
Kalman-filter based Join Cost for Unit

Jithendra Vepa, Simo

Centre for Speech Technolo
University of Edinb

Edinburgh, UK
vepa@cstr.ed.ac.uk, Simon.

Abstract

We introduce a new method for computing join cost in unit-
selection speech synthesis which uses a linear dynamical model
(also known as a Kalman filter) to model line spectral frequency
trajectories. The model uses an underlying subspace in which
it makes smooth, continuous trajectories. This subspace can be
seen as an analogy for underlying articulator movement. Once
trained, the model can be used to measure how well concate-
nated speech segments join together. The objective join cost
is based on the error between model predictions and actual ob-
servations. We report correlations between this measure and
mean listener scores obtained from a perceptual listening ex-
periment. Our experiments use a state-of-the art unit-selection
text-to-speech system: rVoice from Rhetorical Systems Ltd.

1. Introduction
Unit-selection based speech synthesis systems attempt to select
optimal speech units from large database, typically containing
many instances of each speech unit with varied prosodic and
spectral characteristics. Then, these speech segments are con-
catenated to produce high quality synthetic speech. The selec-
tion of the best unit sequence from the database is based on a
combination of two costs: target cost (how closely candidate
units in the inventory match the required targets) and join cost
(how well neighbouring units can be joined)[1]. The optimal
unit sequence is then found by a Viterbi search for the lowest
cost path through the lattice of the target and join costs.

The ideal join cost is one that, although based solely on
measurable properties of the candidate units, such as spectral
parameters, amplitude and F0, correlates highly with human
perception of discontinuity at unit concatenation points. A few
recent studies [2, 3, 4, 5] have attempted to determine which
objective distance measures are best able to predict audible dis-
continuities. Most of these studies focused on human detection
of audible discontinuities in isolated words generated by con-
catenative synthesisers. We extended this work to the case of
polysyllabic words in natural sentences and new spectral fea-
tures, Multiple Centroid Analysis (MCA) coefficients [6]. But
we found that no single distance measure performed well for
all cases. A measure weighting individual MCA coefficients
gave the best result [7], achieving more (seven out of ten cases)
significant correlations with the perceptual data than any other
measure. We believe there is still considerable room for im-
provement, and have developed a distance measure based on
linear dynamical models.

In this paper, we propose the use of a learned underly-
ing representation to define a join cost. The linear dynamical
model is a probabilistic, continuous state-space model which
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a predicted (smooth) trajectory through a series of noisy
vations by making smooth, continuous motion in a hidden
space, which is then projected up to the observation space.

odel can simultaneously infer the most likely observation
tories and compute the probability of the actual noisy ob-
tions. In this paper we use this probability as the basis of
cost.
fter units are concatenated, most systems attempt some
of local parameter smoothing to disguise the remaining
ntinuity. The join cost measure and the join smoothing
d interact closely. If we had a sufficiently large database
perfect join cost measure then no smoothing would be

red. Conversely, if we could smooth joins better, then
ethod of computing join cost would be less critical and
ller inventory might be possible. We propose combining
ost computation and join smoothing – the work presented
s a first step towards this.

2. Linear Dynamical Model
ar dynamical model (LDM) is described by:

�
�

� ��� � �� �� � ���� �� (1)

�� � ����� � �� �� � ���� �� (2)

�� is an observed feature vector, �� is an unobserved
en) state vector with initial value at � � � of ��, �� and ��
correlated normally distributed noise vectors with means

and covariance matrices ��� respectively. Recently, this
l has been used for speech recognition [8], formant track-
] and estimation of vocal tract parameters [10].
DMs learn an underlying, typically low dimensional, state
to model seemingly complex behaviour in observation

.
t present, our models are phone specific, with one set of
eters ����������� and �� per phone. This is conve-
since joins are usually at the centres of phones in con-

ative synthesis, so we can “run” a model from the start of
ne, through the join, to the end of that phone.
o understand how this helps us compute how close to natu-
joined phone is, it is helpful to think of the LDM tracking
servation (LSF) trajectories. At the start of the phone, the
l will follow these trajectories closely since the speech is
al – i.e. it is very much like the data the model was trained
ound the join, the model will deal with any discontinuity
LSF trajectories as noise and infer a smooth path through
in – the error between this smooth path and the actual
vations forms the basis of our join cost; towards the end

phone, the model once again follows the observations
ly since the speech is natural.



