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Abstract
Learning dialogue strategies using the reinforcement learning
framework is problematic due to its expensive computational cost.
In this paper we propose an algorithm that reduces a state-action
space to one which includes only valid state-actions. We per-
formed experiments on full and reduced spaces using three sys-
tems (with 5, 9 and 20 slots) in the travel domain using a simulated
environment. The task was to learn multi-goal dialogue strategies
optimizing single and multiple confirmations. Average results us-
ing strategies learnt on reduced spaces reveal the following bene-
fits against full spaces: 1) less computer memory (94% reduction),
2) faster learning (93% faster convergence) and better performance
(8.4% less time steps and7.7% higher reward).
Index Terms: reinforcement learning, spoken dialogue systems.

1. Introduction
The main task of a Spoken Dialogue Manager (SDM) in goal-
oriented dialogue systems is to control the dialogue flow between
user and system with the following aims: successful, efficient and
natural conversations. More specifically, an SDM has the follow-
ing subtasks: a) to gather information from the user, b) to clarify
information explicitly or implicitly, c) to resolve ambiguities that
arise due to speech recognition (ASR) errors or incomplete spec-
ifications, d) to suggest subsequent dialogue goals, e) to offer as-
sistance upon request or when necessary, f) to provide alternatives
when the information is not available, g) to provide additional con-
straints, h) to interact with other components in order to retrieve or
provide information, and i) to control the degree of initiative [1].

The design of SDMs is typically hand-crafted by system devel-
opers, based on their intuition about the proper dialogue flow. As
a consequence, dialogue strategies designed by humans are prone
to errors, labour-intensive and non-portable. This makes semi-
automatic design an attractive alternative. Levin and Pieraccini
[2], pioneered the idea of dialogue design as an optimization prob-
lem using Markov Decision Processes (MDPs) and reinforcement
learning [3]. However, the search space grows exponentially ac-
cording to the state variables taken into account, making the task of
dialogue optimization difficult, even for simple dialogue systems.

Previous research efforts have investigated how to learn uni-
goal dialogue strategies for optimizing confirmation [4-9], initia-
tive [4] and database queries [6]. They have mostly adopted the
formalism of MDPs [2,4-7], Partially Observable MDPs [8], and
function approximation [9,10], using either real [4] or simulated
environments [5-9]. However, little attention has been devoted to
the problem of learning on reduced state-action spaces, with the
aim of faster learning and reduced computational demands.

In this paper we investigate how to reduce state-action spaces
for learning multi-goal dialogue strategies. For such purpose we
propose thesapReduction algorithm, which aims to formalize
the idea of avoiding unnecessary learning by using prior knowl-
edge that reduces the search space to only valid state-actions.

2. Spoken Dialogue Management Using
Markov Decision Processes

Informally, the idea of spoken dialogue management as an opti-
mization problem consists of taking the best action for every situ-
ation in a conversation by following an optimal dialogue strategy.
The reinforcement learning paradigm is particularly appealing for
this scenario, where an agent takes optimal actions for every situ-
ation in the environment described by a Markov Decision Process
(MDP), or any other formalism (POMDP, SMDP or POSMDP).
Formally, an MDP is defined as a 4-tuple< S, A, T, R > charac-
terized as follows:S is a set of states of the environment;A is the
set of actions;T is a transition probability function that observes
the next states′ given the current states and actiona according to
the probability distributionP (s′|s, a); andR is the reward func-
tion that specifies the rewards given to the agent for choosing ac-
tion a when the environment makes a transition froms to s′.

Under this formalism, a sequence of statess, actionsa and
rewardsr within a dialogue (or episode) receives a total expected
reward expressed asR =

PT

t=0
γrt+k+1, where the discount rate

0 ≤ γ < 1 makes future rewards less valuable than immediate
rewards. Thus, the solution for an MDP is to learn a dialogue strat-
egy (or policy) that maximizesR, which optimizes the interaction
with its environment by choosing optimal actions. The expected
value of the reward can be computed recursively by value functions
V π(s) or action-value functionsQπ(s) as described in [2], where
the optimal policy is expressed asπ∗(s) = arg maxa Q∗(s, a),
and can be learnt by either dynamic programming methods or re-
inforcement learning methods.

A main limitation in dialogue optimization is the expensive
computational cost due to the fact that state-action spacesgrow
exponentially. As an example, consider an MDP where the states
S are formed by combinations of slotsQ and state variablesV
as shown in figure 1.a, and the system actionsA are formed by
combinations of slotsQ and single actionsAs (see fig. 1.b). Thus,
the size of the state space would be|S| = |V ||Q| and the size of
the state-action space would be|S × A| = |V ||Q| ∗ (|Q| ∗ |As|).
For a small-scale dialogue system with7 slots,5 state variables
and6 single actions, the search space is3.3 million state-actions,
and the growth is exponential assuming no constraints at all.
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Figure 1: Scheme used to generate search spaces for multi-goal
dialogue systems, where sapReduction constraints each space.

