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ABSTRACT

Support vector machines are evaluated on speaker verification and
speaker identification tasks. We compare the polynomial kernel,
the Fisher kernel, a likelihood ratio kernel and the pair hidden
Markov model kernel with baseline systems based on a discrimina-
tive polynomial classifier and generative Gaussian mixture model
classifiers. Simulations were carried out on the YOHO database
and some promising results were obtained.

1. INTRODUCTION

Speaker verification is concerned with determining whether an ut-
terance has been spoken by the claimant or an imposter. The re-
lated task of speaker identification is concerned with labelling an
unidentified speaker as one of a pool of enrolled speakers. Cur-
rent standard approaches for text-independent speaker verification
and identification are based on Gaussian mixture models (GMMs)
[1, 2]. Discriminative classifiers have also proven to be successful
for speaker verification [3]. In this paper we are concerned with us-
ing support vector machine (SVM) methods for text-independent
speaker verification and identification.

SVMs seem well-suited to the classification-oriented tasks of
speaker verification and identification. In particular, speaker ver-
ification may be posed as a binary classification problem. Some
early work using the Switchboard database of conversational tele-
phone speech was reported by Schmidt and Gish [4]. Fine et al.[5]
recently applied GMMs and Fisher kernels to a speaker identifica-
tion problem (using error correcting output codes to perform multi-
class classification). Bengio and Mariéthoz [6] postprocessed the
output of a GMM-based system using an SVM trained on the scores
of a user model and an impostor model.

We present kernel-based methods for speaker verification and
identification, comparing them with baseline systems based on dis-
criminative polynomial classifiers and generative Gaussian mix-
ture models. We have employed frame-based polynomial kernels
and utterance-based dynamic kernels. The utterance-based ap-
proaches, using kernels for variable length sequences [7, 8], ex-
ploit an underlying generative model (GMM). We have carried
out verification and identification experiments, using the YOHO
database [9], and we report comparative results for the polynomial
classifier, the GMM and the various SVM approaches.
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2. BASELINE SYSTEMS

We have used two baseline approaches with which to compare the
SVM. The polynomial classifier of Campbell and Assaleh [3] has
been demonstrated to yield state of the art performance for speaker
verification on the YOHO database. The GMM is a standard ap-
proach to both verification and identification, for example [1].

2.1. Polynomial classifier

The polynomial classifier method operates in a similar way to the
SVM with a polynomial kernel. In both cases a linear boundary
separates the data in a high dimensional feature space that is in-
duced by a polynomial expansion.

The observed utterance, X , is denoted as a sequence of acous-
tic feature vectors (frames) X � �x1 � � �xN�. Each frame is mapped
explicitly into a high dimensional space via a polynomial expan-
sion. For example, a second order polynomial would map the vec-
tor x onto

Φ�x� �
�
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(1)
where xi is the ith component of x and the components of Φ�x�
are the coefficients of a quadratic expansion. A linear classifier is
constructed in the high dimensional space that best separates the
features of the user, Φ�xuser�, from those of the impostors, Φ�ximp�
by minimising the mean square error,
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A general linear boundary may be expressed as f �Φ�x���Φ�x��w,
and the adjustable parameters w are optimised by a method involv-
ing matrix decomposition.

The learned function f �Φ�xi�� assigns a score to each frame.
The score of a complete utterance, S�X�, is mean of the frame
scores computed over the whole sequence

S�X� �
1
N

N

∑
j�1

f �Φ�x j��� (3)

The score is compared to a threshold, T . If S�X� � T then the
speaker is accepted as genuine, otherwise the speaker is an impostor.
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2.2. Gaussian mixture models

We have used diagonal covariance GMMs as a baseline generative
model. Additionally, GMMs are used as the underlying generative
model in the dynamic kernels discussed in section 4.

The probability, P�X �M�, that the observation sequence, X , is
generated by the model of the claimed speaker, M is used as the
utterance score. It is estimated by the mean log likelihood over the
sequence,

S�X� � logP�X �M� �
1
N

N

∑
i�1

logP�xi�M�� (4)

A simple GMM classifier compares the mean log likelihood
to a threshold value to make its decision. More sophisticated vari-
ants use the likelihood ratio of the probability that the sequence is
from the claimed speaker, P�X �M�, to the probability that the se-
quence was generated by a speaker independent (or global) model,
P�X �Ω�. Reynolds [2] took this approach by estimating P�X �Ω�
using a pooled impostor model constructed from a set of back-
ground speakers selected individually for each claimant speaker
using a log likelihood ratio distance measure.

