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Abstract. In this paper we describe the 2005 AMI system for the tran-
scription of speech in meetings used in the 2005 NIST RT evaluations.
The system was designed for participation in the speech to text part of
the evaluations, in particular for transcription of speech recorded with
multiple distant microphones and independent headset microphones. Sys-
tem performance was tested on both conference room and lecture style
meetings. Although input sources are processed using different front-
ends, the recognition process is based on a unified system architecture.
The system operates in multiple passes and makes use of state of the art
technologies such as discriminative training, vocal tract length normal-
isation, heteroscedastic linear discriminant analysis, speaker adaptation
with maximum likelihood linear regression and minimum word error rate
decoding. In this paper we describe the system performance on the official
development and test sets for the NIST RT05s evaluations. The system
was jointly developed in less than 10 months by a multi-site team and
was shown to achieve competitive performance.

1 Introduction

Transcription of speech recorded in meetings has been the focus of attention
for speech researchers for quite some time. However the complexity of the input
puts considerable strain on the performance of such systems. Besides the acoustic
complexity, the variety of input sources and the moving speaker problems, the
transcription of spontaneous speech itself is complex and normally yields results
above 15% word error rate (WER). Speech transcripts of meetings are not only of
interest in their own right, but are an important input for higher-level processing.
Projects like AMI (Augmented Multiparty Interaction) aim to investigate the
use of machine based techniques to aid people in and outside of meetings to



efficiently access meeting content. Meetings are an audio visual experience by
nature, information is presented for example in the form of presentation slides,
drawings on boards, and of course by verbal communication. The automatic
transcription of speech in meetings is of crucial importance for meeting analysis,
content analysis, summarisation, and analysis of dialogue structure.

As is often the case work on automatic recognition of speech in meetings
is stimulated by yearly performance evaluations by the U.S. National Institute
of Standards and Technology (NIST) [18]. Large scale work on conference room
type meeting speech was initially facilitated by the collection of the ICSI meeting
corpus [12] which was followed by trial NIST meeting transcription evaluations
in Spring 2002. Further meeting resources were made available by NIST [8],
Interactive System Labs (ISL) [2] and the Linguistic Data Consortium for the
RT04s Meeting evaluations [18].

In this paper we describe the 2005 AMI system for the transcription of speech
in meetings used for participation in the 2005 NIST RT evaluations (RT05s). The
system was designed for participation in the speech-to-text part of the evalua-
tions, in particular transcription of speech recorded with multiple distant micro-
phones (MDM), the primary test condition, and individual headset microphones
(IHM). Both input sources are processed using different front-ends, however the
recognition process is based on a unified system architecture. The RT05s eval-
uations differ from those of previous years in that tests are conducted both on
meetings in conference room style and lecture room style. The system presented
here has been developed solely for the purpose of transcribing conference room
style meetings, with the same system being used for the transcription of the
lecture room meeting data6. Data from new sources have further enhanced the
richness of the testing conditions in terms of input speech, recording conditions
and content. The new data originates from data collection efforts as part of
two European projects, AMI7 and CHIL (Computers in the Human Interac-
tion Loop8) as well as from collections at the Virginia Polytechnic and State
University.

The rest of the paper is structured as follows: First we describe the data
resources used followed by a description of our generic system architecture and
the main system components, including an analysis of the performance of various
components on the RT05s evaluation data sets. In following sections we give an
overview of the complete system and its passes. This is contrasted with results
using manual segmentation.

2 Meeting Resources

The ICSI Meeting corpus [12] is the largest meeting resource available consisting
of 70 technical meetings at ICSI with a total of 73 hours of speech. The num-
ber of participants is variable and data is recorded with head-mounted and a
6 This excludes the use customised language models, see Section 4.4. For that reason

we do not specifically report results on lecture room data unless required.
7 See http://www.amiproject.org
8 See http://chil.server.de.



