
HUMAN-COMPUTER DIALOGUE SIMULATION USING HIDDEN MARKOV MODELS
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ABSTRACT

This paper presents a probabilistic method to simulate task-oriented
human-computer dialogues at the intention level, that may be used
to improve or to evaluate the performance of spoken dialogue sys-
tems. Our method uses a network of Hidden Markov Models
(HMMs) to predict system and user intentions, where a “language
model” predicts sequences of goals and the component HMMs
predict sequences of intentions. We compare standard HMMs,
Input HMMs and Input-Output HMMs in an effort to better pre-
dict sequences of intentions. In addition, we propose a dialogue
similarity measure to evaluate the realism of the simulated dia-
logues. We performed experiments using the DARPA Communi-
cator corpora and report results with three different metrics: dia-
logue length, dialogue similarity and precision-recall.

1. INTRODUCTION

The task of human-computer dialogue simulation consists of gen-
erating artificial conversations between a spoken dialogue system
and a user. The communication in real spoken dialogue systems
is achieved at several levels: speech, words and intentions (anal-
ogous to dialogue acts). Training optimal dialogue strategies usu-
ally requires many dialogues to derive an optimal policy and on-
line learning from real conversations may be impractical. An al-
ternative is to use simulated dialogues. For dialogue modelling,
simulation at the intention level is the most convenient, since the
effects of recognition and understanding errors can be modelled
and the intricacies of natural language generation can be avoided
[1].

Several research efforts have been undertaken in this area for
human-computer conversations, including rule-based [2]-[4] and
corpus-based approaches [5]-[9][12]. Most of the investigations
are intention based [5]-[10], and some use the speech and word
levels [2][4], depending on the purposes of the simulated dialogues.
All the investigations simulate user behaviour and some of them
model speech recognition errors in order to corrupt users responses
[2][3][8]-[10]. Domains vary from restaurants [2], air travel in-
formation [5]-[7][11][12], banking [8], cinema [9], computer pur-
chasing [10], and fast food [4]. Finally, a few investigations at-
tempt to evaluate the simulated user behaviour [8][9][11][12] us-
ing simple statistical metrics. These investigations mostly simulate
user behaviour in order to interact with an existing spoken dialogue
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system. However, no corpus-based efforts have been undertaken to
simulate both system and user behaviour.

This paper presents a method that addresses the following ques-
tion: How to expand a small corpus of dialogue data with more
varied simulated conversations? Our method learns system and
user behaviour based on a network of HMMs, where each HMM
represents a goal in the conversation. In an effort to better predict
real dialogues we compare three models with different dependen-
cies in their structures. In addition, this paper presents a measure
to evaluate the realism of the simulated dialogues through the com-
parison of HMMs trained with real and simulated dialogues. Some
potential uses of the expanded corpus may be to learn optimal di-
alogue strategies and to evaluate spoken dialogue systems in early
stages of development.

2. PROBABILISTIC DIALOGUE SIMULATION

This section describes a probabilistic human-computer dialogue
simulation method that models both system and user behaviour at
the intention level (see figure 1). A set of real dialogues (the train-
ing set) is required in order to acquire knowledge and train the
system and user models, which are used to make them interact to-
gether using intentions in order to generate simulated dialogues.
The system model is a probabilistic dialogue manager that con-
trols the flow of the conversation, and the user model is a set of
conditional probabilities that describe user behaviour. Finally, the
simulated dialogues and another set of real dialogues (the test set)
are used to evaluate the realism of such simulated dialogues.
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Fig. 1. A high-level diagram of the proposed human-computer
dialogue simulator.
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2.1. The System Model

The task of the system model is to generate a sequence of sys-
tem turns including system intentions, allowing user responses be-
tween turns. Due to the fact that conversations may have many sys-
tem turns and that some turns are reused during the conversations,
we decided to divide the conversation into goals, which are subse-
quences of system turns within the same topic. Therefore, our sys-
tem model consists of multiple Hidden Markov Models (HMMs)
connected by a bigram language model, where each HMM in the
network represents a dialogue goal (see figure 2a). The task of
the bigram language model is to predict the goal sequence within
a dialogue by the conditional probability of the preceding goal
P (gn|gn−1) given the set of goals G = {g1, g2, ..., gN}. The
language model is parameterized as Λ = (σ, δ), where σ is the
initial distribution and δ the transition distribution. The conversa-
tion within a goal is modelled by an ergodic HMM with visible
states. The notation λ = (A, B,π) is used to indicate the com-
plete parameter set of a standard HMM and its characterization is
as follows [13]:

• N , the number of states within a goal plus a final state. We
assume that any goal can be modelled as a set of visible
states S = {S1, S2, ..., SN} representing system turns, the
state at time t is referred as qt and the final state is referred
as qN .

