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Speaker verification using
sequence discriminant support vector machines

Vincent Wan and Steve Renals

Abstract—This paper presents a text-independent speaker using SVMs by Schmidt and Gish [5] highlighted the main
verification system using support vector machines (SVMs) wh  problem: SVMs become inefficient when the the number of
score-space kernels. Score-space kernels generalize [eiskernels training frames is large. This can be overcome by using apeci

and are based on underlying generative models such as Gaumsi K Is to classi instead of f The famil
mixture models (GMMs). This approach provides direct discim- ernels to classify sequences instead of frames. € tamily

ination between whole sequences, in contrast with the framievel  Of score-space kernels [6] are such kernels that enable se-
approaches at the heart of most current systems. The resulta quence discrimination. Score-space kernels include thleei
SVMs have a very high d_imensionality _since it is _related to kernel [7] and map a complete sequence onto a single point
the number of parameters in the underlying generative model ;, a high dimensional space by exploiting generative models

To address problems that arise in the resultant optimizatio . . o .
we introduce a technique called spherical normalization that The Fisher kernel has been applied to speaker recognititn wi

preconditions the Hessian matrix. We have performed speake limited success [8], [9].

verification experiments using the PolyVar database. The SM We have applied the score-space kernel SVM approach to
system presented here reduces the relative error rates by 34  text-independent speaker verification, extending someque
compared to a GMM likelihood ratio system. work that employed frame discriminant SVMs [10], [11].

Index Terms—Fisher kernel, score-space kernel, speaker ver- We performed experiments on the PolyVar database [12] and

ification, support vector machine. report error rates that are better than a GMM likelihoodorati
system by 34% and better than the current state-of-the-art
I. INTRODUCTION system by 25%.

e The structure of this paper is as follows: the next section
Current state-of-the-art speaker verification systems are . . e )
. ; . rovides an overview of GMM speaker verification systems;

based on generative speaker models, typically Gaussian mix . : P

: section 1l reviews SVMs for classification; sequence k&rne

ture models (GMMs) and hidden Markov models (HMMs) [1]; . . . .
. and methods for normalizing them are described in sectign IV
These models usually operate at the frame-level with aradiver : . . :
. . Lo experimental evaluation and results are presented irose¢ti
sequence score obtained by averaging the likelihoods df eaC .
. i séction VI concludes the paper.
frame in the sequence or via the use of an HMM. More

accurate verification systems may be constructed by placing

these generative models in a discriminative framework, for Il. GMM-BASED SPEAKER VERIFICATION
example taking the likelihood ratio between the model for
a particular speaker and a more general world model [2
A limitation of these approaches arises from the fact tha

An Ny component Gaussian mixture fddy dimensional
put vectors has the following form:

discrimination occurs between frames, whereas speaker ver Ng 1 1 Te1

ification is concerned with sequence discrimination. SiaceP(X|M) =% & -~ 75— €Xp| —5(X— M) Zj (X — W)
RN A ; : o & (2mNa/2| %)Y 2

discriminative classifier discards information that itgemtive 1= )

function considers irrelevant, frame discrimination ajgmhes
may inadvertently discard relevant information. In thispea mixture model M. The mixture model consists of a weighted

we describe an apprqach to speaker verification based on {ifn ovemy Gaussian densities each parameterized by a mean
support vector machine (SVM) [3], [4] that enables d're(i;ector,u;, and a covariance matri;. The coefficientsy;, are

discrimination between sequences. the mixture weights, which are constrained to be non-negati

An SVM has many desirable properties including the ability,§ st sum to one. The parameters of a Gaussian mixture
to classify sparse data without over-training and to mak® N, 4| a1 and3; for i = 1---Ng may be estimated using

linear decisions via kernel functions. However, due t0&BIt 1o mayimum likelihood criterion and the EM (expectation-
practical limitations the SVM has not gained W'deSprea@esamaximization) algorithm [13], [14].

in mainstream applications. Initial speaker recognitioorkv For reasons of both modelling and estimation, it is usual
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whereP(x|M) is the likelihood of input vectorx, given the
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density functionP(xj|M), of the client speaker. The probabil- Let the separating hyperplane be definedxoyw +b=0
ity, P(X|M), that an utteranceX = {X1,...,Xn, }, is generated wherew is its normal. For linearly separable data labelled

by the modelM, is used as the utterance score, estimated By;,yi}, xi € 0N, y; € {-1,1}, i = 1...N, the optimum
the mean log likelihood over the sequence: boundary chosen according to the maximum margin criterion
1N is found by minimizing the objective function:
X) =logP(X|M) = — § logP(x;|M). 2
S(X) gP(X|M) Nvi; gP(xi|M) @ E=|w|3 @)

