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Abstract We present the AMI 2006 system for the transcription of
speech in meetings. The system was jointly developed by multiple sites
on the basis of the 2005 system for participation in the NIST RT'05 eval-
uations. The paper describes major developments such as improvements
in automatic segmentation, cross-domain model adaptation, inclusion of
MLP based features, improvements in decoding, language modelling and
vocal tract length normalisation, the use of a new decoder, and a new
system architecture. This is followed by a comprehensive description of
the �nal system and its performance in the NIST RT'06s evaluations. In
comparison to the previous year word error rate results on the individual
headset microphone task were reduced by 20% relative.

1 Introduction
Conference room meetings are an integral basis of business life. For many they
constitute a main part of their daily work. Nevertheless meetings are often viewed
as ine�ective, hence many attempts are made to increase e�ectiveness while en-
suring good communication. Recordings of meetings themselves are likely to be
of little help. Instead the analysis of meeting content can be used for design
tools that preserve the essential information in accessible form. The foundation
for such analysis is in many cases the spoken word, hence work on meeting tran-
scription is essential for the AMI project 5. The transcription system presented
in this paper is developed by multiple sites involved in the AMI project [1].

High degrees of variability present in the meetings recordings make it an
interesting task for automatic speech recognition[2]. The speaking style is con-
versational by nature but the presence of multiple conversation partners results
in characteristic speaking style. It was found that surprisingly Broadcast News
(BN) material �ts reasonably well (e.g. [3]). The diversity of topics appears to
be large, however analysis of existing corpora is ambiguous[2]. Another obvious
5 http://www.amiproject.org



source of variability is the recording conditions. The AMI system has focused
on two conditions: the individual headset microphone (IHM) and the multiple
distant microphone (MDM) conditions. While the latter seems to represent a
natural situation, the former allows the establishment of baselines and assess-
ment of the loss due to di�erent recording setups.

In 2005 we presented our �rst system for participation in the NIST RT 2005
evaluations (Sys05)[4]. This initial system achieved state-of-the-art competitive
performance both on conference and lecture room tasks and the system formed
the basis of our development this year. Analysis of the system exhibited several
issues. For example the di�erence in word error rate (WER) performance be-
tween manual and automatic segmentation was more than 20% relative on IHM
while the di�erence between IHM and MDM results was approximately 30%
relative. The latter was dependent on the recording setup with generally larger
di�erences where the setup was less strictly speci�ed. Other less prominent is-
sues were addressed in this paper, such as speed, stability of vocal tract length
normalisation (VTLN), pronunciations, adaptation of CTS models, etc.

In the following section we brie�y outline the main characteristics of the 2005
system, followed by a section discussing experiments and algorithmic di�erences
for various components in the 2006 system. This is followed by a section describ-
ing the �nal system architecture and results on conference and lecture room
tasks. The �nal section concludes the paper.

2 The AMI 2005 STT System
The AMI 2005 STT system operates in a total of six passes[4]6. The system is
identical in structure both for IHM and MDM input. The systems di�er in the
front-ends and the acoustic models. Hence we focus initially on the description
of the IHM system and highlight the di�erences for MDM later on.

The IHM front-end converts the recordings into feature streams, with vectors
comprised of 12 MF-PLP features and raw log energy and �rst and second order
derivatives are added. The audio stream is split into meaningful segments. The
segmenter uses echo cancellation prior to classi�cation with a multi-layer per-
ception (MLP). After segmentation cepstral mean and variance normalisation
(CMN/CVN) is performed on a per channel basis (see Fig.1).

The �rst decoding pass yields initial transcripts that are subsequently used
for estimation of VTLN warp factors. The feature vectors and CMN and CVN
are recomputed. The second pass processes the new features and its output is
used to adapt models with maximum likelihood linear regression (MLLR). In the
third pass word lattices are produced which are rescored with trigram language
models (LMs) and meeting room speci�c 4-gram LMs in the fourth pass. In
the �fth pass acoustic rescoring with pronunciation probabilities is performed
and the lattices are compressed into confusion networks (CNs) in the �nal pass.
Acoustic models are trained on the ihmtrain05 training set which merges four
meeting corpora (the NIST, ISL, ICSI corpora and a preliminary part of the AMI
6 Appropriate references to well known techniques mentioned in this section can be
found in this paper.



TOT Sub Del Ins Fem Male AMI ISL ICSI NIST VT
IHM 30.6 14.7 12.5 3.4 30.6 25.9 30.9 24.6 30.7 37.9 28.9
MDM 42.0 25.5 13.0 3.5 42.0 42.0 35.1 37.1 38.4 41.5 51.1

Table 1. Final results with the 2005 system on the rt05seval test set.