total of four table-top microphones. We have not used any other microphones
present in the room. Further meeting corpora were collected by NIST [8] and
ISL [2], with 13 and 10 hours respectively. Both NIST and ISL meetings have
unconstrained content (e.g. people playing games or discussing sales issues) and
variable number of participants. In our development we made use of the official
RT04s development and evaluation sets (rt04sdev and rt04seval). Both sets in-
clude 10 minute extracts from 8 meetings recorded at the 3 sites above and the
Linguistic Data Consortium (LDC). As part of the AMI project a major collec-
tion and annotation effort of the AMI meeting corpus[3] is currently underway.
Data is collected at three different instrumented meeting rooms in Europe (Ed-
inburgh, IDIAP, TNO). The target size of the corpus is more than 100 hours
of transcribed speech. The meeting language is English, but many participants
are non-native speakers of the language. Each meeting normally has four partic-
ipants and the corpus will be split into a scenario portion and an unconstrained
meetings portion. Each scenario in the corpus consists of four meetings with the
same participants working on a constrained task. For the benefit of the RT05s
evaluations, AMI has released a preliminary development set (rt05samidev) and
approximately 16 hours of scenario training data. In this work both resources
were used.

For the purpose of development of systems for transcription of lecture room
speech a development set (rt05slectdev) was provided by CHIL. However this
was provided very late and due to time constraints could only be used for lan-
guage model (LM) optimisation. In this paper we further report results on the
RT05s evaluation sets from the conference room and lecture room data (rt05seval
and rt05slecteval respectively). Both sets are based on 10 minute extracts from
individual meetings. The IHM and MDM tests are conducted on the same 10
minute extract.

3 System Architecture

The system architecture overview presented in this section is generic to both the
IHM and MDM systems. A more detailed description of system components is
provided in the following section. The IHM and MDM systems differ only in the
processing of the input audio and the use of input source specific acoustic models
in the various processing stages. The system operates in a total of 6 passes. Fig-
ure 1 shows a schematic representation of the processes. In the first pass (P1) the
input data is segmented and transformed into a stream of 39 dimensional MF-
PLP feature vectors[22]. Speech segments have a start and an end time as well
as a channel/speaker label. A first recognition pass is conducted with acoustic
models trained using maximum likelihood estimation (MLE) and a trigram LM
(see Section 4.4). The resegmented output of this pass is used only for estima-
tion of the vocal tract length normalisation (VTLN) warp factors on a per input
channel basis. In the second pass (P2) the VTLN warp factors are determined
and the audio data is recoded with these warp factors. Then a second decoding
pass with acoustic models trained on VTLN data is performed. The P2 acous-
tic modelling includes a smoothed heteroscedastic linear discriminant analysis
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Fig. 1. Processing stages of the 2005 AMI meeting transcription system.

(SHLDA) input transform[15] and acoustic models are trained (in the IHM case)
using the minimum phone error(MPE) criterion[20]. The output of P2 is used to
adapt the acoustic model means and variances using maximum likelihood linear
regression [7]. Two transforms, one for speech and one for silence are estimated.
A third decoding pass (P3) uses MLLR adapted P2 models to generate bigram
lattices. As all subsequent stages only process lattices to constrain the search
space the use of a bigram in P3 avoids too harsh constraints.

In pass P4, the bigram lattices are first expanded using a trigram language
model, followed by a second expansion using 4-gram LMs. For conference room
data this expansion uses language models optimised for each meeting resource
(MRS). The 4-gram lattices generated in P4 are used for rescoring in the follow-
ing pass P5. Here models are adapted using up to two speech transforms using a
regression class tree. Lattice rescoring further makes use of pronunciation prob-
abilities estimated on the training data [11]. The output of this pass is a set of
lattices which form the input to the final pass, P6. Here confusion networks [16]
are formed and the most probable word from each confusion set is selected. The
final output is then aligned using the P5 acoustic models.

4 System Components

In this section a more detailed discussion of the system components as outlined
in Section 3 is presented. First a brief description of the front-end blocks, both
for the IHM and MDM cases is given. This is followed by a description of acoustic
and language model training.

4.1 Front-end Processing

A common system architecture was chosen for both IHM and MDM sub-systems.
This was possible due to the enhancement based setup chosen for MDM process-
ing. In both cases the descriptions below do not include the feature extraction
process. For more details the reader is referred to [10].
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Individual Headset Microphone Processing The main task for the front-
end processing of IHM data is speech activity detection (SAD). Figure 2 outlines
the processes involved. First cross talk suppression is performed at the signal
level using adaptive-LMS echo cancellation[17]. Additions to the basic system
are: the use of multiple reference channels in cancellation; automatic estimation
and correction of skew between channels; automatic cross-talk level estimation;
and ignoring of channels which produce low levels of cross-talk. Updates are
further made on a per sample basis to account for non-stationary ‘echo’ path.