The utterance score is used to make a decision by comparing it subject to(xi-w+b)yi =1 for alli.

against a threshold that has been chosen for a desireddffideFhe solution for the optimum boundaryyo, is a linear
between detection error types. ~ combination of a subset of the training data,s€ {1...N}:
Speaker verification may be posed as a discriminatiyge support vectorsThese support vectors define the margin

problem, with the objective of assigning high scores to ¢hogdges and satisfy the equalitys-wo + b)ys= 1. Data may be
frames,x;, that are specific to the client and low scores tglassified by computing the sign &f wg+ b.

frames that are common to most speakers. To achieve this &enerally, the data are not separable and the above in-
second GMM (theworld mode) may be used to model theequalities cannot be satisfied. In this case we may introduce
properties of speech signals common to all speakers, Willack” variablest; which represent the amount by which each

parameters estimated from a large number of backgroupgint is misclassified. In this case the objective functien i
speakers. A discriminative score may then be obtained mformulated as:

taking the log likelihood ratio of the client mod&¥}, to the 1

world model,Q, which is equivalent to the difference between E= §||W||%+CZ L(&) (8)
their log likelihood scores. Again, the mean of the frameasso ) : ]

is taken across the sequence: subject to(xi-w+b)y; > 1—&  for alli.

Ny ) The second term on the right hand side of (8) isehgpirical
L g PilM) . d term | ) isehepirical
SX) = = Z'Og : (3) risk associated with those points that are misclassified or lie
Ny /& P(xi|Q) o ; . i :
N N, within the margin.L is a cost function andC is a hyper-
1 1 L .
E _Z'ng(xi“\") X _leogP(xi|Q) 4) parameter that trades off the effects of minimizing the empi
1= 1=

ical risk against maximizing the margin. The first term can be
= logP(X|M) —logP(X|Q). (5) thought o_f as a_regularization term, (_jeriveq_ from maxirrgz_in
_ o _ the margin, which gives the SVM its ability to generalize
We call this approach the GMM likelihood ratio (GMM-LR),well on sparse training data. This property will be seen to
and in practice it produces more accurate speaker verifiggr important when classifying sequences.
tion systems. Reynolds [2] used the GMM-LR approach for The linear-error cost function is most commonly used since
speaker verification. The GMM-LR method is a simple yet s robust to outliers. The dual formulation (which is more

powerful approach and is used here as a baseline. conveniently solved) of equation (8) with(&;) = §&; is
By Bayes’ decision rule, equation (5) is optimal so long
as the client and impostors are well modelled. Bengio and x_ _ N Ly
Mariéthoz [16] proposed that the probability estimates raot a maax<Za. + ;a.ajy.ij. X’) ©)
perfect and that a more accurate version would be: 0<a <C
subject to == (10)
S(X) = alogP(X|M) — blogP(X|Q) +c, (6) diaiyi=0

wherea, b and ¢ are adjustable parameters estimated usifg Which a = {az,....an} is the set of Lagrange multipliers
an SVM for which the input is the two dimensional vectoP! the constraints in the primal optimization problem [4heT
composed of the client and world models’ log likelinoodsdual can be solved using standard quadratic programming
This results in a small improvement in accuracy as discuss€ghniques. The optimum decision boundawy, is given by

in section V. Wo = ZGiYiXi (11)
1

lll. SUPPORT VECTOR CLASSIFICATION and is a linear combination of all vectors that haye# 0.

In its basic form, the SVM (support vector machine) is a The extension to non-linear boundaries is achieved through
binary linear classifier. It is described in detail by Vapf®f the use of kernel functions that satisfy Mercer's condition
and in Burges’ tutorial [4]. Given a set of linearly sepasbl[17]. In essence, a non-linear mapping is defined from the
two-class training data, there are many possible solutiomput spacein which the data are observed, to a manifold in
for a discriminative classifier. In the case of the SVM, &igher dimensionaleature spacewhich is defined implicitly
separating hyperplane is chosen so as to maximizentirgin by the kernel functions. The hyperplane is constructed é th
between the two classes. Essentially this involves ongritie feature space and intersects with the manifold creatingra no
separating hyperplane to be perpendicular to the shoitest linear boundary in the input space. In practice, the mapping
separating the convex hulls of the training data for eacksglais achieved by replacing the value of dot products between
and locating it midway along this line. two vectors in input space with the value that results when
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TABLE |

the same dot product is carried out in the feature space. The
SOME EXAMPLES OF SCORE OPERATORS

dot product in the feature space is expressed conveniently b
the kernel as some function of the two vectors in input space.

