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Speaker verification using
sequence discriminant support vector machines

Vincent Wan and Steve Renals

Abstract— This paper presents a text-independent speaker
verification system using support vector machines (SVMs) with
score-space kernels. Score-space kernels generalize Fisher kernels
and are based on underlying generative models such as Gaussian
mixture models (GMMs). This approach provides direct discrim-
ination between whole sequences, in contrast with the frame-level
approaches at the heart of most current systems. The resultant
SVMs have a very high dimensionality since it is related to
the number of parameters in the underlying generative model.
To address problems that arise in the resultant optimization
we introduce a technique called spherical normalization that
preconditions the Hessian matrix. We have performed speaker
verification experiments using the PolyVar database. The SVM
system presented here reduces the relative error rates by 34%
compared to a GMM likelihood ratio system.

Index Terms— Fisher kernel, score-space kernel, speaker ver-
ification, support vector machine.

I. I NTRODUCTION

Current state-of-the-art speaker verification systems are
based on generative speaker models, typically Gaussian mix-
ture models (GMMs) and hidden Markov models (HMMs) [1].
These models usually operate at the frame-level with an overall
sequence score obtained by averaging the likelihoods of each
frame in the sequence or via the use of an HMM. More
accurate verification systems may be constructed by placing
these generative models in a discriminative framework, for
example taking the likelihood ratio between the model for
a particular speaker and a more general world model [2].
A limitation of these approaches arises from the fact that
discrimination occurs between frames, whereas speaker ver-
ification is concerned with sequence discrimination. Sincea
discriminative classifier discards information that its objective
function considers irrelevant, frame discrimination approaches
may inadvertently discard relevant information. In this paper
we describe an approach to speaker verification based on the
support vector machine (SVM) [3], [4] that enables direct
discrimination between sequences.

An SVM has many desirable properties including the ability
to classify sparse data without over-training and to make non-
linear decisions via kernel functions. However, due to certain
practical limitations the SVM has not gained widespread usage
in mainstream applications. Initial speaker recognition work
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using SVMs by Schmidt and Gish [5] highlighted the main
problem: SVMs become inefficient when the the number of
training frames is large. This can be overcome by using special
kernels to classify sequences instead of frames. The family
of score-space kernels [6] are such kernels that enable se-
quence discrimination. Score-space kernels include the Fisher
kernel [7] and map a complete sequence onto a single point
in a high dimensional space by exploiting generative models.
The Fisher kernel has been applied to speaker recognition with
limited success [8], [9].

We have applied the score-space kernel SVM approach to
text-independent speaker verification, extending some previous
work that employed frame discriminant SVMs [10], [11].
We performed experiments on the PolyVar database [12] and
report error rates that are better than a GMM likelihood ratio
system by 34% and better than the current state-of-the-art
system by 25%.

The structure of this paper is as follows: the next section
provides an overview of GMM speaker verification systems;
section III reviews SVMs for classification; sequence kernels
and methods for normalizing them are described in section IV;
experimental evaluation and results are presented in section V;
section VI concludes the paper.

II. GMM- BASED SPEAKER VERIFICATION

An Ng component Gaussian mixture forNd dimensional
input vectors has the following form:

P(x|M)=
Ng

∑
i=1

ai
1

(2π)Nd/2|Σi |1/2
exp

(

−1
2
(x−µi)

TΣ−1
i (x−µi)

)

(1)
whereP(x|M) is the likelihood of input vector,x, given the
mixture model,M. The mixture model consists of a weighted
sum overNg Gaussian densities each parameterized by a mean
vector,µi , and a covariance matrix,Σi . The coefficients,ai , are
the mixture weights, which are constrained to be non-negative
and must sum to one. The parameters of a Gaussian mixture
model, ai ,µi andΣi for i = 1· · ·Ng may be estimated using
the maximum likelihood criterion and the EM (expectation-
maximization) algorithm [13], [14].

For reasons of both modelling and estimation, it is usual
to employ GMMs consisting of components with diagonal
covariance matrices. A detailed discussion on the application
of GMMs to speaker modelling can be found in [15]. The
basic method is straightforward. A GMM (theclient model) is
trained using maximum likelihood to estimate the probability
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density function,P(xi |M), of the client speaker. The probabil-
ity, P(X|M), that an utterance,X = {x1, . . . ,xNv}, is generated
by the model,M, is used as the utterance score, estimated by
the mean log likelihood over the sequence:

S(X) = logP(X|M) =
1
Nv

Nv

∑
i=1

logP(xi |M). (2)

The utterance score is used to make a decision by comparing it
against a threshold that has been chosen for a desired trade-off
between detection error types.

