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Abstract

This paper describes the use of dynamic Bayesian networks for the
task of articulatory feature recognition. We show that by modeling
the dependencies between a set of6 multi-leveled articulatory fea-
tures, recognition accuracy is increased over an equivalent system
in which features are considered independent. Results are compared
to those found using artificial neural networks on an identical task.

1. Introduction
In most ASR systems, the acoustic signal is described in terms of
phones; words are simply concatenations of phone models. The
notion that a word is a sequence of phone segments, i.e. the “beads-
on-a-string” paradigm [1], makes it extremely difficult to model
the variation that is present in spontaneous, conversational speech.
Conventional systems use context-dependent phone models to deal
with this variation. Articulatory features (AF) give an explicit repre-
sentation of the asynchronous, overlapping nature of speech produc-
tion, and therefore provide a means of deriving a principled model
of the contextual variation characteristic of natural speech.

The number of studies that describe incorporation of ar-
ticulatory features (also referred to as phonological features or
articulatory-acoustic features) into ASR systems has been steadily
increasing over the years. The approaches are quite diverse in terms
of the type of data and models that have been used. The articula-
tory features can be derived from measured articulation [2, 3, 4], or
generated from existing labels according to linguistic knowledge
[5, 6, 7]. The models studied include artificial neural networks
(ANN) [5, 6, 7], hidden Markov models (HMM)[5], linear dynamic
models (LDM) [4], and dynamic Bayesian networks (DBN) [3, 8].

This work uses a set of multi-valued features, described in Sec-
tion 2. Previous studies have shown some of the benefits of such
features: reliable recovery from acoustic parameters using ANNs
[6], noise-robustness [5], and less language-specific than phones
[7]. A shortcoming of most previous approaches to AF recogni-
tion has been that features are modelled as statistically indepen-
dent. This is an invalid assumption, and [7, 9] showed that place-
of-articulation classification could be improved by training manner-
specific models. Furthermore, when integrating feature recognition
into ASR systems, the fact that accurate recognition of a given fea-
ture may be more important at some times than others has not been
exploited. We propose that dynamic Bayesian networks provide an
ideal framework within which to address these issues.

1.1. Dynamic Bayesian networks

A Bayesian network (BN) provides a means of encoding the de-
pendencies between a set of random variables (RV). The RVs and

dependencies are represented as the nodes and edges of a directed
acyclic graph. A Bayesian network exploits missing edges (imply-
ing conditional independence) to factor the joint distribution of all
random variables into a set of simpler probability distributions.
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Figure 1: Example Bayesian network showing dependencies be-
tween discrete random variablesA,B, C and continuous observa-
tionsY . Round/square nodes show continuous/discrete variables,
and shaded/unshaded distinguishes observed/hidden variables.

A dynamic Bayesian network (DBN) consists of instances of
a Bayesian network repeated over time, with dependencies across
time. Such a model is shown in Figure 1 where each instance of
the network is linked by conditioningA on its value at the previous
time. The conditional independence structure represented by the
model shows immediately that the joint probability of all variables
at time1 can be factored as:

p(A1, B1, C1, Y1)

= p(Y1|A1, B1)P (B1|A1)P (C1|A1)P (A1) (1)

whereP () andp() denote probability mass and density.
Dynamic Bayesian networks form a large class of models of

which the HMM is one restricted case. These models provide an
ideal framework to combine information from multiple sources,
and offer the potential to build richer models of the parameterized
speech signal than HMMs. One approach is the class of hidden fea-
ture models described by [8], in which articulatory features were
used for feature-based factorization of the observation space. When
the feature-based observation model was combined with a phone-
based observation model, performance was improved on a simple
recognition task. Used alone, the feature-based model did not out-
perform the baseline, which may be attributable to the simplifying
assumption that features are independent given the phone state.

The ultimate goal of this work is a phone/word recognizer built
around an articulatory feature factoring of the state and observation
processes. Given such a broad class of models and so many design
choices, we choose to split the task into a number of components.
In the current work, we focus on feature recognition and tackle the
issue of dependencies between different feature groups. In a further



study, we intend to model the observation process in more detail,
before going on to make the transition from frame-level feature ac-
curacies to phone/word recognition.

2. Data
Experimental work uses the TIMIT corpus [10] following the stan-
dard train/test division, omitting thesa sentences (same for each
speaker). Validation sets for the ANN and DBN experiments are
described in [11] and [4] respectively, and the full test set (1344 ut-
terances) is used for final evaluation. The acoustic waveform was
parameterized as12 Mel-frequency cepstral coefficients (MFCC)
and energy, calculated every10ms within25ms windows. First and
second order derivatives were appended giving39 dimensional fea-
tures which were used as acoustic input in all experimentation.

cardi-
feature values

nality

approximant, fricative, nasal,
manner

stop, vowel, silence
6

labial, labiodental, dental, alveolar,
place

velar, glottal, high, mid, low, silence
10

voicing voiced, voiceless, silence 3
rounding rounded, unrounded, nil, silence 4
front-back front, back, nil, silence 4

static static, dynamic, silence 3

Table 1:Specification of the multi-leveled articulatory features. The
right-hand column gives the cardinality of each feature.