. . . . Operator expression
The polynomial and RBF (radial basis function) kernels are first dervative “F =0
commonly used, and take the form: first derivative and argument F =[O0,
first and second derivative | F = [, veq([120)T]T
K(Xi,Xj):(Xi~Xj+1)n (12)
and 5
1 ||Xi — Xj|| . . .
K(xi,Xj) =exp S\7s (13) The generic formulation for mapping a sequence,=
o {X1,...,Xn, }, to the score-space is given by

respectively, whera is the order of the polynomial and is A
the width of the radial basis function. The dual for the non- We ¢ (X) = FF({p(X|Mk,8K)}), (16)

linear case is thus wherey ¢ (X) is called thescore-vectarf ({ pu(X|Mk,84)}), a

. function of the scores of the set of generative models, igdal
o = max IZO” + IZ“i“inyi K(xi,x)) (14)  the score-argumenandF is thescore-operatothat maps the
. scalar score-argument to the score-space. The propeirties o

subject to O0<oi<C (15) resulting score-space depend upon the choice of operator an
2iaiyi =0. argument that is used. Several options for score-openatmes
The use of kernels means that an explicit transformation pfoposed by Smitket. al. [6] and are summarized in table I.
the data to the feature space is not required. Almost any function may be used as a score-argument. We
shall show two specific cases that lead to the likelihoodescor
IV. DISCRIMINATIVE SEQUENCE CLASSIFICATION space kernel (more commonly known as the Fisher kernel [7])

The approaches to speaker verification outlined in sectiondd the likelihood ratio score-space kernel.
are discriminative between frames rather than between comd) The likelihood score-spacethe likelihood score-space
plete utterances. Discriminative classification of segeeris IS Obtained by setting the score-argument to be the log
difficult since sequences have different lengths. Howeifer, likelihood of a generative model, parameterized b, and
a mapping from a variable length sequence to a fixed |en§thoosmg the first derivative score-operator from table I:
vector can be achieved, then standard classification puoesd
may be applied. Such a mapping was first developed by F({Pk(X[Mk,8)}) = logP(X|M. 6) (17)
Jaakkola and Haussler [7] and is known as Fisher kernel Wrishe(X) = UglogP(X|M, 8). (18)
This approach was generalized by Smith and Gales [1
[19] as a technique referred to asore-spacesUsing these
approaches for whole sequence classification results iaraesp
data problem, for which SVMs are well suited: a set o?nd Haussler [7].
sequences are mapped to a comparatively high dimension ach_ component of th? sc_ore-spatpex), _corresponds to
feature space. Furthermore, the concept of mapping eégﬁ derivative of the log likelihood score with respect taon

sequence to a feature space may be interpreted as an Sg;f,\;ﬁe parameters of the model. In some ways it is a measure

kernel. We shall now describe the score-space transfaomeati ow WE."” the sequen_cex, mgtches the mgdel. C_onglder
that we have used. a generative model trained using the maximum likelihood

criterion and gradient descent. In order to maximize the
likelihood of a given sequence, the same set of derivatives t
A. Score-spaces equation (18) must be computed so that the parameters may
Score-space kernels [6], [18], [19], which generalize €ishbe updated. When the derivatives are small then the liketiho
kernels [7], enable SVMs to classify whole sequences Ipyay be close to a local maximum; when the derivatives are
exploiting a set of parametric generative models. In thlarge then the likelihood has yet to reach a maximum. Whether
approach a variable length sequence is mapped explicitty othe derivatives will provide additional information that mot
a single point in a fixed-dimension space, theore-space already encoded in the likelihood score may be examined by
Such a mapping is achieved by applying some operator dagmenting the score-vector with the score-argument (the |
the likelihood score of a generative model. Hence the fixelikelihood score in this case):
dimension score-space allows a dot product to be computed
between two sequences even if they were originally differen Wrishers(X) = [De|09P(X|M79)] . (19)
lengths. This section first describes a generic formulation logP(X|M.,6)
achieve such mappings followed by a detailed explaination2
of some special cases of the score-space method: the Fi . : ;
kernel [7] and the likelihood ratio kernel. %}S ment is the ratio of two generative modalg, and Mo,
The score-space is defined by and derived from the likeli- . P(X|Mg,61)
hood score of a set d generative models{ px(X|M,8k)}. F{P(XIM. 8)}) = log P(X|Mz,62)’

é?']Iﬁis mapping, known as thiéisher mapping, was first devel-
oped and applied to biological sequence analysis by Jaakkol

