimatingthetempo.

I I . STOCHASTIC MODELING

A. Modelof fluctuating notedurations

Thedurationof musicnotesplayedby humandeviatesfrom
theideal lengthnotatedin thescoreevenwhenthemetronome
signalisheard.Hereinafter, wecall “length” for theideal(nom-
inal, intended,timevalue)duration of anoteand“duration” for
its observed(performed)duration.Fig.1 showsthedistribution
of durationsof eighth-notes,quarter-notes,anddottedquarter-
notesin music piecesperformedon a MIDI keyboardby 50
playerswith aspecifiedtempo(96by metronome,i.e.,onebeat
= 480 ticks). The notedurationis definedas the IOI (inter-
onset-timeinterval).

This figure implies that the fluctuationcan be modeledby
a Gaussiandistribution aroundthe ideal length. Whenthe in-
tentionis identifiedby � (equivalentto thestatenumberin the
next subsection)at time � , theperformedduration, �	� , is mod-
eled by a probability density function (pdf), 
���
�� ��� . When
the sequenceof intentions is identified by a time sequence�����������������! ! � "�!��#%$

, the probability of observingthe en-
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Fig. 2. Notesequencemodel.(a)3-grammodel, (b) rhythmvocabularymodel.

tire sequence+-,/.�021�34065�387�7!7�390;:=< is givenby: >@?�+BADC@EF,:
G�H 1

I"JLK ?M0 G E .

B. Modelof possiblenotesequences

Whenamusicis performed,manoftencangiveareasonable
interpretation for theheardsequenceof notedurationsand,as
the result,canrecognizethe intendedrhythmpattern.The in-
ferenceis basedon his/herknowledgeaboutpossiblerhythm
patternsacquiredthrough musicexperiences.This knowledge
canbecomparedtoastochasticlanguagemodelin moderncon-
tinuousspeechrecognitiontechnology.

This aspectis modeledasstochasticgenerationof intended
note lengthsequenceswhich underliesgenerallyin musicde-
pendingon genres,styles,andcomposers.We usetwo types
of rhythm patterngenerationmodelsto characterizepossible
rhythmsasfollows:

Note N -gram Model: Note lengthis predictedfrom pre-
ceding ?MNPORQSE notesin the probabilistical sense.This model
covers any rhythm patternsandcangive a certainprobability
while grammaticalconstraintis ratherweakfor small N .

Rhythm Vocabulary Model: The “rhythm vocabulary”
consistsof all known rhythmpatternsfor a unit time (typ., one
measure). This modelwell representsknown rhythm patterns
while unknown patternsaresubstitutedby similarexistingpat-
terns.

As shown in Fig. 2, both modelsarerepresentedby proba-
bilistic statetransition networks whereeachstateis associated
with an intendednotelengths.Labelingall distinct stateswith
integralnumbers,Q�3�TU387�7�793�V , probability WYX�Z of transition from
state[ to \ characterizesgrammaticalconstraints.

The probability that statenumberchangesalonga time se-
quence C],].�^ 1 3�^ 5 3!7!7�7"3�^ : < ( ^ G : integer) is thus given by

>_?9C@E=,a` Jcb
:
G�H 1 W

J Kedgf J K
wherègX denotesthe initial probabil-

ity of starting thestatetransitionwith state[ .
We trainedmodel parametershi,].�W X�Z < of both rhythm

grammarmodelsthroughstatistical estimation. The N -gram
modelwastrainedusingapproximately50000notesin MIDI
dataof classicalandjazzmusicandsmoothedby linearcombi-
nationof probabilities from Q -gram(unigram) through ?MN6OjQ�E -
gram.Therhythmvocabularymodelconsistedof 267one-bar-
long rhythmpatternsobtainedfrom 88 musicpiecesincluding
children’s songsandfolk songs.Connectionprobabilities be-
tweenvocabulary wordswerealsoobtainedfrom the number
of occurrencesin thedata.
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Fig. 3. A typicalexample of automatictranscriptionresults.A: Testingphrase
from Brahms’Symphony No. 1,B: ScoreobtainedbyXGworks(quantization),
C: Scoreobtainedby k -gramHMM.