3. POLYNOMIAL KERNELS

We have used SVMs with polynomial kernels [10, 11] as discrim-
inative models for frame based speaker verification and identifica-
tion. The polynomial kernel is given by

K�xi�x j� � �xi�x j �1�n � (5)

In previous work [12] we described how this kernel can lead to an
optimisation problem that has an ill-conditioned Hessian. The dif-
ficulties arise when the numerical value of the kernel becomes ex-
cessively large, for example, with large n or very high dimensional
input data. The problem was overcome by a normalisation process
where the data was mapped onto the surface of a unit hypersphere
embedded in a space of higher dimension than the dimensional-
ity of the feature vectors. Since the vectors in that space are of
unit length then the dot products between them are constrained to
the range �1 preventing the kernel function generating extremely
large values for any degree of polynomial.

One of the forms of the normalised polynomial kernel is,

Knorm�xi�x j� �
1
2n
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which can be generalised to,

Knorm�xi�x j� �
1
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where d is an adjustable parameter to achieve the correct normali-
sation. The general form of the normalised polynomial kernel can
be expressed entirely in terms of dot products enabling the normal-
isation of any valid kernel that yields an ill conditioned Hessian.

Speaker verification by SVMs is achieved in exactly the same
way as with polynomial classifiers in that an utterance score is
computed from the mean classifier output for the sequence.

4. DYNAMIC KERNELS

The classification schemes described so far have computed frame-
level scores and some form of averaging has been necessary in
order to cope with utterances having different lengths. Recently,
more principled approaches to dealing with variable length data by
exploiting generative models have been developed [7, 8].

Recall that the key to SVM classification lies in the ability to
compute the dot products between feature vectors. The methods
described in this section allow us to effectively compute the “dot
products” between two complete utterances regardless of their rel-
ative lengths. This implies that the SVM treats a whole utterance
as a single feature instead of a series of fixed-length features. Thus
the support vectors that define the decision boundary are complete
utterances. The SVM optimisation selects the utterances from
the training data that are hardest to classify. This is somewhat
analogous to the automatic selection of background speakers in
the construction of the pooled impostor model [2] discussed in sec-
tion 2, although kernel methods do not automatically build global
background models.

4.1. Fisher kernels

The method of Fisher kernels [7] encodes the variable length data
into a single fixed length feature vector for classification by the
SVM. Given a pre-trained generative model, the probability that a
model M, parameterised by the vector θ, generates the sequence X
is denoted by P�X �M�θ�. A fixed length feature vector, Uθ�X� can
be constructed by computing the derivatives of the log likelihood,
logP�X �M�θ�, with respect to each of the parameters of the model.
That is,

Uθ�X� � ∇θ logP�X �M�θ� (8)

which is known as the Fisher score. Each component of Uθ�X�
is the derivative with respect to one particular parameter. In our
case, the generative model is a single state hidden Markov model
(HMM) with the state output distribution described by a GMM.
Thus the derivatives are with respect to the covariances, means
and priors of the Gaussian mixture model.

The newly derived high dimensional features are in a non-
Euclidean space and therefore the dot product must take into ac-
count the local Riemannian metric. A natural kernel is

K�X �Y � �Uθ�X�
T I�1Uθ�Y � (9)

where I �E�Uθ�X�Uθ�Y �T � is the Fisher information matrix. How-
ever, I is often a very large matrix. If there are n parameters in the
model then I will have n2 elements making its inverse difficult to
compute. In such a situation we assume a Euclidean metric on the
space and use I equal to the identity matrix.