• M , the number of observed symbols, represented as a set
of system intentions V = {v1, v2, ..., vM}, the symbol ob-
served at time t is referred as ct.

• The discrete random variable A describes the flow of sys-
tem turns by P (qt+1|qt).

• The discrete random variable B describes the system inten-
tions generated in each state by P (ct|qt).

• The initial state distribution π = P (q0) represents the start
of the conversation within a goal.

Standard HMMs consider state transitions (system turns) and
observations (system intentions) independent of user responses (see
figure 2b), meaning that the control flow of the conversation does
not take into account the previous user responses. This fact mo-
tivated the use of models with more dependencies in their struc-
ture. Therefore, we use Input Hidden Markov Models (IHMMs)
and Input-Output Hidden Markov Models (IOHMMs), which are
extensions of the standard HMMs [14], see figures 2c and 2d. IH-
MMs condition the next state transition qt+1 on the current state
qt and the current user response ut, the state transition probability
is rewritten as P (qt+1|qt, ut). IOHMMs extend IHMMs by con-
ditioning the current observation ct on the current state qt and the
previous user response ut−1, the observation symbol probability
distribution is rewritten as P (ct|qt, ut−1).

2.2. The User Model

The task of the user model is to interact with the system model by
providing answers to system intentions. Our user model is based
on the assumption that a user response is conditional only on the
previous system response [5]. The observed symbols are repre-
sented by the set of user intentions H = {h1, h2, ..., hL}, where
L is the number of intentions and the intention at time t is referred
as ut. Thus, the discrete random variable U describes the user
intentions generated in each state by P (ut|qt, ct). Figure 3 illus-
trates the structure of an IOHMM including user responses.
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Fig. 2. HMM-based system models. (a) a language model defin-
ing a network of Hidden Markov Models (HMMs), (b) a standard
HMM, (c) an Input HMM (IHMM) and (d) an Input-Output HMM
(IOHMM). The empty circles represent visible states, the lightly
shaded circles represent observations and the dark shaded circles
represent user responses.
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Fig. 3. The IOHMM including user responses (dark shaded cir-
cles), the black arrows correspond to the user model.

2.3. The Simulation Algorithm

The language model and HMMs are used as a generator in order to
simulate task-oriented human-computer dialogues at the intention
level. A simplified version of the dialogue simulation algorithm
using standard HMMs is shown in figure 4. The function Dia-
logueSimulator generates sequences of goals using the language
model Λ, choosing initial goals from σ and goal transitions from
δ, until reaching the final goal gN . For each goal, the function
SimulateHMM is invoked with the corresponding model λ, which
generates a sequence of system intentions ct and user intentions
ut, until reaching the final state qN . The probability distribu-
tions from lines 18 and 21 may be replaced with the ones specified
by IHMMs or IOHMMs. The algorithm assumes that the system
starts the conversation and the user ends it.

3. DIALOGUE SIMILARITY

This section describes a measure to evaluate the realism of simu-
lated dialogues. The motivation for proposing another measure is
due to the fact that previous measures are either very general (such
as dialogue length [8]) or very strict (such as precision-recall [11],
which highly penalizes unseen dialogues). Therefore, in an at-
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01. function DialogueSimulator()
02. load parameters of the language model Λ
03. current goal← random goal from σ

04. while current goal != gN do
05. λ← parameters of the HMM given current goal
06. SimulateHMM(λ)
07. current goal← random goal from δ
08. end
09. end

10. function SimulateHMM(λ)
11. t← 0
12. qt← random system turn from π
13. ct← random system intention from P (ct|qt)

14. loop
15. print ct

16. ut ← random user intention from P (ut|qt, ct)
17. print ut

18. qt ← random system turn from P (qt+1|qt)
19. if qt = qN then return
20. else t← t + 1
21. ct ← random system intention from P (ct|qt)
22. end
23. end

Fig. 4. The dialogue simulation algorithm.

tempt to address the deficiencies of the previous measures we pro-
pose a dialogue similarity measure. The purpose of this measure
is to evaluate the similarity between two sets of dialogues. For our
purposes, we compare a corpus of real dialogues against a corpus
of simulated dialogues1 , training a set of standard HMMs (one per
dialogue goal) for each corpus. This measure computes the nor-
malized distance between HMMs trained from each corpus, where
γr represents a set of HMMs trained with real dialogues and γs

represents another set of HMMs trained with simulated dialogues.
The similarity is the distance between γr and γs given by equation
1. Notice that this measure can evaluate the system model (includ-
ing the variables q and c), the user model (including the variable u)
or both (including all variables). This measure attempts to provide
an indication of how far all the simulated dialogues are from the
real dialogues.