C. Modelintegrationby HMM

The modelsof fluctuatingdurationsand possiblenote se-
quencescanbecombinedin theHiddenMarkov Model(HMM)
framework with transition probabilities, l �m��n ��o $ , andob-
servationprobabilities, p �/� 
!�"
M� �L� $ . In a simplebigram(2-
gram)model,

� � directlycorrespondsto thekindof distinctnote
length. Theprobability of observinga durationsequenceq is
givenby r_
Mqts � � r_
 � � .

I I I . RHYTHM RECOGNITION

A. Inverseproblem

Our problemis to find the time sequenceof statenumbers
in the statetransition network,

�
, that gives the maximuma

posterioriprobability, r_
 � s q � , given a sequenceof observed
durations,q . Accordingto the Bayestheorem: r@
 � s q � �r@
Mqts � � r@
 � �

r_
Mq � , maximizing r_
 � s q � is equivalentto findingu�/�avSw"x�yzv�{| r@
Mqts � � r@
 � � amongall possible
�

s. Sincethe

integratedmodel is representedby an HMM, the optimal se-
quenceof statesis efficiently found throughthe well-known
Viterbi algorithmfor searchingthebestpathin theprobabilistic
transition network.Thesequenceof intendednotesisestimated
in themaximumlikelihoodsenseasthesequenceof notesasso-
ciatedto thestatesalongthebestpath.Thisprocessis referred
to rhythm recognition of performedmusic.

B. Rhythmrecognition performance

A typical resultof HMM-basedrhythm recognition is shown
in Fig. 3 and comparedwith that of quantization by “XG-
works” from YAMAHA Corp. when played in a specified
tempo. While simple quantization of XGworks insertednu-
merouswrongrestsandties,HMM almostcorrectlyestimated
musical rhythms including triplets. Table I shows the recog-
nition ratesof correctnotelengths,counting all substitutions,
insertionsanddeletions aserrors. “Pause-neglected”recogni-
tionscoresmeancompensatedscoresignoringdeceptivepauses
caused by repeatingnotes,staccatos,etc.

C. Constanttempoestimation

Unknownconstanttempoisestimatedin thesameframework
asstatedabove. Multiple rhythm-dependentHMMs eachrep-
resentinga differenttempoarerun to find the maximumlike-
lihood tempoamongtempo-dependentmodels. In our experi-
ments,6 parallelmodelswereusedto representlogarithmically
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TABLE I
THE RHYTHM RECOGNIT ION RATES [%]

method pauses
counted

pauses
neglected

Rhythm VocabularyHMM 59.7 97.3
BigramHMM 53.7 87.4
Quantization(XGworks) 40.7 85.9

TABLE II
CONSTANT TEMPO ESTIMATION RESULTS [BEATS/MIN.]

Player# 1 2 3 4 5
TrueTempo 98.4 93.3 99.2 127.1 106.3
Estimated 95 95 95 120 107
Player# 6 7 8 9 10
TrueTempo 116.4 111.7 99.9 109.3 65.2
Estimated 120 107 95 107 67

Tempo 67 Model

Tempo 120 Model

max P?

Fig. 4. Modelof changing tempo.

} ~ }����e��� �

� ~ }����e�D� �

Fig. 5. Modelof timemeasures.

BAR BAR
Fig. 6. Modelfor locatingbarlines.

equally spacedtemposbetween60 and120 beatsper minute
(i.e., 67, 76, 85, 95, 107 and120 beats/min.)andsimultane-
ouslyrecognizedtherhythm C andtempo� , i.e., maximizing>_?M+BADC�3 � E9>_?9C_A � E9>_? � E in respectto C and � for the given+ . TableII shows a few examplesof tempoestimationof per-
formancesby 10playerswhoplayedapieceshown in Fig. 7.