2.1. The EM Algorithm

The models are trained on natural speech: they will learn the
dynamical properties of LSFs from natural examples of a partic-
ular phone. We use the Expectation-Maximisation (EM) algo-
rithm to compute maximum-likelihood estimates for the model
parameters ��������� �������. During the E step, statis-
tics are accumulated over these training examples using the pre-
vious set of model parameters. Then in the M-step, these statis-
tics are used to update the model parameters. Refer to [11] for
full details.

The models typically needed 3-4 iterations for EM to con-
verge. We experimented with three different schemes for ini-
tialising model parameters prior to EM. They are:

� AR(1): A first order autoregressive (AR) process with
some randomness introduced into the estimation, using
a modified version of the software presented in [12].

� Factor Analysis: A factor analysis model is used to
initialise the observation process parameters (�� 	� �)
which are then used to infer the state-space equation pa-
rameters (�� 
��).

� Empirical: Hand-picked initial values for the model pa-
rameters (refer to [13] for more details).

3. Perceptual Listening Tests
To evaluate our objective join costs, we use data from a per-
ceptual experiment. A listening test was designed to measure
the degree of perceived concatenation discontinuity in sen-
tences synthesised by a state-of-the-art speech synthesis system
(rVoice), using an adult North-American male voice. A prelim-
inary assessment indicated that spectral discontinuities are par-
ticularly prominent for joins in the middle of diphthongs, pre-
sumably because this is a point of spectral change. Our study
therefore focused on such joins. We selected two natural sen-
tences for each of five American English diphthongs (ey, ow, ay,
aw and oy), listed in our previous papers [6, 7].

3.1. Test Preparation

These sentences were then synthesised using the experimen-
tal version of rVoice speech synthesis system. For each sen-
tence we made various synthetic versions, by varying the two
diphone candidates which make the diphthong and keeping all
the other units the same. We removed the synthetic versions
which had poor joins in the neighbouring phones to the diph-
thong. The remaining versions were further pruned based on
target features of the diphones making the diphthong, to ensure
similar prosody among synthetic versions. This process resulted
in around 30 versions with variation in concatenation disconti-
nuities at the diphthong join. The authors manually selected
what they judged to be the best and worst synthetic versions by
listening to these 30 versions. This process was repeated for all
ten sentences in our stimuli.

3.2. Test Procedure

There were around 17 participants in our perceptual listening
test, most of them were PhD or MSc students with some expe-
rience of speech synthesis. Most of them were native speakers
of British English.

Subjects were first shown the written sentence, with an in-
dication of which word contains the join. At the start of the test
they were first presented with a pair of reference stimuli: one
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e 1: (a) Negative log likelihood estimate for a good join,
orresponding original and predicted observations

ining the best and the other the worst joins (as selected by
thors) in order to set the end points of a 1-to-5 scale. Sub-

could listen to the reference stimuli as many times as they
and they could also review them at regular intervals (every
t stimuli) throughout the test.
hey were then played each test stimulus in turn and were
to rate the quality of that join on a scale of 1 (worst) to

st). They could listen to each test stimulus up to three
. Each test stimulus consisted of first the entire sentence,
nly the word containing the join (extracted from the full

nce, not synthesised as an isolated word).
he test was carried out in blocks of around 35 test stimuli,
one block for each sentence. Subjects could take as long
y pleased over each block, and take rests between blocks.
test block contained a few duplications of some test stim-
validate the subjects scores, as explained in section 5.

