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Abstract

This work introduces two methods for adapting the observation process param-
eters of linear dynamic models (LDM) or other linear-Gaussian models. The first
method uses the expectation-maximization (EM) algorithm to estimate transforms
for location and covariance parameters, and the second uses a generalized EM
(GEM) approach which reduces computation in making updates from O(p6) to
O(p3), where p is the feature dimension. We present the results of speaker adapta-
tion on TIMIT phone classification and recognition experiments with relative error
reductions of up to 6%. Importantly, we find minimal differences in the results from
EM and GEM. We therefore propose that the GEM approach be applied to adapta-
tion of hidden Markov models which use non-diagonal covariances. We provide the
necessary update equations.
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1 Introduction

We first motivate the current study before outlining maximum likelihood linear
regression (MLLR), the framework within which we develop adaptation for
linear dynamic models (LDM).
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1.1 Motivation

The LDM, also known as the Kalman filter model, has been the subject
of research and application by the engineering, control and machine learn-
ing communities. With yt and xt respectively denoting p and q dimensioned
continuous-valued observation and state vectors at time t, the LDM is de-
scribed by the following pair of equations:

yt = Hxt + εt εt ∼ N(v, C) (1)

xt = Fxt−1 + ηt ηt ∼ N(w, D) (2)

and a distribution over the initial state, x1 ∼ N(π, Λ). The LDM is a gen-
erative model, giving a time-varying multivariate Gaussian distribution over
the observations. Underlying dynamics are modelled by the state evolution
which is according to a first-order auto-regressive (AR) process. Equation 1
describes the observation process and Equation 2 describes the state process.
See Frankel (2003) or Frankel and King (2007. In press) for more detail on
the properties of these models, or for information on the wider class of lin-
ear Gaussian models see Roweis and Ghahramani (1999) or Rosti and Gales
(2001).

Experiments reported in Digalakis (1992) and Frankel (2003) support the
suitability of a linear predictor (such as given by the LDM) for modelling
speech parameter dependencies within phone segments, and a number of au-
thors have investigated the application of LDMs to acoustic modelling for
automatic speech recognition (ASR) (Digalakis, 1992; Frankel, 2003; Ma and
Deng, 2004a,b; Rosti, 2004; Frankel and King, 2007. In press). Motivation for
this choice of model includes:

• first-order dynamics of state give a model of inter-frame correlations
• spatial correlations can be modelled fully or approximated via projection of

lower dimensional state
• passing state information across phone boundaries relaxes the assumption

of segmental independence
• continuous underlying representation reflects known properties of speech

production

Frankel and King (2007. In press) demonstrated that the addition of a hidden
dynamic state in LDMs gave rise to improved phone classification and recogni-
tion 1 accuracies over equivalent static models. The increases were statistically

1 Phone recognition involves a joint search over phone sequence and segmentation;
in classification the boundaries are given and the identity of each segment must be
inferred.
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significant although modest and, given the extra computational cost of LDMs
compared to frame-based models, do not make a strong case for these models.
However, we suggest that the averaging which occurs across speakers reduces
the contribution of the LDM’s state by reducing its ability to learn speaker-
independent dynamics with the state process. A speaker-adaptive observation
process should therefore lead to improved modelling.

With εt ∼ N(v, C), the observation process dictates the location of the ob-
served features with the parameters H and v, and the distribution of measure-
ment errors with the covariance 2 C. In this work we consider adaptation of
these observation process parameters with a view to minimizing the differences
between speakers in the state space.

1.2 MLLR adaptation for LDMs

Adaptation, whether to environment, channel, or speaker has become an inte-
gral part of modern ASR systems. One technique which has been successfully
integrated into hidden Markov model (HMM) systems is maximum likelihood
linear regression (MLLR) (Gales and Woodland, 1996). Linear transforms of
the mean and/or covariance are estimated according to a maximum likelihood
criterion via the expectation-maximization (EM) algorithm (Dempster et al.,
1977; Bilmes, 1997). This involves defining an auxiliary function Q:

Q(Θ(i+1), Θ(i)) = EΘ(i)

[
l(Θ(i+1)|Y ,X )|Y

]
(3)

which is maximized at each iteration to step toward a maximum likelihood
solution. Y is the observation sequence, X is the state sequence and Θ(i) is
the model parameters at iteration i.