D. Fluctuating tempoestimation

Thesameframework with slightly modifiedmodelscanhan-
dle fluctuatingtempos.As shown in Fig. 7, modelsof different
temposarelooselycoupledwith appropriateprobabilities. The
maximumlikelihoodpathfoundthroughtheViterbi searchin-
dicatetherecognizedrhythm andinstantaneoustempos.

Oneextremeexampleis shown in Fig. 7 wherethefluctuat-
ing tempoissuccessfullydetectedrangingfrom 40to 120beats
per minute. At the circled notesin the figure wherethe true
tempois slower than67, the true tempois equivalently trans-
latedto thedoubledtempowith halvednotelengthstofind best
matchedmodel within preparedtemposbetween67 and 120
beats/min.

E. Measure estimation

Estimationof measureandlocationof barlinesarealsopos-
sibleby usingtheHMM in asimilarway. As depictedin Fig.5,

Fig. 7. Fluctuatingtempoestimatedby HMM. (G. F. Händel: “Joy to the
world”.)
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Fig. 8. An example of misrecognizedmeasure.A: Truescore,B: Misrecog-
nizedbut ratherreasonable result.

one of multiple modelsrepresentingdifferentmeasures(e.g.,
3/4 and4/4) is found to yield higher likelihoodfor the given
rhythmpattern.Eachof thesemeasuremodelshasbeentrained
with musicdataof thesamemeasure.

Bar location is also estimatedsimultaneouslyin the same
framework. As shown in Fig. 6, a special rhythm vocabu-
lary modelcontainingthestartingrhythmsandup-beatpatterns
in the first bar precedesthe generalrhythmvocabulary model
consistingof general2-beat-longrhythmpatternsandbarlines
usedasaneternalloop. TheViterbialgorithmfindstheoptimal
rhythmestimationwith optimalbarlocations.

In experimentalevaluationof thesemodels,10outof 10test-
ing musictunesof 4/4measureand8 outof 10 testingtunesof
3/4 measurewere correctly recognized. Fig. 8(b) shows one
of 2 misrecognizedresultswhichlooksratherreasonablein the
rhythm patternsense.Correctrecognition of this examplere-
quireshigherknowledgesuchas:3-barphraseis rarein simple
tunes.

IV. RHYTHM VECTOR APPROACH

A. Rhythmvector

We have discussedabsolutenoteduration 0 G astheobserved
featurein theHMM-basedmodeling.Theuseof relative dura-
tionsof consecutive notesis discussedin thissection.

Rhythm is primarily perceived astherelative lengthof con-
secutive notes. To define a tempo-freefeature � G insteadof0 G , 3 consecutive notesdurations are coupledto form a 3-
dimensionalvector ?M0 G4� 1 340 G 340 G�� 1 E�� and normalizedso that
thesumof componentsis unity. By normalization, this tempo-
free 3-dimensional “rhythm vector” � G ,�? � G4� 1 3 � G 3 � G�� 1 E(� is
mappedinsidea triangulardomainona 2-dimensional plane.

Rhythmvectorisconsideredtopreservetempo-freerhythmic
intensionin performance.Fig. 9(a) shows theplotsof rhythm
vectorscalculatedfrom thescoreshown asFig. 9(c) andcom-
paredwith Fig. 9(b) observed in humanperformancesof the
samescore.
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Fig. 9. Rhythmvectorsplottedon a two-dimensional plane. A: Thoretical
plots,B: Performanceby human, C: Score.