Speaker verification may be posed as a discriminative
problem, with the objective of assigning high scores to those
frames,xi, that are specific to the client and low scores to
frames that are common to most speakers. To achieve this a
second GMM (theworld model) may be used to model the
properties of speech signals common to all speakers, with
parameters estimated from a large number of background
speakers. A discriminative score may then be obtained by
taking the log likelihood ratio of the client model,M, to the
world model,Ω, which is equivalent to the difference between
their log likelihood scores. Again, the mean of the frame scores
is taken across the sequence:

S(X) =
1
Nv

Nv

∑
i=1

log
P(xi |M)

P(xi |Ω)
(3)

=
1
Nv

Nv

∑
i=1

logP(xi |M)− 1
Nv

Nv

∑
i=1

logP(xi |Ω) (4)

= logP(X|M)− logP(X|Ω). (5)

We call this approach the GMM likelihood ratio (GMM-LR),
and in practice it produces more accurate speaker verifica-
tion systems. Reynolds [2] used the GMM-LR approach for
speaker verification. The GMM-LR method is a simple yet
powerful approach and is used here as a baseline.

By Bayes’ decision rule, equation (5) is optimal so long
as the client and impostors are well modelled. Bengio and
Mariéthoz [16] proposed that the probability estimates are not
perfect and that a more accurate version would be:

S(X) = alogP(X|M)−blogP(X|Ω)+c, (6)

where a, b and c are adjustable parameters estimated using
an SVM for which the input is the two dimensional vector
composed of the client and world models’ log likelihoods.
This results in a small improvement in accuracy as discussed
in section V.

III. SUPPORT VECTOR CLASSIFICATION

In its basic form, the SVM (support vector machine) is a
binary linear classifier. It is described in detail by Vapnik[3]
and in Burges’ tutorial [4]. Given a set of linearly separable
two-class training data, there are many possible solutions
for a discriminative classifier. In the case of the SVM, a
separating hyperplane is chosen so as to maximize themargin
between the two classes. Essentially this involves orienting the
separating hyperplane to be perpendicular to the shortest line
separating the convex hulls of the training data for each class,
and locating it midway along this line.

Let the separating hyperplane be defined byx ·w + b = 0
where w is its normal. For linearly separable data labelled
{xi,yi}, xi ∈ ℜNd , yi ∈ {−1,1}, i = 1. . .N, the optimum
boundary chosen according to the maximum margin criterion
is found by minimizing the objective function:

E = ||w||22 (7)

subject to(xi ·w+b)yi ≥ 1 for all i.

The solution for the optimum boundary,w0, is a linear
combination of a subset of the training data,xs, s∈ {1. . .N}:
the support vectors. These support vectors define the margin
edges and satisfy the equality(xs·w0+b)ys = 1. Data may be
classified by computing the sign ofx ·w0+b.

Generally, the data are not separable and the above in-
equalities cannot be satisfied. In this case we may introduce
“slack” variablesξi which represent the amount by which each
point is misclassified. In this case the objective function is
reformulated as:

E =
1
2
||w||22 +C∑

i

L(ξi) (8)

subject to(xi ·w+b)yi ≥ 1− ξi for all i.

The second term on the right hand side of (8) is theempirical
risk associated with those points that are misclassified or lie
within the margin.L is a cost function andC is a hyper-
parameter that trades off the effects of minimizing the empir-
ical risk against maximizing the margin. The first term can be
thought of as a regularization term, derived from maximizing
the margin, which gives the SVM its ability to generalize
well on sparse training data. This property will be seen to
be important when classifying sequences.

The linear-error cost function is most commonly used since
it is robust to outliers. The dual formulation (which is more
conveniently solved) of equation (8) withL(ξi) = ξi is

α∗ = max
α

(

∑
i

αi +∑
i, j

αiα jyiy jxi ·x j

)