4. Objective measure
mpute the log likelihood of the observation sequence �,
the parameters of model � as follows [11]:

������ � �

�������

��������

��
�����
�� ��� �

��

��
���� �
���� (3)

d ���
are the prediction error and its covariance for model

d can be obtained from the standard Kalman filter recur-
.
he upper halves of figures 1 and 2 plot the estimate of
��� for a good join and poor join respectively. The in-

ed model prediction error can be clearly seen in figure 2
, in the region of the join, the model infers a smooth tra-
y through the LSF parameters (lower half of the figure)
ccumulates error between this smooth trajectory and the
l observations.
n objective join cost measure can be derived from the
of the negative log likelihood plot. We have tried three

ent methods: 1) an average of the negative log likelihood
ates over 5 frames centred on the join; 2) the relative in-
e (over an estimated baseline) in the negative log likeli-
estimates averaged over 3 frames centred on the frame
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Figure 2: (a) Negative log likelihood estimate for a bad join, (b)
Corresponding original and predicted observations

with highest estimate; 3) same as measure 2, except over 4
frames. Measures 2 and 3 are motivated by the plots in the
upper halves of figures 1 and 2 – they measure the area of the
“lobe” in figure 2.

5. Results and Discussion
In table 1, we present the number of subjects who listened to
each sentence, and the number of subjects with more than 50%
consistency in rating the joins. This consistency was measured
on a validation set, which we included in the test stimuli for
each sentence. We also manually checked all the listeners’ rat-
ings, and removed listeners who tended to always give the same
rating (e.g all ‘1‘s), since this would not be caught by the con-
sistency check. The mean listener scores were then computed
only for the remaining subjects with more than 50% consistency
in rating the joins.

no. of subjects consistent subjects
ey 13, 14 11, 8
ow 11, 13 6, 7
ay 17, 11 9, 6
aw 11, 13 11, 10
oy 13, 14 6, 6

Table 1: Consistency of subjects in listening tests, each number
in a pair corresponds to each sentence.

Tables 2, 3 and 4 report the correlation coefficients of the
three types of our analytical measures using likelihood esti-
mates with mean listener preference ratings. The values 8k
and 16k are waveform sampling frequencies. Correlation coef-
ficients above the 1% significance level have been highlighted.

We found that training the model on only 10% of the 3400
available sentences is as good as training on the full data.
Hence, we present those results only. Also, choosing the cor-
rect dimension for the state space is very important. We trained
models with various state dimensions from 1 to 12. The correla-
tions with perceptual ratings do not show any consistent trend:
in some cases, a low state dimension yields high correlations; in
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measure 1 measure 2 measure3
8k 16k 8k 16k 8k 16k

y -0.40 0.06 -0.44 0.00 -0.42 -0.07
-0.31 -0.18 -0.34 -0.20 -0.52 -0.50

w 0.27 0.11 0.09 0.20 0.03 0.28
0.43 0.17 0.04 0.19 0.06 0.11

y 0.20 0.51 0.32 0.52 0.32 0.48
0.32 0.62 -0.01 0.45 0.20 0.46

w -0.14 -0.13 -0.09 0.14 0.00 -0.12
0.45 0.36 0.22 0.35 0.49 0.31

y -0.06 0.05 -0.19 -0.12 -0.19 0.05
-0.08 -0.08 -0.09 -0.11 -0.02 -0.07

2: Correlations between perceptual scores and three mea-
based on a LDM estimate, using the AR(1) method to

lise the model parameters prior to EM.

cases, a higher state dimension was required. Hence, only
st result for each case is quoted in the tables.

measure 1 measure 2 measure3
8k 16k 8k 16k 8k 16k

y -0.28 0.58 -0.37 0.56 -0.32 0.33
-0.27 -0.17 -0.28 -0.19 -0.51 -0.43

w 0.25 0.26 0.11 0.47 0.10 0.52
0.44 0.34 0.17 0.34 0.22 0.17

y 0.34 0.56 0.43 0.50 0.41 0.43
0.39 0.59 0.15 0.44 0.34 0.49

w 0.07 -0.02 -0.02 0.13 0.08 -0.08
0.55 0.50 0.28 0.43 0.64 0.42

y 0.39 0.45 0.21 0.29 0.24 0.34
-0.14 -0.14 -0.11 0.10 -0.06 0.03

3: Correlations between perceptual scores and three mea-
based on a LDM estimate, using a factor analyser to ini-
the model parameters prior to EM.