In this work, we adapt only the observation process parameters H, v and C,
though it would be straightforward to transfer the same techniques to the
state process parameters.

Recalling that the observation process is defined by

yt = Hxt + εt (4)

εt∼N(v, C)

we adapt model m as follows:

2 With v estimated, we assume our errors to have zero mean.
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Ĥm = AHm (5)

v̂m =vm + b (6)

Ĉm = BT
m G Bm (7)

where Bm is the Cholesky decomposition of Cm, so that Cm = BT
mBm. Note

that the adaptation parameters A, b and G are not subscripted by m: they
are estimated as common parameters shared by all models within pre-defined
clusters.

As stated in Gales and Woodland (1996), maximizing the mean and covariance
together is problematic, and therefore the transforms are estimated in two
stages such that

l(Θ̌|Y ,X ) ≥ l(Θ̂|Y ,X ) ≥ l(Θ|Y ,X ) (8)

where Θ̂ denotes a model set for which the transforms have been applied to
the location parameters H and v , and Θ̌ to model sets where transforms have
also been applied to the observation noise covariance C.

We propose two different approaches to estimating adaptation parameters for
the location parameters. The first uses the EM algorithm, following the full
covariance method of Gales (1997) 3 , and the second uses a generalized EM
(GEM) approach which reduces both processing and memory requirements.

2 Deriving updates for LDMs

With Y = yN
1 and X = xN

1 denoting sequences of p-dimensional observation
and q-dimensional state vectors respectively, the LDM’s Markovian structure
means that the joint likelihood of state and observations can be written as:

p(Y ,X|Θ) = p(x1|Θ)
N∏

t=2

p(xt|xt−1,Θ)
N∏

t=1

p(yt|xt, Θ) (9)

The state is assumed to have a Gaussian initial density, and so the joint log-
likelihood for the LDM is a sum of quadratic terms. We assume that the
segmentation is given, and use the subscript mr to denote the model used to
generate segment r. Using the notation:

δmr
yt

= yt −Hmrxt − vmr (10)

3 The output distribution of the LDM has a non-diagonal covariance, meaning that
the original MLLR (Gales and Woodland, 1996), which was tailored to diagonal-
covariance HMMs, is not applicable
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the portion of the log-likelihood function relating to the observations is given
by:

l(Θ|Y ,X ) ∝
R∑

r=1

br∑
t=ar

{
log |Cmr |+ δmrT

yt
C−1

mr
δmr
yt

}
(11)

where ar and br denote the start and end time of segment r respectively, and R
is the total number of segments. Since the state and observation parameters
are linearly separable in the log-likelihood function, we need only consider
Equation 11 in deriving updates for the adaptation parameters.

For convenience, we introduce the following notation:

xt|Nr = EΘ(i) [xt|Yr] (12)

Pt = EΘ(i)

[
xtx

T
t |Yr

]
= Σt|Nr + xt|Nrx

T
t|Nr

(13)

These are the expectations of xt and xtx
T
t evaluated using the parameter set

Θ(i) with respect to Yr, the Nr-length observation sequence corresponding to
segment r. The estimates of the state mean and covariance, xt|Nr and Σt|Nr

respectively, given observations Yr can be computed using an RTS smoother
(Rauch, 1963) as detailed in Frankel (2003).

2.1 EM transformation of H and v

Replacing H and v in Equation 10 with their adapted equivalents, Ĥ and v̂,
gives:

δ̂mr
yt

= yt − AHmrxt − vmr − b (14)

and therefore an auxiliary function of:

Q(Θ(i+1), Θ(i)) ∝ EΘ(i)

 R∑
r=1

br∑
t=ar

{
log |Cmr |+ δ̂mrT

yt
C−1

mr
δ̂mr
yt

} (15)

A maximum with respect to A is found by differentiating and setting to zero,
giving:

R∑
r=1

br∑
t=ar

C−1
mr

(
ÂHmrPtH

T
mr

+ b̂xT
t|Nr

HT
mr

)
=

R∑
r=1

br∑
t=ar

C−1
mr

(yt − vmr)x
T
t|Nr

HT
mr

(16)

5



Similarly, differentiating with respect to to b yields:

R∑
r=1

br∑
t=ar

C−1
mr

(
ÂHmrxt|Nr + b

)
=

R∑
r=1

br∑
t=ar

C−1
mr

(yt − vmr) (17)

Letting γmr
yt

= yt − vmr , we introduce the following notation:

S(r) = C−1
mr

(18)

Q(r) =

∑br
t=ar

HmrPtH
T
mr

∑br
t=ar

Hmrxt|Nr∑br
t=ar

xT
t|Nr

HT
mr

br − ar + 1

 (19)

Z =
R∑

r=1

C−1
mr

N∑
t=1

[
γmr

yt
xT

t|Nr
HT

mr
γmr

yt

]
(20)

Φ̂ =
[
Â b̂

]
(21)

which allows Equations 16 and 17 to be expressed as:

R∑
r=1

S(r)Φ̂Q(r) = Z (22)

Denoting element i, j of S(r), Φ̂, Q(r) and Z with s
(r)
i,j , φ̂i,j, q

(r)
i,j and zi,j respec-

tively, we can write

R∑
r=1

p+1∑
k=1

p∑
l=1

s
(r)
i,l φ̂l,kq

(r)
k,j = zi,j (23)

⇒
p+1∑
k=1

p∑
l=1

φ̂l,k

R∑
r=1

s
(r)
i,l q

(r)
k,j = zi,j (24)

Equation 24 provides a set of p(p + 1) simultaneous equations in p(p + 1)
unknowns which can be solved to find φ̂.

2.2 Generalized EM adaptation of H and v

Choosing an alternative auxiliary function Q(Θ, Θ(i)) such that

Q(Θ(i+1), Θ(i)) ≥ Q(Θ, Θ(i)) (25)

gives the generalized expectation maximization algorithm (GEM). By maxi-
mizing Q(Θ, Θ(i)) at each iteration, we increase a lower bound on the original
auxiliary function, and therefore step toward a maximum likelihood solution.
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As with the EM algorithm, GEM converges (Bilmes, 1997) to a (possibly lo-
cal) maximum. Using this approach, a modification of the auxiliary function
makes it possible to find estimates of Â and b̂ which can be calculated at a
reduced computational cost.

We first describe the method by which we define a lower bound, before showing
how we use this to modify the auxiliary equation in Equation 15.

2.2.1 Setting a lower bound

Let Y = {y1, . . . ,yn} be i.i.d Gaussian random variables with sample mean
and covariance ȳ and Sy respectively. Similarly, let Z = {z1, . . . , zm} be i.i.d
Gaussian random variables with sample mean and covariance z̄ and Sz. With
Φ = {ȳ, z̄, Sy, Sz}, the joint log-likelihood of Y and Z is then computed as:

l(Φ|Y ,Z)∝−1/2
n∑

i=1

{
log |Sy|+ (yi − ȳ)T S−1

y (yi − ȳ)
}

−1/2
m∑

j=1

{
log |Sz|+ (zj − z̄)T S−1

z (zj − z̄)
}

(26)

We modify the models for Y and Z by replacing Sy and Sz with a common
covariance Σ. Writing Φ′ = {ȳ, z̄, Σ}, the likelihood under this new model is
given by:

l(Φ′|Y ,Z)∝−1/2
n∑

i=1

{
log |Σ|+ (yi − ȳ)T Σ−1(yi − ȳ)

}
−1/2

m∑
j=1

{
log |Σ|+ (zj − z̄)T Σ−1(zj − z̄)

}

By definition, the first and second terms of Equation 26 are maximized by
their sample covariances, Sy and Sz respectively. Consequently

l(Φ|Y ,Z) ≥ l(Φ′|Y ,Z) (27)

which gives a lower bound on the joint likelihood of Y and Z.

2.2.2 Bounding the LDM log-likelihood function

The bound as defined above holds over the data which the sample covariances
are estimated on. In applying this to the observation likelihood function of
Equation 11 for use in estimating adaptation parameters, we assume minimal
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mismatch between the original training and adaptation data. Given that the
adaptation data represents a subset of the type of data used in the original
training, this assumption may be flawed in certain cases. However, we did
not observe problems in practice, as GEM training converged to increased
likelihoods for all speakers on which it was used.