IHM MDM
Multi−channel echo cancellation

MLP based segmentation

Smoothing

Delay vector estimation

Delay−Sum beamforming

Speaker segmentation/clustering

Headset microphone
recordings recordings

Tabletop microphone

Figure 1. Front-ends for both IHM and MDM conditions

corpus). Model training included discriminative training and a smoothed version
of heteroscedastic linear discriminant analysis (HLDA). Bigram, trigram and 4-
gram language models are trained on a large variety of texts and speci�cally
collected data by harvesting the word wide web.

The di�erence between MDM and IHM lies in the front-end and the acoustic
model training set. The front-end operates in four stages: initial gain calibration
is followed by noise compensation and frame based delay estimation between
channels. The delay estimates are then used in superdirective beam-forming to
yield a single output channel. All further steps were similar to the IHM case, seg-
mentation and speaker clustering information for the MDM system were kindly
provided by SRI/ICSI[3]. We repeat the results on the NIST RT 2005 conference
room evaluation set (rt05seval) for convenience in Table 1. The system operated
in 200-300 times real-time.

3 New developments in the 2006 system
In the 2005 system we could identify a series of major and minor weaknesses
of the system of which some were addressed. Further, as the 2005 system was
our initial move not all components had been developed as far as we would
have liked and hence we also continued on this path to include new technologies.
The main sets of changes to the system include: Improved segmentation for IHM;
standard unsmoothed HLDA with removal of silence; posterior probability based
features [5]; speaker adaptive training (SAT) with constrained MLLR (CMLLR)
[6]; acoustic feature space mappings and maximum-a-posteriori (MAP) adapted
HLDA; search model based LM data collection; as well as a modi�ed system
architecture that includes the use of a new decoder. In the following sections we
present more details on these changes.

3.1 Improved Front-ends
Several changes to both the IHM and MDM front-ends (see Figure 1) were made.



Segmentation TOT EDI TNO CMU VIT NIS
manual 40.4 32.8 45.4 43.4 41.6 40.6
automatic 41.4 33.7 45.9 43.4 43.6 42.5

Table 2. WER on rt06seval IHM �rst passes using manual and automatic segmenta-
tion.
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Figure 2. False Alarm (FA) and False Reject (FR) frame error rate changes in rela-
tionship to WER changes between manual and automatic segmentation on rt06seval.

Individual Headset Microphone The initial cross-talk suppression is based on an
adaptive LMS echo canceller [7] followed by MF-PLP feature extraction. Di�er-
ent to last year, features to aid in the detection of cross-talk are extracted from
the original recording (prior to cross-talk suppression). These features are cross-
channel normalised energy, signal kurtosis, mean cross-correlation and maximum
normalised cross-correlation. The cross-channel normalised energy is calculated
as the energy for the present channel divided by the sum of energies across
all channels [8]. In addition the MLP setup was changed to include 50 hidden
units and the models are trained on 90 hours of data from all meetings in the
ihmtrain05 set. On rt05seval the �rst pass was found to give almost identical
results to manual segmentation. Table 2 shows a comparison of manual versus
automatic segmentation on rt06seval.

Figure 2 shows the correlation between WER and frame error rates for the
meetings in rt06seval. The sum of false alarm (FA) and false reject (FR) rates
exhibit a linear relationship with word errors. The main contributor are FR
errors, which are unrecoverable.
Multiple Distant Microphones Only minor changes were made. Analysis on
rt05seval showed that the system performed poorly on recordings from the VT
meeting room. The reason was the use of only two microphones that were placed
far apart in the room, causing delay estimation and hence poor beam-forming.
The solution was to simply pick the channel with the highest energy for every
time frame. This approach was also bene�cial for the rt06seval set where the
VT recording setup included four microphones directed at the speakers. Further
problems had been caused by mis-aligned audio �les, a problem eliminated in
our 2006 system. Overall these changes brought improvements of 2.2% WER
absolute on rt05seval in the �rst pass, and a 6% absolute change on VT data.



Figure 3. WER results on rt04seval IHM in the second pass. Real time factors (RTFs)
combine �rst and second pass. The table shows RMSE results for operating points in
the �rst and second pass. RMSE denotes the root mean squared warp factor di�erence
to the baseline system.

