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ABSTRACT

The quality of unit selectionbasedconcatenative speech
synthesismainlydependsonhow well two successiveunits
canbe joinedtogetherto minimise the audible discontinu-
ities. Theobjectivemeasureof discontinuity usedwhense-
lectingunits is known asthe join cost. The ideal join cost
will measure perceived discontinuity, basedon easilymea-
surablespectralpropertiesof theunitsbeingjoined, in order
to ensuresmoothandnatural-sounding synthetic speech.In
thispaper wedescribeaperceptual experimentconductedto
measurethecorrelationbetweensubjective humanpercep-
tion and various objective spectrally-basedmeasures pro-
posedin the literature. Also we reportnew objective dis-
tancemeasuresderived from variousdistancemetricsbased
onthesespectralfeatures,whichhavegoodcorrelationwith
human perception to concatenationdiscontinuities.Ourex-
perimentsusedastate-of-theartunit-selection text-to-speech
system:rVoice from RhetoricalSystemsLtd.

1. INTRODUCTION

In unit-selectionbasedspeechsynthesissystems,synthe-
sisedspeechis producedby concatenatingspeechunitsse-
lectedfrom large database,containing many instancesof
eachspeechunit, with variedprosodicandspectralcharac-
teristics. Henceit is possibleto synthesisemore natural-
sounding speech.The selectionof the bestunit sequence
from thedatabaseis basedon a combinationof two costs:
target cost (how closely candidate units in the inventory
matchthe required targets)andjoin cost(how well neigh-
bouring unitscanbejoined)[1]. Theoptimalunit sequence
is then found by a Viterbi searchfor the lowest castpath
through thelatticeof thetarget andconcatenationcosts.

Theidealjoin costis onethat,althoughbasedsolelyon
measurable propertiesof thecandidateunits,suchasspec-
tral parameters, amplitude and F0, correlateshighly with
humanperceptionof discontinuity atunit concatenationpoints.
A few recentstudieshave attemptedto determine which
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objective distancemeasuresarebestable to predictaudi-
ble discontinuities. Klabbersand Veldhius [2] examined
various distancemeasureson five Dutch vowels to reduce
the concatenation discontinuities in diphonesynthesisand
foundthattheKullback-LeiblermeasureonLPCpowernor-
malisedspectrawasthebestpredictor. A similar studyby
WoutersandMacon[3] for unit selection,showedthat the
EuclideandistanceonMel-scaleLPC-basedcepstralparam-
eterswasa good predictor, andutilising weighteddistances
ordeltacoefficientscouldimprovetheprediction. Stylianou
andSyrdal [4] found thattheKullback-Leibler distancebe-
tweenFFT-basedpower spectrahad the highest detection
rate. Donovan[5] proposeda new distancemeasure which
usesa decision-treebasedcontext dependentMahalanobis
distancebetweenperceptualcepstralvectors.

All theseprevious studiesfocusedon humandetection
of audiblediscontinuities in isolated words generated by
concatenative synthesisers. We extended this work to the
caseof polysyllabic words in natural sentences andnew
spectralfeatures,Multiple CentroidAnalysis(MCA) coef-
ficients[6]. But we foundthat no singledistancemeasure
perform well for all cases.In this paper, we reportnew dis-
tancemeasureswhichcorrelatewell with humanperception
to the concatenationdiscontinuities. Theseare weighted
sumsof thedistancemetricsof variousspectralfeatures.

2. PERCEPTUAL LISTENING TESTS

A listeningtestwasdesignedto measure thedegreeof per-
ceived concatenationdiscontinuity in naturalsentencesgen-
eratedby thestateof theart speechsynthesissystem,using
anadult North-Americanmalevoice.

2.1. Test Design & Stimuli

A preliminary assessmentindicatedthat spectraldisconti-
nuities are particularly prominent for joins in the middle
of diphthongs, presumably becausethis is a point of spec-
tral change (due to moving formant values). This study
therefore focuseson suchjoins. Previous studieshave also



shown that diphthongs have higher discontinuity detection
ratesthanlongor shortvowels[7].

Weselectedtwonatural sentencesfor eachof fiveAmer-
ican Englishdiphthongs (ey, ow, ay, aw andoy) [8]. One
word in thesentencecontained thediphthong in a stressed
syllable.Thesentences arelistedin Table1.

diphthong sentences
ey Moreplacesarein thepipeline.

The government sought authorization of
his citizenship.

ow Europeansharesresistglobal fallout.
The speechsymposium might begin on
Monday.

ay This is highly significant.
Primitive tribeshaveanupbeatattitude.

aw A large household needslots of appli-
ances.
Everypictureis wortha thousandwords.

oy Theboy wentto playTennis.
Neverexploit thelivesof theneedy.

Table 1. Thestimuli usedin theexperiment. Thesyllable
in boldcontains thediphthong join.