The likelihood ratio score-spaceAn alternative score-

(20)
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where8 = {8;,6,}. The corresponding mapping using the firsThe derivative with respect to thé" component of thej

derivative score-operator is mean is
P(X|M,81) 9 logP(x|M,6
X) = Oalog 211, 91) 21 - logP(X|M,6)
WLr(X) = Og gP(X|M2,62) (21) Ay
Ny LR(ii* AT
and again the score-argument may be added to the score-space - ZM % X Z*“J* . (27
S132aR(0,)) O\ O
[Clglog EXIM1.01 !
WLr+(X) = l log P(x(Ml,é’l)Z)] (22)  The derivative with respect to thé" component of thejth
P(XIM2,62) covariance is
The likelihood ratio score-space is motivated by the GMM d loaP(XIM. 8
likelihood ratio (GMM-LR) classifier described in sectioh | do®: 0gP(X|M,6)
In the same way that the GMM-LR is a more discriminative N, . P
classifier than a single GMM, so should the likelihood ratio R VL U O I il s DA 28)
score-space kernel be. A GMM likelihood ratio forces the i; Z:'\Iilaj RG, ) (cf.)3 ol

classifier to model the class boundaries more accurately. Th
discrimination information encoded in the likelihood cati The likelihood score-vector can then be expressed as:

score will also be in its derivatives. g g g T
ishe X) = —,,—=| logP(X|M,8
l-IJFISher( ) [daj*v 7duf* do'f*‘| g ( | )

B. Computing the score-vectors (29)

In this section we derive the formulae for computing deriva(f)r 1" - L ) N an_dé* - 1"_" Na. . .
tives of the log likelihoods when the generative model iSgThe likelihood ratio kernel is also computed using equation

diagonal covariance GMM. The formulae for the derivative 26) to (2b9). The SCOLG-VGC;OYZ.?: the Iikelfihood ratio lern
when the generative model is an HMM may be found in [6 1) can be expressed as the difference of two terms,

Let WLr(X) = OglogP(X|Mg,61) — OglogP(X|M2,82).  (30)
2
R(i 1) — Na o q 1 Xf - H? 23 Let 8 = {61,062} be the vector of all parameters that exist in
(1) *J:ll gﬁ\/ﬁeXp "2 Gf (23) both modelsM; and M,. The derivatives of 10§(X|M1,01)

with respect to the parametes in My are zero and vice-
so that the diagonal covariance GMM likelihood is versa. Thusp r(X) can be split so that the derivatives are
computed with respect to one model at a time. When the
Ng differentiated parameter belongs to modél then
P(xi|M,e):ZajR(i,j) (24)
=1 We, (X) = O, logP(X|My,61) (31)

whereb = {aj,pﬁ,oﬁ} is the set of parameters in the GMM, is computed. Likewise, when the parameter belongs to model
In particular,a; is the prior of thej™ Gaussian component of M, then

the GMM, p; is the mean vector of th" component and; is We, (X) = U, logP(X|M2,62) (32)

the corresponding diagonal covariance vector. The supetsc

on the mean and covariance enumerate the componentdsgfomputed. These derivatives are identical to the devast
the vectors.Ng is the number of Gaussians that make upomputed by the Fisher kernel. The likelihood ratio score-
the mixture model and\y is the dimensijonality of the input vector is

vectors with components = [x,5?, -, 9]T. WiR(X) = [ We, (X) ] _ (33)
The global log likelihood of a sequencéé= {x1,...,Xn,} —We,(X)
IS " From equations (29) and (33) it can be seen that the
logP(X|M,8) = § logP(x|M, 8) (25) dimensionality (_)f the score-space is equal to t_he total rermb
i& of parameters in the generative models. Having mapped the

. ] sequence to the score-space, any discriminative classifigr
whereN, is the number of frames in the sequence. From (18} ysed to classify vectors and hence obtain a classification
the score-vector is the vector of the derivatives with respgq, the complete sequence. However, it is not unusual for
to each parameter of the log of (25). The derivatives are wiffanerative models to have several thousand parametess. Thi
respect to the covariances, means and priors of the Gaussins that the discriminative classifier must be able tsitjas
mixture model. The derivative with respect to tff€ prior is  yectors of that size. Classifiers such as multilayer peroapt

q N R cannot be_ eqsily trained on such data d_ue to proplems in
S logP(X|M, ) = ZLN% (26) parameterization. The SVM, fortunately, is well suited to
&+ i=1321aR(0, ) classify high dimensional data.
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C. Score-space normalization

SVMs are not invariant to linear transformations in feature
space, so normalization of the feature vectors is desir&iite
used two stages of normalization: whitening the data in th
score-space by normalizing the components of the vecto
Y(X), to zero mean and unit variance; then applysgher-
ical normalization which may be interpreted as a Hessiarn N

e . | ) AN
preconditioning step and involves making a further nordme mw
transformation to a higher dimension space. il ,

1) Score-space whiteningFor a given score-space, the
metric of the space is determined by the generative model(s)
and is generally non-Euclidean. The dot product in a nohRig. 1. Spherical vector-length normalization: mappingooa sphere
Euclidean space is definedxdsG' Gy whereG is a matrix that
maps the vectors to a Euclidean space. A kernel constructed
from any of the above mappings is