SAT iterations PLP PLP+LCRC
- 28.7 25.2

adapt 27.9 24.2
1 27.6 24.1
2 27.4 24.0

Table 3. WER results for SAT rescoring 4-gram lattices on rt05seval IHM. LCRC
denotes posterior based features

3.2 Vocal tract length normalisation experiments
Maximum likelihood based VTLN was part of the 2005 system, where relative
WER improvements of more than 10% for both IHM and MDM were found.
However, the cost in terms of complexity and real time was large, since the �rst
pass is only devoted to �nding initial transcripts for VTLN. Experiments were
conducted to determine the importance of high quality transcripts. Fig. 3 shows
WER results in the second pass as a function of real time factors and associated
pruning in the �rst pass. On the right side the e�ect of pruning in both passes
on the warp factor estimates compared to the baseline is shown. The operating
point C was chosen for the �rst pass and D for the second pass.

3.3 Speaker adaptive training
The system already makes use of multiple speaker and channel normalisation
techniques. Both CMN/CVN and VTLN yield substantial gains in WER close
to 20% relative. Both techniques are simple and have few parameters. Speaker
adaptive training (SAT) allows further normalisation and was already success-
fully applied in [3]. Here constrained MLLR[6] with two transforms was used
where one is designated to the silence models.

3.4 Posterior based features
MLP based features have been deployed in large ASR systems (e.g. [9]). In [5] a
similar approach was taken to produce a set of posterior probability based fea-
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Figure 4. Computation of LCRC features.

tures computed with multiple layers of MLPs. While these kinds of features do
not yield good performance directly, they clearly hold complementary informa-
tion to the standard PLPs or MFCCs, and can bring substantial improvements in
WER. Figure 4 describes the creation process of the feature vector. The top part
shows standard MF-PLP generation and projection into a 39 dimensional space
using HLDA. For the generation of the LCRC features �rst standard VTLN
and CMN/CVN is applied to Mel frequency log �lterbank (FB) coe�cients. 23
FB coe�cients are extracted every 10ms and 15 vectors of left context are then
used to �nd the LC state level phone posterior estimates. The same procedure
is performed with the right context. These posteriors are then combined with a
third MLP network and after logarithmic compression the 135 dimensional fea-
ture vector is reduced to dimension 70 using principal component analysis. This
step is only necessary because the �nal dimensionality reduction using HLDA
was not feasible with such high dimensional vectors. The �nal 25-dimensional
feature vector is appended to the standard 39 dimensional feature. Mean and
variance normalisation is repeated at this stage.

Table 4 shows results for di�erent combinations of training strategies and fea-
ture vectors. The number of states and mixture components remained constant
and all systems use VTLN. Despite a considerable increase in dimensionality
and data sparsity substantial performance improvements was found. The gains
appear to be independent of the underlying training strategies. Note that the
results in Table 4 may be somewhat biased because they were obtained by lattice
rescoring.

3.5 Adapting to the meeting domain
One of the main short-comings of the 2005 system was the fact that only meeting
data (ihmtrain05/mdmtrin05 ) could be used for discriminative training. Both



System Training critrion PLP LCRC+PLP
Baseline ML 28.7 25.2
SAT ML 27.6 23.9
SAT MPE 24.5 21.7

Table 4. WER results on rt05seval/IHM rescoring Sys05 4-gram lattices. Contrasting
LCRC features using SAT and MPE

sets are comparatively smaller than the CTS training set and experimental ev-
idence suggests that discriminative training should perform better ([10]) with
more data. However, CTS and meeting data have di�erent bandwidth and ini-
tial experiments showed that joint adaptation and projection into common space
yields better performance[1]. The use of HLDA complicates matters considerably
since it is not clear in which domain the matrix should be trained. It was de-
cided to project the meeting data into the narrowband space where both HLDA
statistics can be gathered and discriminative training be performed without re-
generation of training lattices.

Initial full covariance statistic is estimated on the CTS training set. A single
CMLLR transform is trained to map the 52D wideband (WB) meeting data
to a 52D narrowband (NB) CTS space. The meeting data is mapped with this
transform and full covariance statistics is obtained using models based on CTS
phonetic decision tree clustering. The two sets of statistics are combined with
MAP-like equations. The combined set of statistics is used to obtain a joint
HLDA transform (JT). Now combined models in JT space can be trained using
both CTS and mapped meeting data. These are then used to retrain CTS models
in JT space, followed by speaker adaptive training and minimum phone error
(MPE) training[10]. Equivalently to adaptation of maximum likelihood models
with MAP, the JT/SAT/MPE models are adapted to meeting data using MPE-
MAP[11]. The inclusion of SAT requires the presence of transforms on meeting
data. These are obtained from SAT training of MAP adapted CTS models in
JT space. Overall the performance improvement of this procedure was at least
0.6% on rt06seval. However, the elaborate process prohibited inclusion of LCRC
features at this point.
3.6 Web data collection