Thesesentenceswerethensynthesisedusingtheexperi-
mentalversionof rVoice speechsynthesissystem.For each
sentencewe madevarious syntheticversions,by varying
thetwo diphonecandidateswhich make thediphthongand
keepingall theotherunits thesame.We removedthesyn-
theticversions whichwereworseat thejoins of neighbour-
ing phonesof thediphthong. Theremaining versions were
furtherprunedbasedontargetfeaturesof thediphonesmak-
ing the diphthong, to ensure similar prosody amongsyn-
theticversions. This processresultedin around 30 versions
with variationin concatenationdiscontinuities at the diph-
thongjoin. Theauthorsmanually selectedwhatthey judged
to be the bestandworst syntheticversions by listeningto
these30 versions. This processwasrepeatedfor eachsen-
tencein Table1.

2.2. Test Procedure

Therewerearound 17 participants in our perceptuallisten-
ing test,mostof themwerePhDor MScstudentswith some
experienceof speechsynthesis.Most of themwerenative
speakersof British English.

Subjectswerefirst shown thewritten sentence,with an
indicationof which word containsthe join. At thestartof
the test they werefirst presentedwith a pair of reference
stimuli: onecontaining thebestandtheothertheworstjoins
(asselectedby theauthors) in orderto settheendpointsof
a 1-to-5 scale.Subjectscouldlistento thereferencestimuli
asmany timesasthey likedandthey couldalsoreview them

atregular intervals(for every 10teststimuli) throughout the
test.

They were then playedeachtest stimulusin turn and
wereasked to rate the quality of that join on a scaleof 1
(worst)to5 (best).They couldlistentoeachteststimulusup
to threetimes.Eachteststimulusconsistedof first theentire
sentence,thenonly theword containing thejoin (extracted
from thefull sentence,notsynthesisedasanisolatedword).

Thetestwascarriedoutin blocksof around35teststim-
uli, with oneblock for eachsentencein table1. Subjects
couldtakeaslongasthey pleasedover eachblock,andtake
restsbetweenblocks.Eachtestblockcontainedafew dupli-
cationsof someteststimuli to validatethesubjectsscores,
asexplainedin Section4.

3. WEIGHTED DISTANCE MEASURES

We usedthreeparameterisationof the speechsignal,Mel
Frequency CepstralCoefficients (MFCCs), Line Spectral
Frequencies(LSFs)andMultiple CentroidAnalysis(MCA)
coefficients [9] respectively. A distancemeasurebetween
two vectorsof suchparameterscanusevariousmetrics:Eu-
clidean,Absolute, Kullback-Leibleror Mahalanobis.

From our previous study [6], it is clear that no single
distancemeasurecomputedonvariousspectralfeaturesper-
forms well for all cases.Onesolutionto this would be to
usephone-specificobjective distancemeasures.But, to de-
cidewhichdistancemeasuretousefor eachphonemewould
require large amounts of perceptual data. However, our
preliminary studiesshowed that a weightedsum of these
various distancesresultsin bettercorrelationscomparedto
thoseobtainedfromindividualdistances.Also,weobserved
thatusingdeltacoefficientsin distancemetricsdoesnot im-
prove correlations. Hence,we usedotherspectralparame-
tersinsteadof consideringdeltafeaturesto maintainalmost
samefeature vectorsize.

Consider, the weighteddistanceasshown in the equa-
tion below, �� �
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4. RESULTS AND DISCUSSION

In Table2, we presentthenumberof subjectsfor eachsen-
tence,andthenumberof subjectswith morethan50%con-
sistency in ratingthejoins. Theconsistency of subjectswas
measuredon a validationset,which we included in thetest
stimuli for eachsentence.Thenmeanlistenerscoreswere
computedonly for the subjectswith more than50% con-
sistency in ratingthejoins. Also, we manually checkedall
thelistenersratings,andremovedthelistenerscoreswith all
samerating(e.gall ‘1‘s) during meanlistenercomputation.

no. of subjects consistentsubjects
ey 13,14 11,8
ow 11,13 6, 7
ay 17,11 9, 6
aw 11,13 11,10
oy 13,14 6, 6

Table 2. Consistency of subjectsin listening tests,each
numberin apaircorrespondsto thesentenceslistedin Table
1.

4.1. Weighted distances of all three features

Table3 summarisescorrelationsof absolutedistancesbased
onMFCCs,LSFsandMCA coefficients andtheirweighted
sumwith meanlistenerratings. Thecorrelation coefficients
above the1% significantlevel arehighlighted.Theweights
usedfor MFCCs,LSFsandMCA coefficientsare0.13,0.03,
0.84respectively. Thecorrelationcoefficientsof Euclidean

mfcc lsf mca weighteddist.
ey 0.28 0.14 0.29 0.31

0.64 0.64 0.58 0.65
ow 0.32 0.37 0.12 0.29

0.51 0.34 0.39 0.49
ay 0.34 0.12 -0.05 0.26

0.65 0.59 0.50 0.65
aw 0.42 0.22 0.37 0.48

0.72 0.76 0.73 0.74
oy 0.02 0.13 0.28 0.09

-0.02 0.04 0.03 -0.01

Table 3. Correlationbetweenperceptual scoresand ab-
solutedistancesof MFCCs, LSFs, MCA coefficients and
weightedsumof above threemeasures.