(9)

subject to
0≤ αi ≤C
∑i αiyi = 0

(10)

in which α = {α1, . . . ,αN} is the set of Lagrange multipliers
of the constraints in the primal optimization problem [4]. The
dual can be solved using standard quadratic programming
techniques. The optimum decision boundary,w0, is given by

w0 = ∑
i

αiyixi (11)

and is a linear combination of all vectors that haveαi 6= 0.
The extension to non-linear boundaries is achieved through

the use of kernel functions that satisfy Mercer’s condition
[17]. In essence, a non-linear mapping is defined from the
input space, in which the data are observed, to a manifold in
higher dimensionalfeature space, which is defined implicitly
by the kernel functions. The hyperplane is constructed in the
feature space and intersects with the manifold creating a non-
linear boundary in the input space. In practice, the mapping
is achieved by replacing the value of dot products between
two vectors in input space with the value that results when
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the same dot product is carried out in the feature space. The
dot product in the feature space is expressed conveniently by
the kernel as some function of the two vectors in input space.
The polynomial and RBF (radial basis function) kernels are
commonly used, and take the form:

K(xi ,x j) = (xi ·x j +1)n (12)

and

K(xi ,x j) = exp

[

−1
2

( ||xi −x j ||
σ

)2
]

(13)

respectively, wheren is the order of the polynomial andσ is
the width of the radial basis function. The dual for the non-
linear case is thus

α∗ = max
α

(

∑
i

αi +∑
i, j

αiα jyiy jK(xi ,x j)

)

(14)

subject to
0≤ αi ≤C
∑i αiyi = 0.

(15)

The use of kernels means that an explicit transformation of
the data to the feature space is not required.

IV. D ISCRIMINATIVE SEQUENCE CLASSIFICATION

The approaches to speaker verification outlined in section II
are discriminative between frames rather than between com-
plete utterances. Discriminative classification of sequences is
difficult since sequences have different lengths. However,if
a mapping from a variable length sequence to a fixed length
vector can be achieved, then standard classification procedures
may be applied. Such a mapping was first developed by
Jaakkola and Haussler [7] and is known as theFisher kernel.
This approach was generalized by Smith and Gales [18],
[19] as a technique referred to asscore-spaces. Using these
approaches for whole sequence classification results in a sparse
data problem, for which SVMs are well suited: a set of
sequences are mapped to a comparatively high dimensional
feature space. Furthermore, the concept of mapping each
sequence to a feature space may be interpreted as an SVM
kernel. We shall now describe the score-space transformations
that we have used.

A. Score-spaces

Score-space kernels [6], [18], [19], which generalize Fisher
kernels [7], enable SVMs to classify whole sequences by
exploiting a set of parametric generative models. In this
approach a variable length sequence is mapped explicitly onto
a single point in a fixed-dimension space, thescore-space.
Such a mapping is achieved by applying some operator to
the likelihood score of a generative model. Hence the fixed-
dimension score-space allows a dot product to be computed
between two sequences even if they were originally different
lengths. This section first describes a generic formulationto
achieve such mappings followed by a detailed explaination
of some special cases of the score-space method: the Fisher
kernel [7] and the likelihood ratio kernel.

The score-space is defined by and derived from the likeli-
hood score of a set ofk generative models,{pk(X|Mk,θk)}.

TABLE I

SOME EXAMPLES OF SCORE OPERATORS

Operator expression
first derivative F̂ = ∇θ

first derivative and argument F̂ = [∇θ,1]T

first and second derivative F̂ = [∇θ,vec(∇2θ)T ]T

The generic formulation for mapping a sequence,X =
{x1, . . . ,xNv}, to the score-space is given by

ψF̂ , f (X) = F̂ f ({pk(X|Mk,θk)}) , (16)

whereψF̂, f (X) is called thescore-vector, f ({pk(X|Mk,θk)}), a
function of the scores of the set of generative models, is called
the score-argumentand F̂ is thescore-operatorthat maps the
scalar score-argument to the score-space. The properties of the
resulting score-space depend upon the choice of operator and
argument that is used. Several options for score-operatorswere
proposed by Smithet. al. [6] and are summarized in table I.

Almost any function may be used as a score-argument. We
shall show two specific cases that lead to the likelihood score-
space kernel (more commonly known as the Fisher kernel [7])
and the likelihood ratio score-space kernel.

1) The likelihood score-space:The likelihood score-space
is obtained by setting the score-argument to be the log
likelihood of a generative model,M, parameterized byθ, and
choosing the first derivative score-operator from table I:

f ({pk(X|Mk,θk)}) = logP(X|M,θ) (17)

ψFisher(X) = ∇θ logP(X|M,θ) . (18)

This mapping, known as theFisher mapping, was first devel-
oped and applied to biological sequence analysis by Jaakkola
and Haussler [7].