@ @

and unit variance. In particular, score-space kernelscbase
K (Xp, Xg) = LIJ(Xp)TGTGLIJ(Xq) (34) generative models that have many tens _of thoug:_:md_s (o_r more)
of parameters are likely to suffer from ill-conditioning. it
whereG' G is the metric of the space and the subscripbon possible to compress the dynamic range of a dot product by
enumerates the sequences. In Euclidean sg@&isethe identity exploiting its cosine interpretationg. x-y = ||x||||y|| cosB. If
matrix. In the case of the log likelihood score-space mappinthe vectors have unit length then the dot product is just the

G'G is the inverse Fisher information matrix (the inverse cfosine of the angle in between and the result must be in the
the covariance matrix of the score-vectors): range—1 to +1.

T~ T4y -1 A vector can be normalized easily by dividing by its
G G= (E{U (XUX) }> (35) Euclidean length. But this results in information loss ¢ags
where U(X) = @(X) — E{y(X)} and E is the expectation greater classification uncertainty. For example, two oint
operator. the input space represented Ryand X will both be nor-

This can be interpreted as a whitening step where thealized toX. Alternatively, normalization without information
score-vector components are normalized to zero mean a@gs may be done by projecting to a higher dimensional space.
unit variance ite. the basis vectors of the score-space afeonsider the mapping from a 2D plane to a 3D unit sphere,
mapped to an orthonormal set). Whitening is important sin@ in figure 1. Any point in 2D space may be mapped onto
SVMs are not invariant to linear transformations in the fieat the surface of a unit sphere in 3D space. The new vectors
space. Consider a two dimensional space where the variaregresenting the data are the unit vectors from the centre
in one dimension is significantly higher than in the othegf the sphere to its surface. The mapping is reversible so
A dot product in this case will be dominated by the higho information is lost. We call this spherical vector-lemgt
variance component, effectively reducing the dimensipnal normalization, or spherical normalization for short.
of the space to one. Mapping a plane onto a sphere’s surface may be achieved by

Computing dot products in score-space relies on the abilityany different projections, all of which may be generalired
to estimate a full covariance matrix, which will normal-arbitrary dimensions: this is the inverse of the problenefac
ize the scaling in each dimension and make the princigay cartographers when mapping the Earth but extended to
component axes orthogonal. However, the score-space spaceh higher dimensions. Standard projections used bygsarto
dimensionality, which is equal to the number of parameters iiaphers are the azimuthal, conical and cylindrical projest
the generative model, may be large thus making estimatiéve consider three different azimuthal projections (itattd
impractical. The required computation may be reduced Iy figure 2 along with the explicit transformations and the
normalizing with a diagonal covariance matrix (so the scat®rresponding kernel functions): the orthographic prijeg
of each dimension will be the same), or a block diagontiie stereographic projection and a modified stereographic
covariance matrix (making some of the principal componeptojection.
axes orthogonal). The orthographic projection (figure 2a) is limited since the

2) Spherical normalization:Spherical normalization, de-input data are restricted to lie within a small finite region
veloped in the context of SVMs using high order polynomialirectly beneath the hemisphere. The stereographic piajec
kernels [11], is a preconditioning step employing a transfo(figure 2b) does not suffer from this restriction but the spac
mation that maps each feature vector onto the surface ofepresented by the sphere wraps around. With this projgctio
unit hypersphere embedded in a space that has one dimengioints located ati-c and —o in the input space project to
more than the feature vector itself. the same point on the hypersphere. We used the modified

Dot products between high dimensional vectors may leatereographic projection (figure 2c) because it does néersuf
to an ill-conditioned Hessian since the dynamic range &fom these issues. The projection is made by augmenting a
the result is large. This occurs even when each individuadctor with a constant, and normalizing the new vector by
component of the vectors has been normalised to zero métsnEuclidean length.
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X dimensions. Cepstral mean subtraction was applied to remov
¢(x):[m} for ] <1 the effects of the communication channel. Silence frames

K(x1,%2) = x1- %244/ (1 = x))(1 - x3) within each utterance were sggmented out using a multilayer

x perceptron pre-trained on a different dataset [23].

a: The orthographic projection Our baseline systems for these experiments were based on

GMMs. The simplest baseline uses the client model only (2).