4.2. Likelihood ratios

A variant of the Fisher kernel approach uses the ratio between the
speaker model and a background impostor model [13]. In Gaus-
sian mixture model classifiers the standard approach is to build two
models: one model of the speaker and a second of a pooled set of
impostors. The classifier takes the ratio of the likelihood estimates
of the two models to obtain a better performance by increasing the
likelihood of the speaker’s acoustics while reducing the likelihood
of each impostor’s.
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Fig. 1. A simple pair hidden Markov model

Let Mspkr denote the model of the speaker and Mimp denote
the pooled impostor model. Each model is parameterised by θspkr
and θimp respectively. A fixed length feature vector is obtained by,

Uθ�X� � ∇θ log
P�X �Mspkr�θspkr�

P�X �Mimp�θimp�
(10)

where θ is the combined set of parameters �θspkr , θimp�.
The kernel is computed using (9). Once again I is assumed to

be the identity matrix since it is difficult to compute here.

4.3. Pair HMM kernels

The pair HMM is a type of hidden Markov model that has been
widely used for biological sequence analysis. It is a model that
generates two sequences of symbols simultaneously. The two se-
quences need not be of the same length. Figure 1 shows an ex-
ample of a simple pair HMM used in bioinfomatics to construct
probabilistic models of DNA sequences [14].

The pair HMM consists of a state SXY that emits symbols for
both sequences X and Y , a state SX that emits for sequence X only
(that is insertions in sequence X) and state SY that emits for se-
quence Y only. Just as in normal HMMs, there are start and end
states that emit no symbols, matrices of emission and transition
probabilities and an alphabet of symbols. The Viterbi alignment
algorithm for pair HMMs is identical to that of normal HMMs ex-
cept for an extra factor in the initialisation and termination of the
recursion. The standard HMM assumptions apply. A pair HMM
may be interpreted as performing a soft alignment. It may be more
appropriate for text-dependent speaker verification when the lexi-
cal sequence — hence the state sequence — is known.

Watkins [8] proposed that the likelihood, P�X �Y �M�, that this
model generates sequences X and Y together could be interpreted
as a dot product in some space. In short, we can express the se-
quence pair likelihood as a dot product, P�X �Y �M� �Φ�X� �Φ�Y �.
The pair HMM kernel is thus simply

K�X �Y� � P�X �Y �M�� (11)

which can be computed by applying either the Viterbi or Baum
Welch dynamic programming algorithms. In our case the emis-
sion probabilities of the states SX and SY are calculated using a
pre-trained Gaussian mixture model. The emission probability of
the joint state, SXY , P�x�y�M� is the product over the two Gaussian
likelihoods, P�x�M�P�y�M�, that each symbol was emitted sepa-
rately. By assuming independence between the emission probabil-
ities in state SXY we are introducing a strong assumption to sim-
plify calculations.

Although it has been shown to be a dot product in some space,
the numerical values generated by this kernel are generally badly
scaled. They may vary by many orders of magnitude depending
upon the lengths of the two sequences X and Y . This leads to a
badly scaled Hessian that makes the optimisation almost impossi-
ble. The problem is overcome by applying the normalisation tech-
nique described in section 3.

5. EXPERIMENTS

We have evaluated the SVM approaches using text independent
speaker verification and identification tasks. The YOHO database
[9] was used in these experiments. This database contains clean
speech recorded from 138 co-operative speakers. Each utterance
takes the form of three double digit numbers read, “twenty-four
thirty-seven fifty-one.” Each speaker has 95 training utterances
and 40 test utterances. The features were derived from the wave-
forms using 12th order LPC analysis and augmented with deltas.
The features were normalised to zero mean and unit variance.

For the speaker verification experiments the database was split
into two halves of 69 speakers each. The classifiers were trained
on the first set of speakers then tested using the speakers of the
second set as the impostors and vice-versa. This meant that clas-
sifiers were tested on impostors not seen during training giving a
more realistic assessment of the overall performance. There are
two types of error that can be made: a false acceptance where an
imposter is incorrectly authenticated and a false rejection where
the user is incorrectly identified as an imposter. The rates of each
type of errors is dependent upon the value of the threshold, T . The
equal error rate (EER) occurs when T is set appropriately such that
the percentage of each type of error are equal.

It is trivial to perform speaker identification using the classi-
fiers trained for verification. We use a one-versus-others scheme in
which each classifier assigns a score to an utterance. The speaker
is identified by the classifier with the highest score.