The SAD system used here is a straight-forward statistical based approach
with additional components to control cross-talk between channels. A 14 di-
mensional MF-PLP [22] feature vector is augmented with additional features:
normalised RMS energy, signal and spectrum kurtosis, and as a voicing strength
measure based on the maximum amplitude in the speech cepstrum in the range of
frequencies 50-300Hz [19, 23]. A Multi-Layer-Perceptron (MLP) with a 31 frame
input layer, a 5 unit hidden layer and an output layer of two classes is trained.
Ten meetings from each meeting resource serve as training data totalling to
around 20 hrs of data. A further five meetings from each corpus are used to de-
termine early stopping of the parameter learning. The utterance segmentation
uses Viterbi decoding with scaled likelihoods and a minimum segment dura-
tion of 0.5 seconds. In a final processing step the output of the segmenter is
smoothed by padding segments with 0.1 seconds, merging overlapping segments
in the process. Table 1 shows frame error rate results on the rt05seval before
and after segmentation. Note that the relationship between false alarm and false
reject rates differs substantially between meeting resources. The performance
overall on the test data shows relatively high false reject rates. Smoothing the
segment boundary estimates by padding allows to reduce the false reject rates
significantly.

Multiple Distant Microphone Processing The basic processing stages of
MDM processing are outlined in Figure 2. Since the position of microphones in
the meeting room is not fixed for this task an approach that does not require
geometry information was used.

First gain calibration is performed by normalising the maximum amplitude
level of each of the input files. Then a noise estimation and removal procedure
is run. This in itself is a two pass process. On the first pass the noise spectrum
Φnn(f) of each input channel is estimated as the noise power spectrum of the



Table 1. Segmentation performance (in %) on rt05seval. FA denotes false acceptance,
FR false reject, and speech the percentage of speech in the reference. TOT gives the
overall performance whereas TOT(REL) are relative to the associated class.

AMI ISL ICSI NIST VT TOT TOT(REL)

RAW

FA 1.29 1.52 0.71 1.49 3.70 1.64 2.00
FR 4.49 3.03 3.36 2.81 1.12 2.94 16.23
speech 24.40 28.84 13.79 15.56 14.83 18.12

SMOOTHED

FA 1.90 2.55 1.21 2.05 4.34 2.22 2.71
FR 3.80 2.01 2.71 2.18 0.83 2.30 12.69
speech 24.40 28.84 13.79 15.56 14.83 18.12

M lowest energy frames in the file (M = 20 was used. On the second pass
a Wiener filter with transfer function Φxx(f)−Φnn(f)

Φxx(f) (where φxx(f) is the input
signal spectrum) is applied to each channel to remove stationary noise. The noise
coherence matrix Q, estimated over the M lowest energy frames, is computed.
Finally delay vectors between each channel pair are calculated for every frame in
the input sample. The delay between two channels is the time difference between
the arrival of the dominant sound source and is calculated by finding the peak in
the generalised cross correlation[13] between input frames across two channels.

The delay vector is given as the delays for all pairs with respect to a single
reference channel - there are therefore N delays in each vector, with the delay
for the reference channel equal to 0. Further a vector of relative scaling factors
is calculated, corresponding to the ratio of frame energies between each channel
and the reference channel. The start and end times in seconds, along with the
delay and scaling factors are output for each frame. The delay and scaling vectors
are then used to calculate beamforming filters for each frame using the standard
superdirective technique [4, 5]. Segments and speaker labels were provided by
SRI/ICSI[21].

While this approach is robust to a variety of configurations, for a small num-
ber of sparsely located microphones (as for some rooms in the rt05seval set)
delay estimation can be unreliable and significant spatial aliasing occurs.

4.2 Acoustic Models

Acoustic models are phonetic decision tree state clustered triphone models with
standard left-to-right 3-state topology. Models are trained up to 16 mixture com-
ponents using MLE with standard HTK9 procedures and contain approximately
4000 states. For more details on the training process the reader is referred to
[10]. In previous experiments [10] we found that maximum a posteriori (MAP)[9]
adaptation from conversational telephone speech (CTS) models gave better per-
formance than training solely on meeting data.