Language model data for meetings are a rare resource and hence all sites have
included language model material collected from the world wide web using ap-
proaches as originally described by [12]. The technique is based on sending a set
of queries to well known Internet search engines and harvesting of the resulting
documents. In Sys05 we used data collected using only queries (n-grams) that
were not already present in our background LM material. Since then we have
re�ned this approach [13]. In this work we use search models to predict the ben-
e�t of the search results on perplexity. The set of N -grams (word w with history
h) present in a sample text T is ranked inversely with

X
v

(αP (w|h, T ) + βP (w|h, B))

(αP (v|h, T ) + βP (v|h, B))
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Figure 5. WER results on IHM data with the �rst pass using Juicer.

The probability estimates P (w|h, T )and P (w|h,B) are provided by language
models trained on the sample text and the background material B. The weights
α and β were set equal. Small gains in perplexity were found with moderate data
set sizes.

3.7 Juicer
As already discussed above, the 2005 system had a high RTF, partly due to slow
initial stages. A second approach to address this is a faster decoder. Juicer [14]
is a large vocabulary speech decoder based on weighted �nite-state transducer
(WFST). It uses a time-synchronous Viterbi search based on the token-passing
algorithm with beam-search and histogram pruning. Juicer works with a single
WFST composed of language model, dictionary and acoustic model. For the
composition and optimisation of WFST resources, Juicer relies on the function-
ality of the AT&T �nite-state machine library [15] and MIT FST toolkit [16].
The main advantage of WFST-based decoders is the decoupling of the decoding
network generation and the actual decoding process. But there are limitations
in composing the decoding networks, mainly due to high memory requirements,
when used with large higher-order N-gram language models. Hence, pruned tri-
gram language models were used for constructing decoding networks. Figure 5
shows performance versus RTF. The overall performance is within 1% absolute
of the best results with HDecode7.

4 System Architecture
Figure 6 shows the 2006 system architecture in diagrammatic form. In compar-
ison to Sys05 the following major changes were made: The initial pass P1 now
includes posterior feature computation; the output of P1 is used for both VTLN
and adaptation of SAT models in pass P2. Lattice generation is performed in
P2, with lattice expansion to uni�ed 4-gram lattices in P3. These lattices are
then rescored with di�erent acoustic models. The original plan was to perform
system combination by combining confusion networks, however this turned out
7 HDecode is distributed as part of HTK (http://htk.eng.cam.ac.uk)
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to yield poorer performance. The best performing path was P4b followed by P5a.
These passes are similar to the lattice rescoring passes in sys05, however include
standard MLLR adaptation on top of the use of constrained MLLR.

5 System Components

Most of the system software is based on HTK. In particular three di�erent de-
coders were included: In P1 Juicer (see Section 3.7) is used; in P2 HDecode
provides lattice generation capability; passes P4 and P5 operate with HVite for
rescoring. Confusion networks are generated using the SRI LM toolkit.

5.1 Acoustic Models

All acoustic models are phonetically state tied mixture of Gaussian HMMs with
16 mixture components. For the IHM system models were trained on ihmtrain05,
for MDM models were trained on mdmtrain05. LCRC MLP models are trained
on 30 hour subsets. The models M1 (see Figure 6) are identical to those used
in Sys05. Models M2 are trained on PLP+LCRC features using SAT and MPE
as outlined above. Several iterations of SAT were necessary for improved per-
formance, followed by a total of 15 iterations of MPE training. For IHM models
both MMI and MPE numerator and denominator statistics were combined with
�xed weights. The M3 models are trained in the form outlined in Section 3.5, on
the 300 hour h5train03 training set[4].

5.2 Vocabulary, Language Models and Dictionaries

The vocabulary was built in similar fashion to Sys05 and changed only moder-
ately. New web-data was collected for both conference and lecture room meetings
with the technique outlined in Section 3.6. Table 5 shows perplexity results on



Perplexity conference lecture
2g 3g 4g 2g 3g 4g

2006 LM 106.9 86.2 82.7 157.9 127.6 122.4
2005 LM 105.6 84.3 81.2 165.6 137.4 134.5

Table 5. Language model perplexity results on rt05seval .