A set of6 multi-leveled features as shown in Table 1 is used in
this work. The feature groups are self-explanatory other than static,
which gives an indication of rate of spectral change, such as occurs
during, for example, diphthongs. Frame-level feature labels were
generated from the TIMIT phone labels using mappings based on
[12], and are similar to those described in [9].

3. Experiments
Artificial neural nets (ANNs) have been shown capable of recog-
nizing articulatory features with high accuracy [5, 6]. To allow a
direct comparison between ANNs and the DBNs with which this
work is concerned, both ANN and DBN articulatory feature recog-
nizers were trained on the same acoustic data and feature set. The
following sections describe each of these in turn.

3.1. ANN feature recognition

A set of artificial neural networks was trained, one for each fea-
ture group, using the NICO Toolkit [13]. All networks are recur-
rent time-delay neural networks, consisting of three layers: an input
layer, a single hidden layer, and an output layer. All networks used
100 hidden units, other than those for manner and place which used
200 and300 respectively. During training, input-output pairs con-
sist of frames of TIMIT acoustic features mapping to articulatory
feature values. During testing, each network outputs an estimated
feature value for a given acoustic frame. These can be interpreted as
posterior probabilities, and in evaluating the network performance,
the feature value with the highest associated probability is chosen.

Individual feature accuracies range from78.3% for place, up to

92.9% for voicing, and the accuracy averaged over all features is
85.7%. The percentage of frames for which all features are correct
together is60.0%. These results are included for comparison with
DBN performance and are repeated below in Table 5.

3.2. DBN feature recognition

The approach taken in this work is to commence with a baseline
model in which the6 feature groups are modeled as independent,
add edges one at a time and evaluate each model on validation data.
The model topology giving the highest accuracy will be chosen
for final evaluation on the test set. During training, both acous-
tic and articulatory features are observed, and recognition uses a
Viterbi search to find the most likely sequence of feature values
given acoustic input. With a node representing each of the6 feature
groups, and given that DBNs are directed acyclic graphs, there can
be at most5+4+3+2+1 = 15 within-frame edges. We compare
two methods of choosing which dependencies to add, the first using
information theoretic measures, and the second manually chosen.

3.2.1. Observation model

As discussed in [8], the requirement of specifying a distribution for
every possible feature combination leads to problems of data spar-
sity. We follow the approach of [8] and adopt a factored observation
model. For each of the six feature groupsF1, . . . , F6, a Gaussian
mixture model is trained for each levelf ∈ Fk. Usingfk to denote
the level of featureFk, the probability of an observationy is given
as the product of the probabilities ofy given the individual features:

p(y|f1, . . . , f6) =

6∏
k=1

p(y|fk) (2)

An observation model of this form will be used in all experiments,
so that increases in accuracy can be attributable to adding depen-
dencies between features. The total number of Gaussian distribu-
tions required is therefore30, the sum of the cardinalities of indi-
vidual features. Gaussian components were split and vanished dur-
ing training using an adapted version of the scheme outlined in [14],
and all covariance matrices are diagonal.

3.2.2. HMM baseline and constrained silence models

The baseline system, in which features are modeled as statistically
independent is shown pictorially in Figure 2. Given the factored ob-
servation model, this amounts to6 independent HMMs operating in
parallel. With no constraints, such a system is capable of producing

average all correct
dependencies

correct together

independent (HMM) 80.1% 45.2%
independent, sync sil 81.1% 50.8%

Table 2:Feature recognition validation accuracies for the baseline
model in which features are independent, and also where all fea-
tures are forced to synchronize recognition of silence.

any of the6×10×3×4×4×3 = 8640 feature combinations. One
simple addition to the model is to ensure that recognition of silence
is synchronized between features. A hidden discrete silence/non-
silence node is added, and all features are forced to take silence/non-
silence levels according to its value. Feature recognition results on
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Figure 2:Bayesian network depicting the baseline model in which
features are modeled as independent.

the validation set for the baseline and synchronized-silence models
are shown in Table 2. Forcing common silence/non-silence deci-
sions increases the average feature accuracy from80.1% to 81.1%,
and the percentage of frames where all features are correct simulta-
neously is increased from45.2% to 50.8%.

3.2.3. Information-theoretic model selection

The mutual informationI(X;Y ) between a pair of discrete random
variablesX andY is calculated as:

I(X;Y ) =
∑
x

∑
y

P (x, y) log2

P (x, y)

P (x)P (y)
(3)

and gives a measure of how much information one variable provides
about the other. The conditional entropyH(Y |X) is given by

H(Y |X) = −
∑
x

∑
y

P (x, y) log2 P (y|x) (4)

and indicates the uncertainty inY given knowledge ofX. Using
the canonically-derived feature labels, the mutual information was
calculated for each of the possible feature pairs, as were the condi-
tional entropies for all feature combinations. The mutual informa-
tion ranged from0.43 for voicing and static up to1.17 for manner
and place, and the conditional entropy ranged from0.13 for round-
ing given front-back up to1.48 for place given static.