VTLN was applied both in training and testing, both on IHM and MDM.
For training an iterative procedure was used alternating the estimation of warp-

9 The Hidden Markov Model Toolkit (HTK). http://htk.eng.cam.ac.uk.



Table 2. %WER on rt05seval IHM rescoring 4-gram lattices with pronunciation prob-
abilities and various models. By default models are trained on meeting data only.

TOT Sub Del Ins AMI ISL ICSI NIST VT

CTS adapted 39.1 20.0 13.4 5.7 39.9 35.1 36.0 46.9 37.6
CTS adapted, VTLN 36.9 18.5 13.0 5.5 37.0 33.1 34.4 45.2 34.8
VTLN 37.2 18.8 13.2 5.2 36.4 33.0 36.1 45.5 35.0
HLDA 35.7 17.8 13.4 4.6 36.0 31.0 33.9 43.3 34.6
SHLDA 35.6 17.7 13.3 4.5 35.6 30.3 34.5 42.8 34.7
SHLDA-MPE 32.9 15.8 13.3 3.8 32.8 27.8 32.3 39.8 31.9

ing factors and model parameter updates. For IHM initial warp factor esti-
mates were obtained from CTS-adapted models. Experimental evidence shows
improved WER performance with warp factor estimation at a reduced band-
width of 3800Hz. Initial experiments using IHM models for warp factor esti-
mation on MDM data yielded a performance degradation. Hence IHM VTLN
models were adapted to the MDM VTLN data where a single training iteration
was found to yield good results that could not be improved further.

Feature space transformation was applied in the form of smoothed het-
eroscedastic linear discriminant analysis (SHLDA) [15]. The transform was used
to reduce a 52 dimensional feature vector (standard plus third derivatives) to
39 dimensions. HLDA estimation procedure[14] requires the estimation of full
covariance matrices per Gaussian. SHLDA in addition uses smoothing of the
covariance estimates by interpolating with standard LDA type within-class co-
variances. The adaptation of CTS models when using SHLDA is non-trival due to
the reduced bandwidth of CTS data. To avoid further issues with discriminative
training no CTS data was used in conjunction with SHLDA.

All further models were trained using the minimum phone error criterion
[20]. The implementation of MPE used here is similar to that described in [20].
For this purpose numerator and denominator lattices were generated using the
SHLDA models and a bigram LM interpolated with a unigram model that in-
cludes training set specific words. The phone times as obtained in recognition are
used to improve speed in training. Only means and variances are modified and
parameter update makes use of I-smoothing. Performance was found to stabilise
after 10 training iterations10.

Table 2 shows lattice rescoring results on rt05seval IHM for models of in-
creasing complexity. Note the 0.3% performance degradation from the use of
unadapted models which is compensated by 1.6% improvement from SHLDA.
Another 2.8% absolute are gained by the use of MPE training. It can be observed
that model improvement has little impact on the deletion rate.

4.3 Training Data Selection

Training data for IHM is given by the reference transcripts. In total 104 hours
of speech were available from resources outlined in Section 2, albeit a significant

10 Both SHLDA and MPE are developed as part of the STK HMM toolkit:
http://www.fit.vutbr.cz/speech/sw/stk.html.



Table 3. MDM Data selection. IHM denote IHM segments (inc. overlapped speech).
sil-bound and word-bound denote methods for removing overlap (cut at silence or word
boundaries), sn denotes silence normalisation.ASL denotes the average segment length.

#Segments Size (hours) ASL (sec) %Silence

IHM 136822 104.27 2.74 27.0
sil-bound 84044 62.33 2.67 21.0

word-bound 94940 65.78 2.49 21.1
word-bound + sn 96086 62.96 2.36 18.0

Table 4. Size of various text corpora in million words (MW).

Corpus #words (MW)

Swbd/CHE 3.5
Fisher 10.5
Web (Swbd) 163
Web (fisher) 484
Web (fisher topics) 156

BBC - THISL 33
HUB4-LM96 152
SDR99-Newswire 39
ICSI/ISL/NIST/AMI 1.5
Web (ICSI) 128

Web (AMI) 100
Web (CHIL) 70

proportion of the data is silence. The special processing setup for MDM data (see
Section 4.1) however makes additional processing necessary as the system cannot
cope with overlapped speech. A straight forward exclusion of all segments with
overlaps would have resulted in removal of more than 60% of the data and hence
was not an option. Table 3 compares several data selection techniques based
on alignments. sil-bound denotes cuts at the nearest boundary where silence
occurs, word-bound the nearest word-boundary regardless of silence. With sn
further silence beyond 0.2 seconds at segment boundaries and within segments
was removed. The word-bound+sn configuration showed marginally better per-
formance and was used for MDM model training.