omparison of tables 2, 3 and 4 shows that initialising the
l parameters using a factor analyser or our hand-picked
s yields better correlations than using an AR(1) model.
it is clear that measure 1 is best among our three analytical

ures. This measure uses a simple average of the absolute
l error over 5 frames centred on the join. The other mea-
attempt to calculate the “extra” error – the lobe seen in
per half of figure 2 – which we hypothesised would be a
indicator of the difference between the joined phone and
ral token. This hypothesis is not supported by our results.
table 5, correlations obtained using our previous mea-

[6, 7] based on statistical differences of spectral features
own alongside those using the best of the new methods

nted in this paper: measure 1 with models initialised using
analysis. The second column (MFCC) shows correlations

rceptual scores with a Mahalanobis distance between Mel
ency cepstral coefficients, the third column (LSF) is for
halanobis distance between line spectral frequencies and
deltas. The fourth column (MCA) shows correlations with
ute distances between multiple centroid analysis parame-
nd their deltas. The next column (MCA wgts.) presents the
lations with absolute distances between weighted MCA
eters. From these results we observe that our new method

rms better than MFCC and LSF, and as good as MCA pa-



measure 1 measure 2 measure3
8k 16k 8k 16k 8k 16k

ey -0.26 0.59 -0.28 0.59 -0.27 0.39
-0.27 -0.16 -0.27 -0.18 -0.50 -0.43

ow 0.27 0.27 0.11 0.50 0.008 0.55
0.58 0.35 0.25 0.38 0.27 0.30

ay 0.33 0.55 0.47 0.64 0.46 0.64
0.43 0.55 0.18 0.42 0.32 0.35

aw 0.08 -0.03 0.14 0.13 0.19 -0.07
0.64 0.50 0.59 0.46 0.73 0.46

oy 0.41 0.45 0.22 0.37 0.27 0.43
0.19 0.06 0.20 0.15 0.30 0.13

Table 4: Correlations between perceptual scores and three mea-
sures based on a LDM estimate, using hand-picked values to
initialise model parameters prior to EM.

rameters. But, weighted MCA distances are best among all
these measures. However, we believe there is still lot of scope
for improvement using our linear dynamical model approach.

MFCC LSF MCA MCA wgts. LDM
ey 0.21 0.37 0.36 0.44 0.58

0.66 0.58 0.46 0.60 0.17
ow 0.31 0.21 0.19 0.19 0.26

0.56 0.40 0.46 0.52 0.34
ay 0.39 0.01 0.03 -0.02 0.56

0.66 0.61 0.45 0.49 0.59
aw 0.34 0.66 0.35 0.49 -0.02

0.77 0.78 0.57 0.62 0.50
oy 0.17 0.28 0.53 0.55 0.45

-0.01 0.17 0.30 0.39 -0.14

Table 5: Comparison with our previous results – see text.

6. Conclusions and future work
Further research is needed to get good analytical measures
based on the LDM log likelihood estimate. Each diphthong,
and indeed each of the two sentences for a single diphthong, re-
quired a different state-space dimension for peak performance.
We chose the state-space dimension empirically using percep-
tual data, so to extend this technique from diphthongs to all
segment types would require significant amounts of perceptual
data. The fact that different segments show markedly different
performance for any given join cost, and the fact that no sin-
gle join cost performs well in all cases, indicate that finding a
universal join cost is a hard problem.

6.1. Join smoothing

One of our motivations for using LDMs is that, as well as com-
puting the join cost, they are able to smooth the LSF coeffi-
cients. This smoothing, we believe, should be better than ad
hoc interpolation because a) the LSFs are treated as a set of pa-
rameters (an observation vector) and not independently, and b)
the degree and extent of smoothing is controlled by the model
parameters which are learned from natural speech – in other
words, the model knows how natural LSFs behave, and attempts
to make the joined LSFs look similar. To evaluate this, we are
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