Table 3 shows validation accuracies for models where edges
have been added one at a time in the order of ranked mutual infor-
mation. The direction of the dependency follows that which gives
the lowest conditional entropy. The dependencies which are added
show that using the minimum conditional entropy favors condition-
ing a variable with lower cardinality on that with higher. We also
tested the effect of choosing the direction of the edge such that the
feature which gives the highest accuracy is the parent node, whilst
adding dependencies in the order of ranked mutual information as

average all correct
dependencies

correct together

independent, sync sil 81.1% 50.8%
+ manner| place 81.5% 52.4%
+ rounding| front-back 81.7% 54.6%
+ front-back| place 82.0% 56.2%
+ front-back|manner 81.9% 56.1%
+ rounding| place 81.9% 56.5%
+ rounding|manner 82.1% 58.0%
+ static|manner 82.1% 58.0%
+ voicing |manner 82.1% 58.3%
+ voicing | rounding 82.1% 58.3%
+ voicing | front-back 82.1% 58.3%

Table 3: Feature recognition validation accuracies: the order in
which dependencies are added between feature pairs follows the
ranked mutual information. The direction of dependency is chosen
according to the minimum conditional entropy.

in Table 3. The direction of the edges changes for all feature pairs
other than for front-back and static conditioned on manner. Despite
this, the results are very similar with an identical highest accuracy
of 82.1% average and58.3% all correct together. The direction of
the edge in this case has minimal impact on recognition accuracy.

3.2.4. Manual model selection

The results reported in Table 4 are for models in which the order of
adding dependencies is chosen according to the following: manner
is considered the central parent node, and all other variables are
conditioned upon it. Further dependencies are chosen in such a way
as to maintain a balance in the size of the conditional probability
tables, and hence free parameters, between variables. These results
include the highest overall validation accuracy of82.1% average
and58.5% all correct together. This model is shown pictorially in
Figure 3 and is used for final evaluation on the test data.

average all correct
dependencies

correct together

independent, sync sil 81.1% 50.8%
+ place|manner 81.5% 52.5%
+ front-back|manner 81.8% 54.0%
+ rounding|manner 81.9% 55.3%
+ voicing |manner 82.0% 55.7%
+ static|manner 82.1% 57.0%
+ rounding| front-back 82.1% 57.8%
+ static| place 82.1% 57.9%
+ front-back| place 82.1% 58.1%
+ rounding| place 82.1% 58.5%
+ front-back| voicing 82.1% 58.5%

Table 4: Feature recognition validation accuracies: the order in
which dependencies are added is manually chosen. The overall
highest validation accuracies are shown in bold face.

Results for the test set are given in Table 5 and show that the
DBN recognition performance is increased by introducing depen-
dencies between features. Accuracies ranged from71.9% for place
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Figure 3:Graph depicting the final model. Each feature is also con-
ditioned on its value in the previous frame (implied by the dotted-
line arrows) and a silence/non-silence node which, along with the
observation process, has been omitted for clarity.

to 89.4% for voicing, with an average of81.5% and 57.8% of
frames all correct together. Comparison between the ANN and
DBN results shows that the ANN performs slightly better than the
DBN. Nevertheless the results for the DBN are promising, espe-
cially given the simple observation model that we currently employ.

average all correct
dependencies

correct together

neural network 85.7% 60.0%

independent 80.8% 47.2%
independent, sync sil 80.6% 50.1%
dependent 81.5% 57.8%

Table 5:Test set results.

4. Discussion and future
Adding dependencies between variables provides a means of as-
signing a probability to each feature combination. This not only
increases recognition accuracy, but decreases decoding time as un-
likely combinations are assigned low or zero probabilities, and are
therefore pruned or excluded from the search. The caveat which
accompanies the results of Section 3.2, is that training on canon-
ical labels leads to an overly strong set of constraints on feature
co-occurrence. For the independent models, there were3032 com-
binations found in the recognition output, reduced to1084 where
features were forced to synchronize use of the silence model. By
contrast, there were only50 combinations found in the output for
the final model, suggesting that the introduction of so many con-
straints may reduce the system to a phone recognizer.

Canonically-derived feature labels provide a simple means of
building an initial system, however the limitations here are clear.
Future work will use embedded training in which the sequence of
features is specified but not the timings of transitions. This approach
will allow asynchronous feature changes, though in the absence of
suitably detailed articulatory feature labels it is not clear how to
evaluate such a system directly.

The observation model is overly simple, with features consid-
ered independent and a single Gaussian mixture model for each
level. We intend to address this and develop an implementation
using distributions specific to feature combinations where possible,
backing off to product models where training data is limited.

Finally, we intend to use this topology as the basis for a phone
recognizer with an underlying asynchronous feature layer.
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