D∗(γr, γs) =
1

L

L∑
l=1

1

N

N∑
i=1

1

Mi

Mi∑
j=1

D(ωj ; λri , ωj ; λsi), (1)

where L is the number of variables to compare, N is the num-
ber of HMMs (one per goal), M is the number of probability dis-
tributions in the model λi, ω is the variable (e.g., q, c, u), and D
is a distance between HMMs expressed as

D(p, q) =
DKL(p ‖ q) + DKL(q ‖ p)

2
, (2)

and DKL is the Kullback-Leibler divergence expressed as

DKL(p ‖ q) =
∑

i

pi log2

(
pi

qi

)
. (3)

1Under the assumption that the more similarity the more realism.

4. EXPERIMENTAL DESIGN

4.1. Training the System and User Model

Our experiments use the DARPA Communicator corpora 2001,
which is annotated using the DATE annotation scheme [15]. These
corpora (available from the LDC), consists of task-oriented human-
computer dialogues in the domain of travel information. The DATE
scheme annotates dialogues using dialogue acts, which character-
ize behaviour of human-computer dialogues. Both system turns
and user turns are annotated, with a focus on system turns, as-
suming that system behaviour is correlated to user behaviour. As a
consequence, system turns are annotated with dialogue acts, whilst
user turns provide the ASR and user transcriptions at the word
level embedding semantic tags. Using this data we trained our
models using the following five steps:

1. Dialogue segmentation, where each segment corresponds
to a goal, these segments are application dependent. Figure
5 shows the goal delimiters (dialogue acts) of the systems
used in our experiments. This step was used to train the
language models, the rest of the steps were used to train the
HMMs.

2. Classification of system turns into states for the HMMs.
Briefly, the system turns with speech acts request info, of-
fer, and acknowledgement were classified as states, using
such order in order to avoid duplicated states. System turns
without any of these speech acts were classified according
to their most recent state.

3. Classification of system turns into intentions. Due to the
fact that system turns have many combinations of dialogue
acts, we collapsed them into the set of system intentions
V = {start, apology, instruction, confirmation}. Briefly,
and using the following order, the system turns with speech
acts explicit confirm were classified as confirmation; the
system turns with speech acts apology as apology; the sys-
tem turns with speech acts request info, offer, and acknowl-
edgement as start; the system turns with speech acts in-
struction as instruction; and any other system turn as start.

4. Classification of user turns into intentions. As we are
interested in intention-based dialogues, information from
transcriptions was used in order to classify user turns into
the set of user intentions H = {oov, command, yes, no,
CITY, DATE TIME, RENTAL, CAR, AIRLINE, HOTEL, AIR-
PORT, NUMBER, CITY CITY, DATE TIME DATE TIME,
CITY DATE TIME, AIRLINE DATE TIME, AIRLINE NUM-
BER, CITY CITY DATE TIME}. The items in capital are the
semantic tags that occur in most of the systems. The use of
more than one semantic tag allows user initiative. The full
set of user intentions H was used to provide user responses
and to train the state transitions in IHMMs and IOHMMs,
but for training observations in IOHMMs we collapsed the
semantic tags into the intention iv, in an effort to reduce the
data sparsity problem. Finally, subsets of H (system vocab-
ulary) where allowed in each HMM, according to the user
intentions observed in the data.