Each component of the score-space,ψ(X), corresponds to
the derivative of the log likelihood score with respect to one
of the parameters of the model. In some ways it is a measure
of how well the sequence,X, matches the model. Consider
a generative model trained using the maximum likelihood
criterion and gradient descent. In order to maximize the
likelihood of a given sequence, the same set of derivatives to
equation (18) must be computed so that the parameters may
be updated. When the derivatives are small then the likelihood
may be close to a local maximum; when the derivatives are
large then the likelihood has yet to reach a maximum. Whether
the derivatives will provide additional information that is not
already encoded in the likelihood score may be examined by
augmenting the score-vector with the score-argument (the log
likelihood score in this case):

ψFisher+(X) =

[

∇θ logP(X|M,θ)
logP(X|M,θ)

]

. (19)

2) The likelihood ratio score-space:An alternative score-
argument is the ratio of two generative models,M1 andM2,

f ({pk(X|Mk,θk)}) = log
P(X|M1,θ1)

P(X|M2,θ2)
, (20)
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whereθ = {θ1,θ2}. The corresponding mapping using the first
derivative score-operator is

ψLR(X) = ∇θ log
P(X|M1,θ1)

P(X|M2,θ2)
(21)

and again the score-argument may be added to the score-space:

ψLR+(X) =

[

∇θ log P(X|M1,θ1)
P(X|M2,θ2)

log P(X|M1,θ1)
P(X|M2,θ2)

]

. (22)

The likelihood ratio score-space is motivated by the GMM
likelihood ratio (GMM-LR) classifier described in section II.
In the same way that the GMM-LR is a more discriminative
classifier than a single GMM, so should the likelihood ratio
score-space kernel be. A GMM likelihood ratio forces the
classifier to model the class boundaries more accurately. The
discrimination information encoded in the likelihood ratio
score will also be in its derivatives.

B. Computing the score-vectors

In this section we derive the formulae for computing deriva-
tives of the log likelihoods when the generative model is a
diagonal covariance GMM. The formulae for the derivatives
when the generative model is an HMM may be found in [6].

Let

R(i, j) =
Nd

∏̀
=1

1

σ`
j

√
2π

exp







−1
2

(

x`
i −µ`

j

σ`
j

)2






(23)

so that the diagonal covariance GMM likelihood is

P(xi |M,θ) =
Ng

∑
j=1

a jR(i, j) (24)

whereθ = {a j ,µ`
j ,σ`

j} is the set of parameters in the GMM,M.
In particular,a j is the prior of thej th Gaussian component of
the GMM,µj is the mean vector of thej th component andσ j is
the corresponding diagonal covariance vector. The superscript
on the mean and covariance enumerate the components of
the vectors.Ng is the number of Gaussians that make up
the mixture model andNd is the dimensionality of the input
vectors with componentsxi = [x1

i ,x
2
i , · · · ,x

Nd
i ]T .

The global log likelihood of a sequenceX = {x1, . . . ,xNv}
is

logP(X|M,θ) =
Nv

∑
i=1

logP(xi |M,θ) (25)

whereNv is the number of frames in the sequence. From (18)
the score-vector is the vector of the derivatives with respect
to each parameter of the log of (25). The derivatives are with
respect to the covariances, means and priors of the Gaussian
mixture model. The derivative with respect to thej th prior is

d
daj∗

logP(X|M,θ) =
Nv

∑
i=1

R(i, j∗)

∑Ng
j=1a jR(i, j)

. (26)

The derivative with respect to thèth component of thej th

mean is

d

dµ̀
∗
j∗

logP(X|M,θ)

=
Nv

∑
i=1

a j∗R(i, j∗)

∑Ng
j=1a jR(i, j)

· 1

σ`∗
j∗

(

x`∗
i −µ`∗

j∗

σ`∗
j∗

)

. (27)

The derivative with respect to thèth component of thej th

covariance is

d

dσ`∗
j∗

logP(X|M,θ)

=
Nv

∑
i=1

a j∗R(i, j∗)

∑Ng
j=1a jR(i, j)

·
(

(x`∗
i −µ`∗

j∗)
2

(σ`∗
j∗)

3
− 1

σ`∗
j∗

)

.(28)

The likelihood score-vector can then be expressed as:

ψFisher(X) =

[

d
daj∗

, · · · , d

dµ̀
∗
j∗

, · · · , d

dσ`∗
j∗

]T

logP(X|M,θ)

(29)
for j∗ = 1, . . . ,Ng and`∗ = 1, . . . ,Nd .