TOT Sub Del Ins Fem Male AMI CMU ICSI NIST VT
IHM 23.7 12.0 9.9 1.7 23.7 20.3 22.0 20.1 21.1 30.0 25.7
MDM 33.0 18.7 12.3 2.1 33.0 35.4 28.8 32.6 35.8 35.4 33.7

Table 6. WER results of Sys06 on rt05seval .

rt05seval (both conference and lecture room meetings). Note that the 2005 lan-
guage models shows lower perplexity. The reason for this behaviour is that the
2006 LM interpolation weight estimation did not include ICSI data as it was not
part of rt06seval. The new method of data collection appeared to work well on
lecture room data.

6 Overall System Performance
The development performance of the AMI 2006 system (Sys06) on the rt05seval
data set is shown in Table 6 and can be directly compared with the results shown
in Table 1. It is clear that at least on this test set substantial improvements have
been made. The main improvements of the IHM system appear on the AMI
data, while MDM improvement is highest on the VT subset.

Table 7 shows IHM results on the 2006 evaluation set, both with automatic
and manual segmentation. The huge di�erence between initial and �nal pass
results is even larger than before due to faster processing. After the third pass
the results are already very close to the �nal performance, especially for manual
segmentation. Even though the P4b system has lower performance on its own
the inclusion into the adaptation path yields a further 0.5% absolute. Simple
adaptation with P4a supervision did not give any improvement. It is interest-
ing to note that automatic and manual segmentation di�er minimally initially
however the di�erence is immediately obvious once the systems use adaptation.
Since this cannot be a speaker labelling problem it is likely that this is caused
by cutting into sentences.

The MDM performance is given in Table 8 (non-overlap results). Again the
initial pass yields very poor performance and the di�erence between the output
of the third pass and the �nal result is small. Overall the gap between IHM and
MDM performance appears to be wider than on the rt05seval test set.

6.1 Lecture Room Meetings
Similar to Sys05, the only component changed to the conference room meet-
ing transcription system was the language model. Neither dictionary nor any
acoustic models were modi�ed. Results for both IHM and MDM can be found
in Tables 9 and 8 respectively. Note the poor performance of the initial pass
of both systems. In the IHM case however the system recovers reasonably well.
Substantial di�erence in WER between data sources is visible. Further the high



Automatic Segmentation Manual segmentation
TOT CMU EDI NIST TNO VT TOT CMU EDI NIST TNO VT

P1 42.0 41.9 41.0 39.0 42.1 44.8 40.3 40.4 39.5 38.7 37.6 40.9
P2a 29.2 29.2 27.4 27.7 29.5 32.4 26.5 26.7 25.5 26.6 22.3 28.8
P3.tg 26.6 26.3 25.2 25.7 27.0 29.9 21.1 21.2 19.7 21.8 17.0 23.9
P3 26.0 25.7 24.6 25.2 26.3 29.5 22.9 22.9 22.3 23.8 19.0 25.1
P4a 25.1 25.0 22.8 23.8 26.0 29.1 21.9 21.9 20.7 22.6 18.1 24.6
P4b 25.6 25.3 23.8 24.9 24.3 29.8 22.5 22.5 21.8 23.6 17.2 25.6
P5a 24.6 24.4 22.6 23.6 24.1 28.8 21.5 21.5 20.3 22.4 17.1 24.2
P5a-cn 24.2 24.0 22.2 23.2 23.6 28.2 21.1 21.2 19.7 21.8 17.0 23.9

Table 7. WER results with Sys06 on rt06seval.

Conference Lecture
TOT Sub Del Ins TOT Sub Del Ins

P1 58.2 35.8 16.7 5.7 70.7 46.0 16.3 8.5
P2a 45.6 26.4 15.1 4.1 60.0 31.6 23.6 4.9
P3 42.0 24.5 13.2 4.4 58.2 30.8 22.0 5.4
P4a 41.7 22.9 14.9 3.9 57.8 28.5 24.3 4.9
P5 40.9 22.2 15.3 3.5 56.1 28.2 23.9 4.0

Table 8. WER results for Sys06/MDM on the RT06 conference and lecture room test
sets.

deletion rate for MDM is unusual and is not mirrored in the conference room
data.

7 Conclusions
We have presented the changes made to the AMI 2005 system for transcription
of speech in meetings. The main performance improvements originate for im-
proved front-ends both in terms of segmentation and feature generation. As in
2005, there is still a large gap between performance on automatic and manual
segmentation. This and the large di�erence between IHM and MDM results will
require increased attention. We have also made improvements towards a faster
system with real time factors below 100.
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