4.4 Vocabulary, Language Models and Dictionaries

The recognition vocabulary is set to cover the 50000 most frequent words us-
ing a procedure outlined in[10]. The same vocabulary was used both for lecture
and conference room style meetings. Pronunciation dictionaries are based on the
UNISYN pronunciation lexicon [6] which was manually augmented[10]. Pronun-
ciation probabilities are estimated from alignment of the training data[11].

As in previous work, LMs trained on a large number of corpora were used
to derive meeting room specific and generic language models by optimisation
of interpolation weights. The most important corpora are listed in Table 4. A
full discussion of all source material would go beyond the scope of this paper.
It is important to note that a collection of data from the web using tools and
methods as provided by [1] was performed using both AMI and CHIL data as
the basis. In both cases the proposed approach was altered to focus on previ-



Table 5. Perplexities for 4-gram LMs on rt04dev and rt05samidev

Language models
Data source ICSI NIST ISL AMI LDC fgcomb05

ICSI 82.734 86.1662 87.3345 97.1024 109.86 84.1826
NIST 101.442 103.668 102.054 105.683 109.212 98.8722
ISL 110.124 110.99 106.66 119.327 114.483 108.588
AMI 92.9651 108.865 108.723 77.2817 101.714 84.1282
LDC 92.3824 92.761 87.6343 99.0105 84.2745 90.5354

AllDev 86.9236 93.2191 93.6604 92.0517 106.716 85.381

Table 6. %WERs on rt05seval showing the effect of CN decoding. Word times are
corrected by alignment.

CN decoding Word time correction IHM MDM

32.1 44.2
× 31.2 42.2

× 31.5 44.0
× × 30.6 42.0

ously unobserved contexts. This approach has in particular lead to a dramatic
reduction in perplexity for lecture room data by more than 30%.

Table 5 shows perplexities for language models tuned to specific meeting
resources as well as in combination. It is evident the meeting room specific
models outperform the combined models. Hence the lattice expansion to 4-gram
lattices (see Section 3) was performed using meeting resource specific models.
This gave an additional 0.5% WER reduction on the rt04seval set.

4.5 Minimum Word Error Decoding
Minimum word error rate decoding[16] is a widely used technique to counter
the fact that the standard speech recognition objective function is to minimise
sentence instead of word error rate which is the measurement metric. Table
6 compares the performance both on IHM and MDM. In both case the gain
from this technique was found to be moderate. The table also shows the effect
of correcting the word times by alignment. Standard decoding adds between-
word silence to the end of a word, thus artificially lengthening words. Secondly,
confusion network decoding uses heuristic rules to define word times. Hence
again re-alignment is needed to correct the times.

5 Overall System Performance

Table 7 shows WER results for the 2005 AMI meeting transcription system on
a per pass basis. The result for P3 is higher than that for P2 due to the use of a
bigram language model. The major reduction in WER at P6 can be explained by
the use of alignment (see above). The high deletion rate is a main contributor to
the error rate. Overall the WER reduction up to P6 is 10.5% absolute, however
most of the gain is already obtained in P2. The associated results on rt05seval
MDM are shown in Table 8. Note that a similar improvement is obtained to that
observed on IHM data, again with relatively high deletion rates. Particularly
poor performance on VT data has a considerable impact on performance (only
2 distant microphones!).



Table 7. %WER on rt05seval IHM.

TOT Sub Del Ins Fem Male AMI ISL ICSI NIST VT

P1 41.1 21.1 14.7 5.3 41.1 37.2 42.3 36.3 37.1 49.1 41.1
P2 33.1 15.9 13.4 3.9 33.1 28.2 33.4 27.2 32.8 39.5 32.8
P3 34.4 16.9 13.7 3.9 34.4 28.7 34.8 27.7 33.5 41.8 34.6
P4.tg 32.2 15.3 13.1 3.8 32.2 27.3 32.3 26.1 32.1 39.3 31.4
P4.fg 32.3 15.5 12.9 3.9 32.3 27.7 32.6 26.4 31.9 39.5 31.2
P5 32.1 15.3 12.8 4.0 32.1 27.4 32.7 26.3 31.8 39.1 30.5
P6 30.6 14.7 12.5 3.4 30.6 25.9 30.9 24.6 30.7 37.9 28.9

Table 8. %WER on rt05seval MDM.