The likelihood ratio kernel is also computed using equations
(26) to (29). The score-vectors of the likelihood ratio kernel
(21) can be expressed as the difference of two terms,

ψLR(X) = ∇θ logP(X|M1,θ1)−∇θ logP(X|M2,θ2) . (30)

Let θ = {θ1,θ2} be the vector of all parameters that exist in
both models,M1 and M2. The derivatives of logP(X|M1,θ1)
with respect to the parametersθ2 in M2 are zero and vice-
versa. ThusψLR(X) can be split so that the derivatives are
computed with respect to one model at a time. When the
differentiated parameter belongs to modelM1 then

ψθ1(X) = ∇θ1 logP(X|M1,θ1) (31)

is computed. Likewise, when the parameter belongs to model
M2 then

ψθ2(X) = ∇θ2 logP(X|M2,θ2) (32)

is computed. These derivatives are identical to the derivatives
computed by the Fisher kernel. The likelihood ratio score-
vector is

ψLR(X) =

[

ψθ1(X)
−ψθ2(X)

]

. (33)

From equations (29) and (33) it can be seen that the
dimensionality of the score-space is equal to the total number
of parameters in the generative models. Having mapped the
sequence to the score-space, any discriminative classifiermay
be used to classify vectors and hence obtain a classification
for the complete sequence. However, it is not unusual for
generative models to have several thousand parameters. This
means that the discriminative classifier must be able to classify
vectors of that size. Classifiers such as multilayer perceptrons
cannot be easily trained on such data due to problems in
parameterization. The SVM, fortunately, is well suited to
classify high dimensional data.
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C. Score-space normalization

SVMs are not invariant to linear transformations in feature
space, so normalization of the feature vectors is desirable. We
used two stages of normalization: whitening the data in the
score-space by normalizing the components of the vectors,
ψ(X), to zero mean and unit variance; then applyingspher-
ical normalization, which may be interpreted as a Hessian
preconditioning step and involves making a further nonlinear
transformation to a higher dimension space.

1) Score-space whitening:For a given score-space, the
metric of the space is determined by the generative model(s)
and is generally non-Euclidean. The dot product in a non-
Euclidean space is defined asxTGTGy whereG is a matrix that
maps the vectors to a Euclidean space. A kernel constructed
from any of the above mappings is

K(Xp,Xq) = ψ(Xp)
TGTGψ(Xq) (34)

whereGTG is the metric of the space and the subscript onX
enumerates the sequences. In Euclidean space,G is the identity
matrix. In the case of the log likelihood score-space mapping,
GTG is the inverse Fisher information matrix (the inverse of
the covariance matrix of the score-vectors):

GTG =
(

E{U(X)U(X)T}
)−1

(35)

where U(X) = ψ(X) − E{ψ(X)} and E is the expectation
operator.

This can be interpreted as a whitening step where the
score-vector components are normalized to zero mean and
unit variance (i.e. the basis vectors of the score-space are
mapped to an orthonormal set). Whitening is important since
SVMs are not invariant to linear transformations in the feature
space. Consider a two dimensional space where the variance
in one dimension is significantly higher than in the other.
A dot product in this case will be dominated by the high
variance component, effectively reducing the dimensionality
of the space to one.

Computing dot products in score-space relies on the ability
to estimate a full covariance matrix, which will normal-
ize the scaling in each dimension and make the principal
component axes orthogonal. However, the score-space space
dimensionality, which is equal to the number of parameters in
the generative model, may be large thus making estimation
impractical. The required computation may be reduced by
normalizing with a diagonal covariance matrix (so the scale
of each dimension will be the same), or a block diagonal
covariance matrix (making some of the principal component
axes orthogonal).

2) Spherical normalization:Spherical normalization, de-
veloped in the context of SVMs using high order polynomial
kernels [11], is a preconditioning step employing a transfor-
mation that maps each feature vector onto the surface of a
unit hypersphere embedded in a space that has one dimension
more than the feature vector itself.

Dot products between high dimensional vectors may lead
to an ill-conditioned Hessian since the dynamic range of
the result is large. This occurs even when each individual
component of the vectors has been normalised to zero mean

Fig. 1. Spherical vector-length normalization: mapping onto a sphere

and unit variance. In particular, score-space kernels based on
generative models that have many tens of thousands (or more)
of parameters are likely to suffer from ill-conditioning. It is
possible to compress the dynamic range of a dot product by
exploiting its cosine interpretation,i.e. x ·y = ‖x‖‖y‖cosθ. If
the vectors have unit length then the dot product is just the
cosine of the angle in between and the result must be in the
range−1 to +1.