5. Smoothing of intentions in order to consider unseen en-
tries. Due to the fact that many intentions may not have
occurred in the data, the probability distributions of the
HMMs (system turns, system intentions and user intentions)
were smoothed using Backoff estimation with Witten-Bell
discounting [16].
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CMU

g0:about_task|request_info|dest_city
g1:about_task|request_info|return_date
g2: about_task|request_info|continue_trip
g3: about_task|request_info|hotel
g4: about_task|request_info|rental
g5: about_task|request_info|flight

SYSTEM GOAL DELIMITERS

COL

g0:about_task|request_info|top_level_trip
g1:about_task|request_info|return_date
g2: about_task|request_info|continue_trip
g3: about_task|request_info|rental
g4: about_task|request_info|hotel
g5: about_task|request_info|flight

IBM
g0: about_task|request_info|top_level_trip
g1: about_task|request_info|continue_trip
g2:about_task|offer|flight

LUC

g0:about_task|request_info|top_level_trip
g1: about_task|request_info|continue_trip
g2:about_task|request_info|return_date
g3: about_task|request_info|rental
g4: about_task|request_info|hotel

MIT
g0: about_task|request_info|top_level_trip
g1: about_task|request_info|return_date
g2: about_task|request_info|price

BBN

g0:about_task|request_info|top_level_trip
g1: about_task|request_info|hotel
g2: about_task|request_info|rental
g3:about_task|request_info|return_date
g4: about_task|request_info|flight
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Fig. 5. Information extracted from the Communicator data. User
initiative is the ratio between number of semantic tags and number
of utterances (from user transcriptions). These corpora is a subset
of the original dialogue data.

4.2. Evaluation Metrics

Evaluating simulated dialogues is a difficult process due to the fact
that we do not know in advance if the simulated dialogues would
occur in real environments. Nevertheless, we evaluate our method
using the following metrics that compare two sets of dialogues.
For our purposes we are mainly interested in comparing real dia-
logues (test set) against simulated dialogues.

• Dialogue Length: This measure computes the average num-
ber of turns per dialogue, giving a rough indication of agree-
ment between two sets of dialogues.

• Precision-Recall: This measure evaluates how well a model
can predict training and test data, but it highly penalizes
the simulated dialogues that did not occur in the real data.
This measure is illustrated in figure 6, where recall is given
by Rtrain = (A ∩ C)/A or Rtest = (B ∩ C)/B, and
precision is given by Ptrain = (A ∩ C)/C or Ptest =
(B ∩C)/C. An average of recall and precision is given by
F = 2PR/(P + R) [16].

• Dialogue Similarity: This proposed measure computes the
normalized distance of standard HMMs between two sets
of dialogues, penalizing unseen behaviour, but taking into
account seen and unseen dialogues (see section 3).

In this paper our evaluation focuses on the HMM-based sys-
tem models, but such measures can also be used to evaluate the
user model or both. In the case of dialogue length we only con-
sider system turns. In the case of precision-recall we consider frag-
ments (one per goal) compounded by state plus system intention.
Finally, in the case of dialogue similarity we only consider sys-
tem turns (states) and system intentions (observations), but other
parameters might be incorporated such as user intentions.

U

C
A

B

Fig. 6. Data sets used by the Precision-Recall measure (A=real
dialogues in the training set, B=real dialogues in the test set,
C=simulated dialogues), if the set C covers completely A and B
this measure will mean realism in the simulated dialogues.

4.3. Experiments and Results

We trained the proposed models for six Communicator systems:
BBN, CMU, COL, IBM, LUC, MIT. From the original data we
filtered dialogues with missing annotations that impede to induce
system intentions, the size of the corpora used for experiments is
shown in figure 5. We performed experiments for each system in
order to compare the proposed HMM models. In each comparison
104 simulated dialogues were generated.

Figures 7 and 8 illustrate results from closed and open tests us-
ing the three evaluation metrics: Dialogue Length (DL), Precision-
Recall (PR) and Dialogue Similarity (DS). The bars in each plot
represent: real dialogues (comparing the training and test sets),
random dialogues (using same setup as standard HMMs but with
flat probabilities), and HMM-based simulations (HMMs, IHMMs
and IOHMMs). Ideally, we would like our models to behave simi-
larly to the real dialogues; we assume that reaching similar scores
as the real dialogues our simulations may be considered realistic
(it is only an indication). From the results we can observe that
random dialogues obtain the worst performance (meaning the they
are strongly unrealistic), whilst the HMM-based models are better
than random. From the PR (goals) results we can observe that the
HMM-based models result in a similar performance due to the fact
that they use the same language model. From the PR (intentions)
results we can observe that the HMM-based models obtain simi-
lar performance as the real dialogues. Thus, PR is partially useful
because it only tell us how much our models can predict training
and test data, but penalizes the unseen dialogues. This fact raises
the question “What proportion of dialogues penalized by PR may
occur in real environments?”