As above, we choose C to be a pooled covariance shared by all models, giving
a modified auxiliary function of:

Q(Θ(i+1), Θ(i)) ∝ EΘ(i)

 R∑
r=1

br∑
t=ar

{
log |C|+ δ̂mrT

yt
C−1δ̂mr

yt

} (28)

Taking the partial derivative with respect to A and setting to zero yields:

R∑
r=1

br∑
t=ar

(
ÂHmrPt + b̂xT

t|Nr

)
HT

mr
=

R∑
r=1

br∑
t=ar

γmr
yt

xT
t|Nr

HT
mr

(29)

where γmr
yt

= yt − vmr as above. Similarly for b:

R∑
r=1

br∑
t=ar

(
ÂHmrxt|Nr + b̂

)
=

R∑
r=1

br∑
t=ar

γmr
yt

(30)

The estimates for Â and b̂ can be combined in closed form as:

[
Â b̂

]
=
[∑R

r=1

∑br
t=ar

γmr
yt

xT
t|Nr

HT
mr

∑R
r=1

∑br
t=ar

γmr
yt

]

×

∑R
r=1

∑br
t=ar

HmrPtH
T
mr

∑R
r=1

∑br
t=ar

Hmrxt|Nr∑R
r=1

∑br
t=ar

xT
t|Nr

HT
mr

∑R
r=1 br − ar + 1


−1

(31)

These estimates are composed of a few easily computed sufficient statistics.

2.3 EM adaptation of noise covariance C

A standard EM update provides a simple and efficient way to update C.
With Ĥmr and v̂mr already estimated, replacing C with its adapted version
Ĉ = BT

mGBm in the likelihood function of Equation 11 gives an auxiliary
function of

Q(Θ(i+1), Θ(i)) ∝ EΘ(i)

 R∑
r=1

br∑
t=ar

{
log |G|+ δ̂mrT

yt
VmrG

−1V T
mr

δ̂mr
yt

} (32)
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where we use Vmr to denote B−1
mr

. We now let

δ̂mr

yt,Θ(i) = EΘ(i)

[
δ̂mr
yt

]
= yt − Ĥmrxt|Nr − v̂mr (33)

so that taking a partial derivative with respect to G−1 and equating to zero
gives:

Ĝ =
1

N

R∑
r=1

br∑
t=ar

V T
mr

[
δ̂mr

yt,Θ(i) δ̂
mrT
yt,Θ(i) + ĤmrΣt|NrĤ

T
mr

]
Vmr (34)

where N =
∑R

r=1 {br − ar + 1} and Σt|Nr denotes the smoothed estimate of
the state covariance such that Pt = Σt|Nr +xt|Nrx

T
t|Nr

as given in Equation 13.
This can be calculated as above or split into a number of sufficient statistics
as in Gales and Woodland (1996) to allow location and covariance parameter
updates to be made in single pass.

2.4 Computational requirements

Computing EM updates for the location parameters requires solving a set
of simultaneous equations. A standard Gaussian elimination approach takes
O(n3) operations, where n is the number of unknowns. Assuming we wish
to estimate a fully specified transform of the location parameters, we have
n = p(p+1) and so the computation is order O(p6). With the GEM approach,
we require a matrix inversion and a matrix multiplication, both of which are
order O(n3). In this case, we have n = p + 1 and so the updates require O(p3)
operations. The updates for adaptation of the observation noise covariance
require matrix multiplications and so are simply O(p3).

3 Experiments

Experimental work uses the TIMIT corpus (Lamel et al., 1986) following the
standard train/test division. The base models for adaptation are as in Frankel
and King (2007. In press) where an LDM is trained on the data corresponding
to each of the 61 phone classes. A validation set comprising the utterances
from 60 of the 462 training set speakers is set aside and used to determine the
number of EM training iterations and language model scaling factor. Before
final evaluation on the test set, new models are trained on the combined train
and validation sets. The baselines in the experiments reported below use the
set of LDMs prior to speaker adaptation.

The adaptation in these experiments is supervised, meaning that the TIMIT
time-aligned phonetic labels are used when estimating relevant parameters.
All 61 models are adapted according to transforms shared by all models, other
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than silence which is neither adapted nor used in estimating adaptation pa-
rameters.

The speech waveform is parameterized as 12 Mel-frequency cepstral coeffi-
cients (MFCC) and energy with 1st and 2nd derivatives appended. This gives
a 39 dimensional feature vector, meaning that fully specified A, b and G re-
quire estimation of 39 × 39 + 39 + 39 × 40/2 = 2340 parameters. Given the
limited amount of data available for adaptation, it may be necessary to re-
duce the number of free parameters. The transforms A and G can be set to
be diagonal or block-diagonal by enforcing zeros in the relevant portions of
each matrix after the re-estimation step, and displacement by b need not be
included in the adaptation scheme.