A vector can be normalized easily by dividing by its
Euclidean length. But this results in information loss causing
greater classification uncertainty. For example, two points in
the input space represented byx and 2x will both be nor-
malized tox̂. Alternatively, normalization without information
loss may be done by projecting to a higher dimensional space.
Consider the mapping from a 2D plane to a 3D unit sphere,
as in figure 1. Any point in 2D space may be mapped onto
the surface of a unit sphere in 3D space. The new vectors
representing the data are the unit vectors from the centre
of the sphere to its surface. The mapping is reversible so
no information is lost. We call this spherical vector-length
normalization, or spherical normalization for short.

Mapping a plane onto a sphere’s surface may be achieved by
many different projections, all of which may be generalizedto
arbitrary dimensions: this is the inverse of the problem faced
by cartographers when mapping the Earth but extended to
much higher dimensions. Standard projections used by cartog-
raphers are the azimuthal, conical and cylindrical projections.
We consider three different azimuthal projections (illustrated
in figure 2 along with the explicit transformations and the
corresponding kernel functions): the orthographic projection,
the stereographic projection and a modified stereographic
projection.

The orthographic projection (figure 2a) is limited since the
input data are restricted to lie within a small finite region
directly beneath the hemisphere. The stereographic projection
(figure 2b) does not suffer from this restriction but the space
represented by the sphere wraps around. With this projection,
points located at+∞ and −∞ in the input space project to
the same point on the hypersphere. We used the modified
stereographic projection (figure 2c) because it does not suffer
from these issues. The projection is made by augmenting a
vector with a constant,d, and normalizing the new vector by
its Euclidean length.
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b: The stereographic projection

a: The orthographic projection

c: The modified stereographic projection

f x

x

f x

1

x
2 d2

x

d

K x1 x2
x1 x2 d

2

x
2
1 d2

x
2
2 d2

f x

x

1 x
2

for x 1

K x1 x2 x1 x2 1 x
2
1 1 x

2
2

f x

2D

x
2 D2

x

D
2

x
2

2D

K x1 x2
x

2
1x

2
2 D

2
x

2
1 x

2
2 4x1 x2 D

4

x
2
1 D2

x
2
2 D2

f x

x

d

f x

x

D

Fig. 2. Spherical vector-length normalization: various ways of projecting
data onto unit hyperspheres.

For the score-space kernels presented here, the mapping
applied explicitly to the score-vectors is

Ψ(X) :→ φ(Ψ(X)) =
1

√

Ψ(X) ·Ψ(X)+d2

[

Ψ(X)
d

]

(36)

where Ψ(X) = Gψ(X) is the whitened score-vector of the
sequence,X. The spherically normalized sequence kernel
becomes

K(Xp,Xq) = φ(Ψ(Xp)).φ(Ψ(Xq)) (37)

Spherical normalization is discussed in greater depth, andin
the context of polynomial and RBF kernels, in [20].

V. EXPERIMENTS

We carried out a number of development experiments [10]
using the YOHO database [21]. Following these, we evaluated
these approaches using text-independent speaker verification
on the PolyVar database [12]. The PolyVar database consists
of 38 client speakers, 24 male and 14 female, recorded over
a telephone network. 85 utterances were recorded from each
speaker in 5 sessions, with 17 utterances per session. There
are also 952 impostor utterances from 56 speakers, each
contributing 17 utterances in a single session. The evaluation
followed the protocol for speaker model training and testing
used on the European Telematics PICASSO project [22].
Approximately one thousand test utterances, including both
client and impostors, were presented for each client speaker.

The speech was parameterized as 12th order perceptual
linear prediction (PLP) cepstral coefficients, computed using
a 32ms window and a 10ms frame shift. The 12 cepstral
coefficients were augmented with an energy term and first and
second derivatives were estimated, resulting in frames of 39

dimensions. Cepstral mean subtraction was applied to remove
the effects of the communication channel. Silence frames
within each utterance were segmented out using a multilayer
perceptron pre-trained on a different dataset [23].

Our baseline systems for these experiments were based on
GMMs. The simplest baseline uses the client model only (2).
State-of-the-art results for this database have been obtained
by a GMM-LR system (5) and a modified GMM-LR/SVM
system (6) in which the likelihood ratio is parameterized
using an SVM to estimate the parameters [16]. To enable a
direct comparison, the GMMs used in the experiments here
were trained using identical conditions to those used in [16]
in which cross-validation was used to estimate the optimal
model complexity. This resulted in a world GMM containing
1000 Gaussian components, and client GMMs containing 200
Gaussian components.