X State-of-the-art results for this database have beenrmutai

. . by a GMM-LR system (5) and a modified GMM-LR/SVM

¢("):m[%] system (6) in which the likelihood ratio is parameterized

using an SVM to estimate the parameters [16]. To enable a

¥ - DA 4x—4x-x)+p¢ | direct comparison, the GMMs used in the experiments here

K%)= (X +D%)(Z+D?) were trained using identical conditions to those used if [16
in which cross-validation was used to estimate the optimal
S model complexity. This resulted in a world GMM containing
b:The stereographic projection 1000 Gaussian components, and client GMMs containing 200
— ‘ 1 Gaussian components.
o(x) = N [Z‘,] Using the GMM-LR system on PolyVar, a text independent
5 speaker verification result of 5.55% minimum half total erro
m 3 Kl = —Suxetd rate (HTER} was reported on the PolyVar test data using
‘ L (6} +d2) (5 + %) 19 speakerd.A 4.73% minimum HTER was reported for the

GMM-LR/SVM [16]. We replicated these results: the results
for 38 speakers are shown in table Il, and the corresponding
Fig. 2. Spherical vector-length normalization: variousysiaf projecting DET curves are shown in figure 3.
data onto unit hyperspheres. We applied the score-space kernel approaches to PolyVar,
based on the GMMs that made up the baseline systems. These
GMMs were used to generate the score-spaces used by the ker-
For the score-space kernels presented here, the mapplals discussed in section IV. Using one of these kerneld) eac
applied explicitly to the score-vectors is complete utterance was mapped onto a single score-vegtor. A
1 w(X) SVM was trained for each client speaker using a total of 1,037
W(X) :— @W(X)) = [ } (36) utterances (85 client and 952 background utterances), each
W(X)-W(X)+d? d mapped to the score-space. The SVM optimization problem

where W(X) = Gy(X) is the whitened score-vector of thefor training sets of this size is straightforward and does no

sequence X. The spherically normalized sequence kernégquire any of the special techniques that have been deagtlop

becomes to train SVMs on large quantities of data. We trained SVMs
K (Xp, Xq) = O(W(Xp)).@(W(Xq)) (37) using the following kernels:

« Fisher kernel (18);

« Fisher kernel with argument (19);

o LR kernel (21);

« LR kernel with argument (22).

V. EXPERIMENTS . L .
The Fisher kernel uses the derivatives of the client GMMs

We carried out a number of development experiments [19 m the baseline systems to achieve the mapping to score-
using the YOHO database [21]. Following these, we evaluatg ace, whereas the LR kernel uses both the client and world

these approaches using text-independent speaker mea}nodels. The number of parameters in the GMM and GMM-LR

B elines are 15,800 and 94,800 respectively. The scasp

of 38 client speakers, 24 male and 14 female, recorded O¥fihensionalities of the Fisher and LR kernels are thus 15,80

a telephone network. 85 utterances were recorded from e%ﬂa 94,800 respectively, with an additional dimension oot
speaker in 5 sessions, with 17 utterances per session. Tn

. Fifie argument is included.

are "?"SO_ 952 impostor ut_teranc_;es from .56 speake_rs, €aChne high score-space dimensionalities, particularly tifat
contributing 17 utterances in a single session. The euahua_tthe LR kernel, causes computational problems for SVM opti-
followed the protocol for speaker.model training anq t@BlNyization. We addressed this problem by whitening the score-
used on the European Telematics PICASSO project [2 ctors to zero-mean and unit diagonal variance (sectien IV

Approximately one thousand test utterances, includindn bo(t:_l) and spherically normalizing them using (36). Since th
client and impostors, were presented for each client speake ™"’

i h
The speech was parameterized as" i&der perceptual ithe HTER is the arithmetic mean of the false acceptance ratéhe false
linear prediction (PLP) cepstral coefficients, computeith@is rejection rate at a given threshold. The threshold can hestj to minimise

a 32ms window and a 10ms frame shift. The 12 cepstrdf HTER-
Bengio and Mariéthoz [16] used 19 speakers for developraent the

coefficients were augmented with an energy term and first & aining 19 speakers for evaluation. In our work, develepmwas done
second derivatives were estimated, resulting in frames9of 3sing YOHO which meant that all 38 speakers could be usedviuation.

c¢: The modified stereographic projection

Spherical normalization is discussed in greater depth,iand
the context of polynomial and RBF kernels, in [20].
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TABLE I

RESULTS OF THEPOLYVAR EXPERIMENTS. THE GMM BASELINE HAS 200 80
DIAGONAL COVARIANCE GAUSSIAN COMPONENTS FOR MODELLING

CLIENTS. THE GMM-LR CONSISTS OF THE ABOVE PLUS A WORLIGMM

WITH 1,000DIAGONAL COVARIANCE GAUSSIANS. THE GMM-LR/SVM
USES THE SAME CLIENT AND WORLDGMMS BUT COMPUTES A

WEIGHTED LOG LIKELIHOOD RATIO. THE FISHER KERNEL EXPLOITS THE

CLIENT GMMS WHILE THE LR KERNEL EXPLOITS BOTH CLIENT AND
WORLD GMMs.