In another side, from the DS measure we can observe that the
HMM-based simulations are considerably distant from the real
dialogues. This measure is promising due to the fact that it is
strongly evaluating dialogue behavior in comparison to the other
metrics. This fact raises the question “How realistic might be
the simulated dialogues if they obtain similar distance to the real
ones?” In the meantime, all measures agree that the random dia-
logues are significantly unrealistic, whilst our trained models gen-
erate dialogues closer the to real ones; this can be observed from
the average results in figure 9. According to PR and DS we can
observe that IHMMs and IOHMMs perform slightly closer to real
dialogues, but still cannot be considered realistic. This suggests
exploring more effective dependencies in the HMMs.

Finally, figure 10 illustrates a simulated dialogue based on the
CMU simulated system with IHMMs, the left column uses inten-
tions and the right column is an instantiation in natural language.
Because of our method is purely probabilistic, some incoherencies
may occur; for instance, the system offers a return flight without
asking for a return date.
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Fig. 7. Results using training data with three different metrics (the thin bars represent the standard deviation).
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SYS: about_task|request_info|dest_city
USR: CITY
SYS: about_task|request_info|depart_arrive_date
USR: oov
SYS: about_task|request_info|depart_arrive_time
USR: DATE_TIME
SYS: about_task|offer|flight
USR: no
SYS: about_task|offer|flight
USR: DATE_TIME
SYS: about_task|offer|flight
USR: yes
SYS: about_task|request_info|return_date
USR: oov
SYS: about_communication|apology|meta_slu_reject
USR: yes
SYS: about_task|offer|flight
USR: yes
SYS: about_task|request_info|hotel
USR: yes
SYS: about_task|request_info|hotel_location
USR: HOTEL
SYS: about_task|request_info|flight
USR: yes
SYS: about_task|acknowledgement|rental_booking
USR: command

SYS: where do you want to go?
USR: Atlanta
SYS: and what day would you be departing Boston?
USR: [cough]
SYS: and what time would you like to depart Boston?
USR: september twenty seventh early afternoon
SYS: [info] do you want to take that?
USR: no
SYS: [info] do you want to take that?
USR: morning
SYS: [info] do you want to take that?
USR: yes
SYS: will you return to Boston?
USR: [noise]
SYS: i'm sorry. i didn't catch that.
USR: yes
SYS: [info] do you want to take that?
USR: yes
SYS: will you need a hotel in Atlanta?
USR: yes
SYS: would you like a hotel downtown or near the ...
USR: downtown
SYS: would you like me to summarize your trip?
USR: yes
SYS: i've requested a rental car with no preference ...
USR: repeat

Fig. 10. Fragment of a simulated dialogue.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a corpus-based method to simulate
task-oriented human-computer dialogues at the intention level us-
ing a network of HMMs connected by a bigram language model,
where each HMM represents a dialogue goal. This method learnt
a system model and a user model: the system model is a proba-
bilistic dialogue manager that models the sequence of system in-
tentions, and the user model consists of conditional probabilities
of the possible user responses. We argue that our method is in-
dependent of application and annotation scheme. Due to the fact
that in the proposed method all the possible system and user in-
tentions may occur in each state, more exploratory dialogues may
be generated than observed in the real data. We compared three
models with different structures: HMMs, IHMMs and IOHMMs.
Our experiments with the DARPA Communicator data reveal that
the HMM-based models obtain very similar performance, clearly
outperforming random dialogues, and are close to being consid-
ered realistic. We believe that Precision-Recall and Dialogue Sim-
ilarity are potentially complementary metrics due to the fact that
precision-recall penalizes the unseen dialogues, whilst dialogue
similarity considers all the dialogues. This suggest that a com-
bination of measures may better evaluate the realism of simulated
dialogues, but there is no guarantee that these metrics are directly
related to dialogue realism.

Immediate work in dialogue simulation follows two directions:
1) better evaluation measures and 2) improve the performance of
our proposed method including: degrees of initiative in user re-
sponses, investigate the application of balanced number of goals
and states, duration modelling, model system and user intentions
according to the dialogue history (this should yield more coher-
ent sequences of goals and intentions), model confidence levels,
model different kinds of users, and explore richer dependecies in
the models but avoiding the data sparsity problem. Future work
consists in using the proposed method within the reinforcement
learning framework to learn optimal dialogue strategies for large-
scale spoken dialogue systems.
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