distancemeasuresof all threespectralfeatures and their
weightedsumwith meanlistenerratingsarereportedin Ta-
ble 4. Weightsusedare0.15(MFCCs),0.35(LSFs)and0.5
(MCAs).

mfcc lsf mca weighteddist.
ey 0.27 0.05 0.31 0.27

0.60 0.63 0.59 0.64
ow 0.31 0.42 0.07 0.29

0.53 0.41 0.37 0.51
ay 0.32 0.15 -0.04 0.25

0.63 0.58 0.55 0.65
aw 0.40 0.33 0.48 0.47

0.74 0.77 0.74 0.76
oy -0.01 0.16 0.32 0.08

-0.01 0.01 0.01 0.00

Table 4. Correlationbetweenperceptual scoresand Eu-
clideandistancesof MFCCs,LSFs,MCA coefficientsand
weightedsumof above threemeasures.

mfcc lsf mca weighteddist.
ey 0.21 0.29 0.32 0.31

0.66 0.64 0.55 0.64
ow 0.31 0.35 0.17 0.25

0.56 0.34 0.46 0.53
ay 0.39 0.21 -0.02 0.18

0.66 0.64 0.53 0.63
aw 0.34 0.31 0.39 0.44

0.77 0.78 0.77 0.79
oy 0.17 0.12 0.21 0.23

-0.01 -0.01 0.06 0.03

Table 5. Correlationbetweenperceptual scoresandMaha-
lanobisdistancesof MFCCs,LSFs,MCA coefficientsand
weightedsumof above threemeasures.

From Table4 it is evident that we canimprove corre-
lations by settingweightson individual distances,e.g ow
has good correlation for MFCCs, similarly MCA coeffi-
cientsyield bettercorrelations for aw. However, weighted
measureachieves good correlationsfor both the cases.In
Table5 we present correlationsbetweenperceptual scores
andMahalanobis distancesof MFCCs,LSFsandMCA co-
efficients and their weightedsum. The weightsusedare
0.39(MFCCs),0.0(LSFs)and0.61(LSFs).

4.2. Weights on MCA parameters

We found thatMCA coefficients have higher weightscom-
paredto MFCCs.Also thesizeof theMCA featurevector is
only12(includingdeltas),whereasMFCCsare26andLSFs
are24. Hence,wecarriedouta furtherexperimentin which
theindividual MCA coefficients wereweighted. Theleast-
squaresmethoddidnotyieldgoodsolutionsin thiscase.So,
we randomly generatedtheweightsandcheckedthecorre-



lationsandchosetheoneswhich producemore1% signifi-
cantcorrelations(i.e thosehighlightedin thetables).Table
6 shows threedifferent setsof weightson MCA parame-
ters,andcorrespondingcorrelationsobtainedareshown in
Table7. Set2and3 producesseven1% significantcorrela-
tions out of ten cases,alsoachieved good correlations for
oy diphthong,which hasvery poorcorrelations with other
distancemeasures (seeTables3,4,5).

MCA parameter set1 set2 set3
F1 0.682 0.342 0.699
F2 0.168 0.528 0.181
F3 0.419 0.026 0.547
B1 0.782 0.211 0.982
B2 0.109 0.520 0.589
B3 0.623 0.887 0.237
E1 0.251 0.242 0.223
E2 0.271 0.367 0.141
E3 0.028 0.019 0.081

DF1 0.150 0.198 0.838
DF2 0.211 0.211 0.536
DF3 0.437 0.924 0.778

Table 6. Various weights used on MCA parameters,
Formant frequency(F), Bandwidth(B), Energy(E), Delta-
Formant frequency(DF).

set1 set2 set3
ey 0.43 0.44 0.45

0.47 0.60 0.58
ow 0.09 0.19 0.11

0.45 0.52 0.49
ay 0.04 -0.02 0.07

0.48 0.49 0.41
aw 0.46 0.49 0.46

0.66 0.62 0.67
oy 0.55 0.55 0.50

0.34 0.39 0.44

Table 7. Correlationbetweenperceptual scoresandabso-
lutedistancesbasedonweightedMCA coefficients.

5. FUTURE WORK

Furtherwork is needto tunetheseweights to achieve high
correlation for all cases.Also, moreperceptual experiments
needto be carriedout to determine phonemespecificdis-
tancemeasures.

Thecomputationof join costandspectralsmoothing are
closelyrelated.Suppose,if we hada largedatabaseanda

perfectmeasureof join cost thenno smoothing would be
required. Conversely, if we couldsmoothjoins better, then
themethodof computing join wouldbelesscritical. Hence
it would beoptimal if we combinethesetwo operations in
someoptimalway. Presently, we areinvestigatinga single
representation, whichcanbeusedfor join costcomputation
aswell assmoothing.
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