# adaptation GEM EM

utterances A b G A b G

2 D 0 BD D 0 D

4 D 0 BD D 0 BD

6
√ √

I
√ √

I

8
√ √

I
√ √

I
Table 1
Results of choosing the form of adaptation parameters A, b, G according to clas-
sification of held-out validation data, with transforms estimated on 2, 4, 6 or 8
utterances. Parameters are full (

√
), block-diagonal (BD), diagonal (D), identity (I)

or zero (0).

3.1 Classification

There are 10 utterances from each of the 168 speakers in the TIMIT test set.
Classification experiments were performed with adaptation transforms esti-
mated on either 2, 4, 6 or 8 of these 10 utterances, and the remainder (8, 6, 4
or 2 utterances respectively) set aside for testing 4 . The sa sentences are the
same for each speaker and are commonly omitted from TIMIT experiments
to prevent bias in the distribution of segment types. However, we use them
as the first two utterances when estimating the adaptation parameters. For
each of the train set sizes, the form of the adaptation transforms and num-
ber of training iterations was determined using speakers from the validation
set. Table 1 shows the forms which were chosen. Interestingly, for both GEM
and EM adaptation, A is set to be diagonal, b excluded and G diagonal or
block-diagonal where less adaption data is used. However, where more data is

4 In all cases, baseline and adapted model results using matched data.
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available the location parameters A and b are estimated fully and the covari-
ance transform omitted.

adapted error
# adaptation baseline

accuracy reduction
utterances accuracy

GEM EM GEM EM

2 (5.5s) 72.3% 72.6% 72.5% 1.1% 0.7%

4 (11.1s) 72.5% 73.1% 73.2% 2.2% 2.5%

6 (16.8s) 72.4% 73.4% 73.5% 3.6% 4.0%

8 (21.8s) 72.2% 73.4% 73.9% 4.3% 6.1%
Table 2
Test-set classification accuracies and relative error reductions for GEM and EM
adaptation methods with transform parameters estimated on 2, 4, 6 or 8 utterances.
The average per-speaker adaptation data duration in seconds is given in parentheses.

Test-set results are given in Table 2 and show that speaker adaptation yields
increased classification accuracy. The performance improvement over the base-
line increases as more utterances are used to estimate the adaptation trans-
forms, with the highest being a 6.1% relative error reduction for EM adapta-
tion based on 8 utterances. We find similar results for EM and GEM methods,
with accuracies differing by 0.1% absolute for all but the 8-utterance adap-
tation where EM gives a 0.5% higher accuracy. Figure 1 shows the relative
error reductions found with 2, 4, 6 or 8 adaptation utterances for both EM
and GEM methods. The results do not appear to have reached a plateau,
suggesting that were more data available for each speaker, adaptation might
bring further accuracy increases.

3.2 Recognition

We also evaluate the speaker-adapted LDMs on the task of TIMIT phone
recognition. Estimating speaker adaptation transforms on 8 utterances gives
the highest classification validation accuracy for both EM and GEM methods,
and these models are used for recognition. A language model scaling factor
and phone insertion penalty are set using data from the validation speakers.
The results of Table 3 show that speaker adaptation leads to relative accuracy
increases of 4.5% and 4.6% using GEM and EM respectively.
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Fig. 1. Relative error reduction due to EM and GEM adaptation methods, with
transforms estimated on 2, 4, 6 or 8 utterances.

adapted error
# adaptation baseline

accuracy reduction
utterances accuracy

GEM EM GEM EM

8 (21.8s) 60.0% 61.8% 61.9% 4.5% 4.6%
Table 3
Test-set recognition accuracies and relative error reductions for GEM and EM adap-
tation methods with transform parameters estimated on 8 utterances. The average
per-speaker adaptation data duration in seconds is given in parentheses.

4 Discussion

We have introduced two methods for adapting the observation process of linear
dynamic models, which would be straightforward to apply to the state process
of LDMs or to other linear Gaussian models. In section 4.2 we propose the use
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of the GEM method with HMM systems which use non-diagonal covariances,
as a much lower complexity alternative to existing methods.