Using the GMM-LR system on PolyVar, a text independent
speaker verification result of 5.55% minimum half total error
rate (HTER)1 was reported on the PolyVar test data using
19 speakers.2 A 4.73% minimum HTER was reported for the
GMM-LR/SVM [16]. We replicated these results: the results
for 38 speakers are shown in table II, and the corresponding
DET curves are shown in figure 3.

We applied the score-space kernel approaches to PolyVar,
based on the GMMs that made up the baseline systems. These
GMMs were used to generate the score-spaces used by the ker-
nels discussed in section IV. Using one of these kernels, each
complete utterance was mapped onto a single score-vector. An
SVM was trained for each client speaker using a total of 1,037
utterances (85 client and 952 background utterances), each
mapped to the score-space. The SVM optimization problem
for training sets of this size is straightforward and does not
require any of the special techniques that have been developed
to train SVMs on large quantities of data. We trained SVMs
using the following kernels:

• Fisher kernel (18);
• Fisher kernel with argument (19);
• LR kernel (21);
• LR kernel with argument (22).

The Fisher kernel uses the derivatives of the client GMMs
from the baseline systems to achieve the mapping to score-
space, whereas the LR kernel uses both the client and world
models. The number of parameters in the GMM and GMM-LR
baselines are 15,800 and 94,800 respectively. The score-space
dimensionalities of the Fisher and LR kernels are thus 15,800
and 94,800 respectively, with an additional dimension for each
if the argument is included.

The high score-space dimensionalities, particularly thatof
the LR kernel, causes computational problems for SVM opti-
mization. We addressed this problem by whitening the score-
vectors to zero-mean and unit diagonal variance (section IV-
C.1), and spherically normalizing them using (36). Since the

1The HTER is the arithmetic mean of the false acceptance rate and the false
rejection rate at a given threshold. The threshold can be adjusted to minimise
the HTER.

2Bengio and Mariéthoz [16] used 19 speakers for developmentand the
remaining 19 speakers for evaluation. In our work, development was done
using YOHO which meant that all 38 speakers could be used for evaluation.
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TABLE II

RESULTS OF THEPOLYVAR EXPERIMENTS. THE GMM BASELINE HAS 200

DIAGONAL COVARIANCE GAUSSIAN COMPONENTS FOR MODELLING

CLIENTS. THE GMM-LR CONSISTS OF THE ABOVE PLUS A WORLDGMM

WITH 1,000DIAGONAL COVARIANCE GAUSSIANS. THE GMM-LR/SVM

USES THE SAME CLIENT AND WORLDGMMS BUT COMPUTES A

WEIGHTED LOG LIKELIHOOD RATIO. THE FISHER KERNEL EXPLOITS THE

CLIENT GMMS WHILE THE LR KERNEL EXPLOITS BOTH CLIENT AND

WORLD GMMS.

Classifier % min HTER % EER
Baseline
GMM 11.22 12.07
GMM-LR 5.53 6.12
GMM-LR/SVM 5.37 5.94
Fisher kernel
whitening 6.54 6.98
whitening + sph. norm 6.50 6.87
whitening + argument 6.50 6.92
whitening + argument + sph. norm 6.47 6.87
LR kernel
whitening 5.13 5.55
whitening + sph. norm 3.72 4.03
whitening + argument 5.03 5.55
whitening + argument + sph. norm 3.71 4.03

vectors are whitened, setting the spherical normalizationpa-
rameter,d, to one will spread the data over a reasonably large
portion of the hypersphere. Each of the four kernels itemized
above were trained with and without spherical normalization.

Classification in the score-space was carried out using linear
SVMs. A static RBF or polynomial kernel could be used to
make non-linear decision boundaries in score-space. However,
since the dimensionality of the score-space is significantly
higher than the number of training vectors, the classification
problem is linearly separable and non-linear boundaries are
unnecessary. Also, since the problem is known to be linearly
separable, the regularization parameter (C in equation 10
or 15) was set to infinity (i.e. the formulation for an SVM that
maximizes the margin when the data is linearly separable was
used). To give an indication of the value of the regularization
parameter that should be used if more regularization were
needed, the Lagrange multipliers in the spherically normalized
likelihood ratio score-space kernel SVMs had a mean about
0.25 and an average maximum value of about 4.