60

40

Miss probability (in %)

Classifier % min HTER | % EER 10

Baseline

GMM 11.22 12.07 5

GMM-LR 5.53 6.12

GMM-LR/SVM 5.37 5.94

Fisher kernel 2

whitening 6.54 6.98 1

whitening + sph. norm 6.50 6.87

whitening + argument 6.50 6.92 0.5

whitening + argument + sph. norm 6.47 6.87 ozl

LR kernel 0‘1 .
whitening 5.13 5.55 e ; ‘ ‘ e
whitening + sph. norm 3.72 4.03 010205 1 2F | > 10 2(1) . 040 60 80
whitening + argument 5.03 5.55 alse alarm probability (in %)
whitening + argument + sph. norm 3.71 4.03

Fig. 3. DET curves of the GMM, GMM-LR, GMM-LR/SVM, Fisher keel
SVM and spherically normalised LR kernel SVM systems fot-tadependent
speaker verification on PolyVar.

vectors are whitened, setting the spherical normalizapian
rameterd, to one will spread the data over a reasonably large

portion of the hypersphere. Each of the four kernels itethizeoy, re|ative). However, despite the improvement that the SVM
above were trained with and without spherical normalizatiojmparted to the GMM system, the EER of the GMM-LR
Classification in the score-space was carried out usingdingystem was a further 11% lower relative to the spherically
SVMs. A static RBF or polynomial kernel could be used taormalized Fisher kernel.
make non-linear decision boundaries in score-space. Hawev The basic LR kernel, without spherical normalization, re-
since the dimensionality of the score-space is signifiganjuces the EER to 5.55%, relative reductions of 9% compared
higher than the number of training vectors, the classificati with the GMM-LR system and 7% compared with the GMM-
problem is linearly separable and non-linear boundaries arR/SVM system of [16]. Spherical normalization reduced the
unnecessary. Also, since the problem is known to be lineaER to 4.03%, a further relative reduction of 27% and an
separable, the regularization paramet€r i equation 10 overall relative reduction of 34% compared with the GMM-
or 15) was set to infinityi(e. the formulation for an SVM that | R system. Spherically normalizing the LR kernel resulted i
maximizes the margin when the data is linearly separable Wasyreater error reduction compared with applying the same
used). To give an indication of the value of the regular@ati normalization to the Fisher kernel. The dimension of the
parameter that should be used if more regularization wefkelihood ratio score-space is six times larger than thiat o
needed, the Lagrange multipliers in the spherically noizedl the likelihood score-space due to the inclusion of the world
likelihood ratio score-space kernel SVMs had a mean abg#bdel, hence the Hessian computed from the LR kernel is
0.25 and an average maximum value of about 4. more likely to be ill-conditioned. As was observed with the
We evaluated the results of our experiments using equRikher kernel, augmenting the kernel with the score-arguime
error rate (EER) and minimum HTER, and the results of thead a negligible effect.
various systems are summarized in table Il. Scores such afigure 3 shows the DET curves of the GMM-LR, GMM-
EER and minimum HTER reflect performance at a singleR/SVM and spherically normalized LR kernel systems. It can
operating point on the detection error trade-off (DET) @jrvbe seen that the LR kernel results in a lower miss probability
figure 3 uses DET curves to show the performance of tle all false alarm probabilites — in contrast to the GMM-
baseline systems and the SVM approaches at all operatirtRySVM system which has evidently optimized the parameters
points on PolyVar. for a particular set of operating points (corresponding ERE
The GMM baseline from which the Fisher kernel is derivednd minimum HTER) at the expense of other points. At
yielded 12.07% average EER. The Fisher kernel with whitetow false alarm probabilities, the LR kernel reduces thesmis
ing, but without spherical normalization or augmentatiathw probability by over 20% compared to the GMM-LR system:
the score-argument, reduced the average EER to 6.98%wlen the probability of misclassifying an impostor is 0.1%,
relative reduction of 42%. The application of spherical-nothe GMM-LR baseline has a probability of 45.5% of rejecting
malization and augmentation of the score-operator with tleclient but the LR kernel SVM has a lower probability of
argument both reduced the EER but insignificantly (less th85.5%.
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The SVM solutions found in these experiments included7] T. S. Jaakkola and D. Haussler, “Exploiting generativedeis in dis-

nea”y a thousand support vectors (from a training set of criminative classifiers,” inAdvances in Neural Information Processing
. . . Systems 11M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds. MIT Press,
1,037). But since a linear SVM is used, all the support jg9g

vectors may be represented by a single resultant veggor [8] S. Fine, J. Navratil, and R. A. Gopinath, “A hybrid GMM/$ approach

defined by (11). Thus, the number of parameters required per 1o speaker identification,” iProc. ICASSP2001, vol. 1, pp. 417-420.
Ker i b f . h f th derlvi li 5)] L. Quan and S. Bengio, “Hybrid generative-discriminatimodels for
speaker Is about four times that of the underlying client an speech and speaker recognition,” Tech. Rep. IDIAP-RR Q2{DBAP,

world generative models: the lengthsw§ and the mean and March 2002.
diagonal covariance vectors, for whitening the score-spagl0l V. Wan and S. Renals, “Evaluation of kemnel methods fpeaker