Error-rate reductions of around 5% relative were demonstrated under a variety
of experimental conditions, even using a simple all-model speaker adaptation
scheme. The EM approach gave the largest error reductions, but perhaps the
most significant result is that the much lower complexity GEM method yielded
almost the same improvements. Further benefits might be realized by incor-
porating the adaptation transforms into the model training phase.

4.1 Amount of adaptation data required

The experimental results show that the transforms can be estimated even
when presented with very little adaptation data. Gunawardana and Byrne
(2001) reported that 5s of data is insufficient for (unsupervised) estimation
of a single global MLLR transform for an HMM-based switchboard system,
and led to an increase in word error rate (WER). It was found that 10s of
data yielded a slight improvement in WER, and that 30s was sufficient to give
robust estimates of the MLLR transforms. In our experiments, we never find
that error rates increase, even with only the smallest amounts of adaptation
data.

Despite adaptation, the performance of LDMs for classification and recognition
of speech remains lower than that found with hidden Markov model (HMM)
systems. For example, Sun and Deng (2002) report an HMM-based TIMIT
phone recognition accuracy of 72.95%. However, the techniques described in
this paper are not restricted to LDMs, being generally applicable to models
with non-diagonal Gaussian covariances.

4.2 Applicability to conventional HMM systems

Adaptation is an integral part of modern recognition systems, however the
original MLLR (Gales and Woodland, 1996) was designed for models with di-
agonal covariances. A number of authors (Gales, 1999; Bilmes, 2000; Olsen and
Gopinath, 2004) have investigated methods for extending covariances from di-
agonal to full in HMM systems. The approach is typically to employ covariance
matrices with separate transform and magnitude components, thus allowing
approximation of full covariances whilst introducing a minimum number of
extra parameters. Two methods for adapting full covariance HMMs were de-
scribed in Gales (1997), the first of which was full-covariance MLLR (the EM
approach in this paper). Despite the proposal of an efficient means of com-
puting the necessary statistics, full covariance MLLR remains computationally
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expensive since calculating the mean transform requires O(p6) operations. The
second method, normalized-domain MLLR, was designed to alleviate this by
rotating and scaling features in such a way that the Gaussian covariances were
simply the identity matrix. Standard diagonal-covariance MLLR could then
be applied. Evaluation using a semi-tied full covariance HMM system with
Gaussian covariances trained from scratch (rather than being initialized with
diagonal-covariance HMMs) found that full-covariance MLLR gave a 9% rel-
ative reduction in word error rate compared to a diagonal-covariance HMM
system with standard MLLR. However, normalized-domain MLLR did not
lead to error reduction over the diagonal-covariance system.

Given that we find similar performance for the EM and GEM methods pre-
sented in this paper, we propose that our GEM approach offers a significantly
lower complexity method for adapting full-covariance HMMs. We present the
necessary update equations for mean adaptation in Appendix A.
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A GEM mean adaptation for HMMs

The goal of a mean transform for HMMs is to estimate

µ̂m = Ŵmξm (A.1)

where ξm represents an extended mean vector

ξm =
[
1 µ1 . . . µn

]
(A.2)

We quote Gales and Woodland (1996) and define the following auxiliary func-
tion:

Q(M,M̂) = (A.3)

K1 −
1

2
L(0T |M)

M∑
m=1

T∑
τ=1

Lm(τ)
[
Km + log(|Σm|) + (o(τ)− µ̂m)T Σ−1

m (o(τ)− µ̂m)
]

where 0T = {o(1), . . . ,o(T )} is the adaptation data, K1 is a constant depen-
dent only on the transition probabilities, Km is the normalization constant
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associated with Gaussian m, and

Lm(τ) = p(qmτ |M,0T ) (A.4)

where qm(τ) indicates Gaussian m at time τ .

Following the GEM method of Section 2.2, we construct a lower bound on A.3
by replacing model-specific Σm with a common Σ, giving

Q(M,M̂) = (A.5)

K1 −
1

2
L(0T |M)

M∑
m=1

T∑
τ=1

Lm(τ)
[
Km + log(|Σ|) + (o(τ)− µ̂m)T Σ−1(o(τ)− µ̂m)

]

With Wm tied across a set of R Gaussians {m1, . . . ,mR}, Equation A.5 is
maximized with respect to Wm by

Ŵm =

(
R∑

r=1

T∑
τ=1

Lmr(τ)o(τ)ξT
mr

)(
R∑

r=1

T∑
τ=1

Lmrξmrξ
T
mr

)−1

(A.6)
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