B. HMM-basedrhythmrecognition

Replacingtheobservedabsoluteduration (IOI) of each note
by “rhythm vector” in theHMM-basedframework, tempo-free
automatictranscription of MIDI datacanbe realizedwithout
preparingmultiple HMMs for covering varioustempos.A re-
latedideawassuggestedin musicpatternrecognitionpurpose
usingtheratioof consecutivenotedurationsto definea tempo-
invariantencoding[7].Hiddenstatescorrespondto thedistinct
pointsin Fig. 9(a) andintegersareassignedto themto repre-
sentthestatenumber. Theobservedvectordistributingaround
the ideal position is modeledby a 3-dimensionalpdf,

I X ? � G E ,[ denoting the statenumber. The transition probability, W X�Z ,
from state[ to state\ is the probability of occurringof 4 con-
secutive notes,0 G4� 5�340 G4� 1�340 G 390 G�� 1 , 2 of which in the middle
aresharedby thebothstates.Thesemodelparameterscanbe
trainedthrough the similar procedureasalreadystatedfor the
1-dimenstionalobservationcase.

This methodcan be further improved by incorporating the
absolutenotedurations. Sincethe rhythm vector is free from
the absolute lengthof notes,the tempois not uniquelydeter-
mined. For example,whena rhythm vector is recognizedasQ���T��UT , therearemultiple possiblenotedescriptions suchas
“Q H H” and“E Q Q” (H=half note,Q=quarternote,E=eighth
note).Anotherproblemis thatonemisrecognizedrhythm vec-
tor may halve or doubleall following note lengthsin decod-
ing from the recognizedrhythm vector sequenceto the note
description. Theseproblem is avoided by giving prior infor-
mationof intendedapproximatetempoor by including abso-
lute notelengthin thefeaturevectorfor theHMM (i.e. hidden
statescorrespondsnotesfor description). An alterntivesolution
to theseproblemsis toselectapathamong� -bestHMM trace-
backhypotheseswith near-constanttempo. This canbe easily
realizedby calculatingthe instantaneoustempoby theratio of

theobservedIOI andthedecodednote.

V. DISCUSSION

Multi-vo icemusictranscription: Thoughthispaperhasfo-
cusedon transcription of single-voicemusicperformedwith a
MIDI instrument,multi-voicemusiccanbehandledin thesame
framework. A chordcanbeidentifiedasmultiple notesstarted
at thealmostsametiming (within a shorttime span)andover-
lappedin durations. As for multi-voicemusicsuchascounter-
point (fugues,cannons,etc.) can be alsomodeledby replac-
ing the IOI alongonevoiceby inter-onsetinterval betweenall
voices. Suchkind of “inter-voice rhythm” vocabulary canbe
acquiredfrom a large amountof musicdatafor training. Af-
ter obtaininga single-voice transcription, it can be converted
into amulti-voicemusicscoretakinginto accounttheobserved
durationof eachnote.

Stylesand genres: Obviously, the presentapproachrelies
onstatisticalcharacteristicsof musicbothin rhythmvocabulary
and N -gramapproaches.This meansmusicstyles,genres,and
composerscanbereflectedin thesestochasticmodelsto obtain
betterrecognitionabilities.

Weight adjustment: It shouldbe notedthat noteduration
modelingandrhythm vocabulary or N -grammodelingcanbe
weighteddependingon thepurpose.If it is known beforehand
that theplayeris not skillful in keepingthe tempoandplaysa
relatively simplemusic,we canemphasizethe rhythmvocab-
ulary or N -gramconstraintsby giving a larger weightto WYX�Z in
logarithmic likelihoodcalculation.

VI . CONCLUSION

We have discussedautomaticrhythm recognition of MIDI
signalsof performedmusic throughstochasticmodelingnote
durationsusingHMM, the main techniquefor modernspeech
recognition. This can successfullyestimatethe sequenceof
intendednotevalues(lengths),tempo(whetherfixed andun-
known or fluctuating),the time measure,andthebar locations
all in thesamemodelingframework. Rhythm vectorhasbeen
also introducedto enabletempo-freemusic transcription. Fu-
tureworkswill include overallmulti-stageintegrationof multi-
voice transcription from MIDI signalscovering tempo, time
measure and bar location estimation,and integration with a
multi-pitchdetectiontechniquefor musictranscription fromthe
sound.
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