5.1. Polynomial based classifiers

To train the SVMs it was necessary to quantise the feature vec-
tors using the k-means algorithm to create a smaller training set.
Reducing the size of the training set reduces the number of sup-
port vectors in the final solution to a more manageable number.
Each speaker was quantised from approximately 20,000 individ-
ual training vectors down to 100 centres resulting in a training set
size of 6900 vectors for the SVMs. The parameter, d, in the nor-
malised polynomial kernel was set to 1 for these experiments.

We compare the different polynomial classifiers in table 1. The
SVM with the unnormalised kernel is by far the worst performer.
The optimiser could not converge to a solution for unnormalised
polynomial kernels of a degree higher than 4. Normalising the
polynomial kernel without changing the degree of the polynomial
yields a relative decrease in the average equal error rate of nearly
40%. Normalised higher order polynomial kernels allow the SVM
to achieve a similar EER to the polynomial classifier, despite a
significantly reduced amount of training data.

Curiously, as performance improves on the verification task
performance on the identification task degrades. We suspect that
this may be an artifact of either the vector quantisation or that the
classifiers were trained independently so that classification is bi-
ased towards the SVMs that have slightly higher average scores.

I - 671



Table 1. Performance of each classifier on text independent
speaker verification and speaker identification tasks. The classifier
labelled † was trained and tested under different conditions [2].

Average Speaker ID
Classifier EER % error rate %
Polynomial classifier,
degree 3 0.38 1.01
SVM polynomial kernel,
degree 4 1.72 4.24
SVM normalised polynomial,
degree 4 1.05 6.12
degree 14 0.41 8.48
Basic GMM 1.08 0.50
SVM pair HMM kernel 1.05 13.50
SVM fisher kernel 0.68 0.96
SVM likelihood ratio kernel 0.43 0.78
GMM (likelihood ratio) † [2] 0.58 —

5.2. GMM-based classifiers

The basic GMM system consisted of a 512-component Gaussian
mixture model with diagonal covariance matrices: the same sys-
tem used to estimate the emission probabilities in the pair HMM,
Fisher and likelihood ratio kernels. The result of the GMM likeli-
hood ratio classifier is that obtained by Reynolds [2]. It is possible
to build a global GMM of all the impostors in our training scheme.
Undoubtedly using a larger training set for the impostors will im-
prove performance. However, this leads to biased results (i.e. arti-
ficially low error rate) on small databases since the classifiers will
have models for too many of the speakers.

The Fisher kernel maps each utterance to a 25,088 dimensional
space prior to linear classification since the number of parameters
in the single state HMM (GMM system) is 25,088. The likelihood
ratio kernel maps to a space twice this dimensionality since it uses
two of these GMMs. In the case of the pair HMM kernel, the
Viterbi algorithm was used to compute the joint probability of the
sequence pair. The parameters associated with the transition prob-
abilities were determined separately for each utterance pair so as
to maximise the joint probability. These parameters are dependent
upon the lengths of the two sequences. Normalisation of the pair
HMM kernel was achieved using (7) with n � 1. The parameter
d was determined by approximately minimising the SVM’s objec-
tive function on a small randomly chosen subset of the training
data.

The performance of the dynamic kernels is mixed. The like-
lihood ratio kernel is clearly the best performer achieving an error
rate in speaker verification close to that of the baseline polynomial
classifier and the normalised polynomial kernel. The likelihood
ratio kernel out performs the Fisher kernel as we would expect.
More significantly both the Fisher and the likelihood ratio kernels
outperform the basic GMM system from which they are derived on
the speaker verification task but not on the speaker identification
task.

The result of the pair HMM kernel gives no advantage over
the basic GMM system. Closer analysis suggests the underlying
model is incorrect for text independent speaker verification. The
probability that a pair HMM generates a sequence pair depends
upon the sequence lengths. Thus pair HMMs may be more suited

to a text dependent speaker verification task where the model topol-
ogy is predefined. Furthermore, there are some strong underlying
assumptions applied to the kernel in order to simplify the calcula-
tions, which will undoubtedly affect the performance adversely.
Once again improvement in performance is not reflected in the
speaker identification task.

6. CONCLUSION

We have applied SVMs to speaker verification and identification,
using a variety of kernels. On the YOHO database, we have found
that it is possible to achieve state-of-the-art results using both static
and dynamic kernels.
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