TOT Sub Del Ins Fem Male AMI ISL ICSI NIST VT

P1 53.6 32.1 17.3 4.1 53.6 56.4 46.5 50.2 48.2 53.6 63.0
P2 50.8 31.3 14.8 4.7 50.8 51.4 44.7 46.7 43.6 51.6 60.4
P3 50.4 31.1 14.6 4.7 50.4 53.0 44.7 47.0 45.2 48.9 59.7
P4.tg 48.4 30.0 13.6 4.8 48.4 49.4 43.9 44.8 42.5 46.9 57.2
P4.fg 47.9 29.5 13.7 4.7 47.9 49.3 42.4 45.0 41.8 47.4 56.6
P5 44.2 26.0 14.0 4.1 44.2 42.6 38.6 38.9 39.2 43.8 53.2
P6 42.0 25.5 13.0 3.5 42.0 42.0 35.1 37.1 38.4 41.5 51.1

5.1 Manual Segmentation

In previous sections we have shown that automatic segmentation is still a main
source of error. Table 9 compares results with reference and automatic segmen-
tation. Both on MDM and IHM the automatic segmentation naturally increases
deletion rates, however the effect is far stronger on IHM where the overall dif-
ference between automatic and manual segmentation is 6.4%. The gain from
confusion network decoding is further decreased with automatic segmentation.
The absolute gain from P1 to P6 is similar in absolute terms, with or without
manual segmentation.

5.2 Lecture Room Meetings

Lecture room meetings as included in the RT05s evaluations originate only from
one recording site. Presentation sessions are mixed with question/answer meet-
ings where more than one speaker talks. In this work no development work was
performed due to lack of time. The system for conference room meetings was
used as described except for language models optimised on the associated devel-
opment data with additionally collected web-data. For MDM transcription only
the four microphones on the table were used. Table 10 shows WERs both on
IHM and MDM recordings. It is interesting to note that the WERs are in the
same range as on lecture room data, however the overall gain of the passes is
larger. Deletion rates are considerably lower on IHM compared to the results on
conference room data.

6 Conclusions

This is the first participation of the AMI-ASR team in NIST evaluation and
the system presented here was developed from scratch in less than 10 months



Table 9. %WER summary for rt05seval

IHM MDM
refseg autoseg refseg autoseg

TOT Del TOT Del TOT Del TOT Del

P1 34.9 7.1 41.1 14.7 50.6 11.8 53.6 17.3
P2 26.0 7.1 33.1 13.4 46.4 11.4 50.8 14.8
P3 27.4 7.4 34.4 13.7 47.8 12.5 50.4 14.6
P4 24.5 6.4 32.3 12.9 45.1 11.5 47.9 13.7
P5 24.5 6.3 32.1 12.8 42.0 12.2 44.2 14.0
P6 24.2 6.4 30.6 12.5 40.7 12.3 42.0 13.0

Table 10. %WER on rt05slecteval.

IHM MDM
TOT Sub Del Ins TOT Sub Del Ins

P1 44.4 26.4 5.0 12.9 65.0 47.6 9.9 7.5
P2 33.0 19.1 5.2 8.7 60.0 43.4 10.0 6.7
P3 33.7 19.7 5.3 8.6 59.9 43.0 11.0 5.9
P4 31.4 18.2 4.8 8.3 58.8 42.2 10.1 6.5
P5 31.1 18.2 4.6 8.3 54.8 38.7 11.2 5.0
P6 30.4 17.7 4.6 8.0 53.5 37.2 11.6 4.7

in a joint multi-site effort. The system was shown to yield very competitive
performance for the transcription of meeting data in the NIST RT05s evaluation
both on lecture and conference room data. We have also described and analysed
a series of potential short-comings that will be addressed in the future. Particular
emphasis will be placed on improving the IHM and MDM front-end processing.
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