We evaluated the results of our experiments using equal
error rate (EER) and minimum HTER, and the results of the
various systems are summarized in table II. Scores such as
EER and minimum HTER reflect performance at a single
operating point on the detection error trade-off (DET) curve;
figure 3 uses DET curves to show the performance of the
baseline systems and the SVM approaches at all operating
points on PolyVar.

The GMM baseline from which the Fisher kernel is derived
yielded 12.07% average EER. The Fisher kernel with whiten-
ing, but without spherical normalization or augmentation with
the score-argument, reduced the average EER to 6.98%, a
relative reduction of 42%. The application of spherical nor-
malization and augmentation of the score-operator with the
argument both reduced the EER but insignificantly (less than
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Fig. 3. DET curves of the GMM, GMM-LR, GMM-LR/SVM, Fisher kernel
SVM and spherically normalised LR kernel SVM systems for text-independent
speaker verification on PolyVar.

2% relative). However, despite the improvement that the SVM
imparted to the GMM system, the EER of the GMM-LR
system was a further 11% lower relative to the spherically
normalized Fisher kernel.

The basic LR kernel, without spherical normalization, re-
duces the EER to 5.55%, relative reductions of 9% compared
with the GMM-LR system and 7% compared with the GMM-
LR/SVM system of [16]. Spherical normalization reduced the
EER to 4.03%, a further relative reduction of 27% and an
overall relative reduction of 34% compared with the GMM-
LR system. Spherically normalizing the LR kernel resulted in
a greater error reduction compared with applying the same
normalization to the Fisher kernel. The dimension of the
likelihood ratio score-space is six times larger than that of
the likelihood score-space due to the inclusion of the world
model, hence the Hessian computed from the LR kernel is
more likely to be ill-conditioned. As was observed with the
Fisher kernel, augmenting the kernel with the score-argument
had a negligible effect.

Figure 3 shows the DET curves of the GMM-LR, GMM-
LR/SVM and spherically normalized LR kernel systems. It can
be seen that the LR kernel results in a lower miss probability
at all false alarm probabilities — in contrast to the GMM-
LR/SVM system which has evidently optimized the parameters
for a particular set of operating points (corresponding to EER
and minimum HTER) at the expense of other points. At
low false alarm probabilities, the LR kernel reduces the miss
probability by over 20% compared to the GMM-LR system:
when the probability of misclassifying an impostor is 0.1%,
the GMM-LR baseline has a probability of 45.5% of rejecting
a client but the LR kernel SVM has a lower probability of
35.5%.
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The SVM solutions found in these experiments included
nearly a thousand support vectors (from a training set of
1,037). But since a linear SVM is used, all the support
vectors may be represented by a single resultant vectorw0,
defined by (11). Thus, the number of parameters required per
speaker is about four times that of the underlying client and
world generative models: the lengths ofw0 and the mean and
diagonal covariance vectors, for whitening the score-space,
plus the total number of client and world GMM parameters,
plus one for the SVM bias.

VI. CONCLUSION

This paper has presented and evaluated a text-independent
speaker verification system based on SVMs. The SVMs use
the score-space kernels approach, which subsumes the Fisher
kernel, to provide direct classification of whole sequences.
Two score-space kernels were examined: the Fisher (likelihood
score-space) kernel and the likelihood ratio score-space kernel.
The Fisher kernel exploits one generative model (that of the
client speaker) to map variable length sequences onto a single
vector of fixed length, while the likelihood ratio kernel exploits
two models (the client model and a world model).

Mapping to a fixed length representation allows sequences
of different durations to be compared and classified directly
using traditional machine learning approaches. However, the
score-space representation exists in a high dimension space
such that most classification strategies will suffer parameter-
ization difficulties. Fortunately, SVMs are well suited to this
task and have the advantage of permitting discriminant anal-
ysis between whole sequences, unlike, for example, HMMs
which only allow discriminant analysis between frames.

In order for the SVM to classify the score-space represen-
tation effectively, two normalization steps were necessary: a
whitening step, which normalizes the components of the score-
space to zero mean and unit variance, and spherical normal-
ization, which tackles the variability in the dynamic rangeof
elements in the Hessian associated with SVM optimization.

The PolyVar database was used in our evaluation. Compared
to the GMM likelihood ratio baseline, the SVM approach
without the use of spherical normalization reduced the av-
erage equal error rate by a relative amount of 9%. Spherical
normalization enabled a much greater 34% relative reduction
in the average equal error rate.
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