. verification and identification,” ifProc. ICASSP2002, vol. 1, pp. 669—
plus the total number of client and world GMM parameters, g7,

plus one for the SVM bias. [11] V. Wan and W. M. Campbell, “Support vector machines fpeaker
verification and identification,” inProc. Neural Networks for Signal
VI. CONCLUSION Processing X2000, pp. 775-784.

) ) [12] G. Chollet, J. L. Cochard, A. Constantinescu, C. Jadipulnd
This paper has presented and evaluated a text-independentP. Langlais, “Swiss French PolyPhone and PolyVar: Telephepeech

At databases to model inter- and intra-speaker variabilitp,’Linguistic
speaker verification system based on SVMs. The SVMs use Databases John Nerbonne, Ed., pp. 117135, 1907,

the score-space kernels approach, which subsumes the Fishi§ A p. pempster, M. Laird, and D. B. Rubin, “Maximum likebod from
kernel, to provide direct classification of whole sequences incomplete data via the EM algorithmJournal of the Royal Statistical

- i - i i Society pp. 1-39, 1977.
Two score-space kernels Wer.e e>_<am|ned._ the Fisher (lietih [14] R. A. Redner and H. F. Walker, “Mixture densities, mayim likelihood
score-space) kernel and the likelihood ratio score-spaasek and the EM algorithm "SIAM Review 26pp. 195-202, 1984.

The Fisher kernel exploits one generative model (that of tfis] D. A. Reynolds, A Gaussian Mixture Modelling Approach to Text-

; ; ; independent Speaker IdentificatjorPh.D. thesis, Georgia Institute of
client speaker) to map variable length sequences onto &sing Technology, September 1992.

vector of fixed |en9j[h, while the likelihood ratio kernel éods  [16] 5. Bengio and J. Mariéthoz, “Learning the decisiondtion for speaker
two models (the client model and a world model). verification,” in Proc. ICASSP2001, vol. 1, pp. 425-428.

Mapping to a fixed length representation allows sequendé?] sRéi;(():Léra?;%nd D. Hilbert,Methods of Mathematical Physicdnter-
of _d|ﬁeren_t_durat|0ns to be compared and classified diyecthg) N. smith and M. J. F. Gales, “Using SVMs and discrimimatmodels
using traditional machine learning approaches. However, t for speech recognition,” iProc. ICASSP2002, vol. 1, pp. 77-80.
score-space representation exists in a high dimensionesp@€! N. Smith and M. Gales, “Speech recognition using SVMs Advances

cpe . . . in Neural Information Processing Systems 2802, MIT Press.
such that most classification strategies will suffer par@me [50] v. wan, Speaker Verification using Support Vector Machingh.D.
ization difficulties. Fortunately, SVMs are well suited togt thesis, University of Sheffield, June 2003. S
task and have the advantage of permitting discriminant-angft! J- P- Campbell Jr., *Testing with the YOHO CD-ROM voicerification

K . corpus,” inProc. ICASSP1995, vol. 1, pp. 341-344.
ysis between Who!e sequences, Um.'kea for example, HM'YQSZ] F. Bimbot, M. Blomberg, and L. Boves, “An overview of tlRICASSO
which only allow discriminant analysis between frames. project research activities in speaker verification foepbbne applica-

In order for the SVM to classify the score-space represen; tions,” in Proc. Eurospeech1og9, vol. 5, pp. 1963-1966.

. frectively. t lizati t 23] K. Koumpis, S. Renals, and M. Niranjan, “Extractive suarization of
tatlpn e ectively, ‘_NO norma_lza Ion steps were necagssar voicemail using lexical and prosodic feature subset selettin Proc.
whitening step, which normalizes the components of theescor ~ Eurospeech2001, vol. 4, pp. 2377-2380.
space to zero mean and unit variance, and spherical normal-
ization, which tackles the variability in the dynamic rangfe
elements in the Hessian associated with SVM optimization.

The PolyVar database was used in our evaluation. Compat
to the GMM likelihood ratio baseline, the SVM approach
without the use of spherical normalization reduced the ay
erage equal error rate by a relative amount of 9%. Spheric
normalization enabled a much greater 34% relative reduictic

in the average equal error rate.
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