3. The sapReduction Algorithm
Figure 1 illustrates a proposed scheme in order to generate state-
action spaces (or search spaces) for learning multi-goal dialogue
strategies, where thesapReduction algorithm applies reduction
to each space. Under this scheme, this algorithm generates re-
duced search spaces with constraints at three levels of granularity:
states, actions and partitions. Whilst the first and second levels are
used for uni-goal spoken dialogue systems, the third level is used
for multi-goal dialogue systems. This algorithm makes the follow-
ing assumptions: 1) statesS are combinations of slotsQ and state
variablesV (see fig. 1.a), 2) actionsA are combinations of slots
Q and single actionsAs (see fig. 1.b), and 3) the dialogue de-
sign is specified in partitions roughly equivalent to dialogue goals,
where the merge of partitions form a composite search space (see
fig. 1.c). In this way, statesS are reduced using thesReduction
step, actionsA for each state are reduced using theaReduction
step, and the search spaces for each partitionSAi are merged us-
ing thepReduction step. This is more formally described in the
algorithm shown in figure 2 (see next subsections for details).

3.1. The sReduction Step

The full state spaceS consists of all combinations of slotsQ and
state variablesV (see fig. 1.a), including valid and invalid combi-
nations. Thus, the task of this step is to avoid invalid combinations.
The space reduction is driven by the assumption that a terminal slot
requires the non-terminal slots to be confirmed, where typically a
transaction is performed. In addition, this step adds a state with
skipped slots in case of an unwanted dialogue goal (see figure2,
lines 10-16). Notice that all slots require confirmation, which is
not the case for “yes/no” slots, in this case we assume that such
slots can be considered confirmed if they were collected withthe
highest ASR confidence level. Also, notice that fig. 1.a showsone
state-variable per slot but it may have a vector of state variables.

01.Algorithm sapReduction(P, O, D, Q, V, As) returnSA
02.input: partitions (P ), optional partitions (O), dependent partitions (D),
03. slots per partition (Q), state variables (V ), single actions (As)
04. initialize variablesS,SA

05. for each partitionpi ∈ P do
06. Si ← sReduction(pi , O, Qi, V )
07. SAi ← aReduction(Si , Qi, V, As)
08. end for
09. SA← pReduction(SA, P, D, Q)

10.function sReduction(pi , O, Q, V ) returnS
11. initialize variableS
12. for each slotqj ∈ Q do
13. S ← combinations of substatesS, slotqj and variablesV ;
14. whereqn require the non-terminal slots to be confirmed
15. end for
16. S ← S ∪ state with skipped slots (qj .s) if partition pi ∈ O

17.function aReduction(S, Q, V, As) returnSA
18. initialize variablesA, SA
19. for each statesi ∈ S do
20. for each slotqj ∈ si do
21. for eachak ∈ As do
22. A← A ∪ (qj , ak), under the conditions of figure 3
23. A← A ∪ (qj , {g}), if qj = qn and slots confirmed
24. end for
25. end for
26. SA← SA ∪ (si 7→ A), reinitializeA
27. end for

28.function pReduction(SA, P, D, Q) returnC
29. initialize variablesC ← SA0, M
30. for each partitionpi ∈ P ∀i > 0 do
31. history← sequences of confirmed & skipped slots up topi−1

32. for each statesj ∈ C do
33. for each statesk ∈ SAi do
34. M ← M ∪ (sj + sk 7→ Asj

), if slots ofsk unfilled
35. M ← M ∪ (sj + sk 7→ Ask

), if sj ∈ history
36. end for
37. end for
38. C ←M , reinitializeM
39. end for

Figure 2:The sapReduction Algorithm.

3.2. The aReduction Step

The full action spaceA consists of all combinations of slotsQ and
single actionsAs (see fig. 1.b), which includes valid and invalid
combinations. Thus, the task of this step is to avoid invalidac-
tions per state. Figure 3 illustrates the conditions used togenerate
valid combinations, where the presence of circles represent valid
combinations and the absence invalid combinations. In addition,
we clustered sets of circles that must satisfy a condition. For in-
stance, to validate action(q4, re) in figure 3(a) the conditionntsc
(non-terminal slots confirmed) must be satisfied, see figure 2(lines
17-27). Also, further ad-hoc reductions are possible.

3.3. The pReduction Step

There is indeed exponential grow in search spaces if we as-
sume no boundary across dialogue goals, but this yields incoher-
ent dialogues by allowing sequences of slots from differentdia-
logue goals. In this step we propose to generate multiple search
spaces according to the partitions specified in the dialoguedesign,
roughly equivalent to dialogue goals. This step assumes thefol-
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lowing assumptions: 1) partitions may be optional by only allow-
ing skipped slots (with state variables), 2) partitions may be de-
pendent or independent (e.g., a partition with dependency can oc-
cur if and only if the dependent partition has its slots confirmed),
and 3) a dialogue goal might be specified with more than one parti-
tion. Thus, the task of this step is to merge multiple search spaces
into a composite reduced one. Figure 1.c illustrates this step by
using an incremental mergeC of search spaces per partitionSAi,
which takes into account the history of dependent and skipped
slots; see figure 2 for a more formal description (lines 28-39).

4. Experiments and Results
4.1. Experimental Setup

The aim of our experiments was to investigate the performance of
full andreduced search spaces (using the proposed algorithm),
specifically in the optimization of single and multiple confirma-
tions for goal-oriented mixed-initiative dialogue systems. We per-
formed three experiments in the travel domain (denoted as “Exp1”,
“Exp2” and “Exp3”), with a similar structure to the DARPA Com-
municator systems [11]; using 1, 2 and 5 dialogue goals consisting
of 5, 9 and 20 slots respectively. Because of a large number of
dialogues is required to learn the optimal dialogue strategies, we
utilized a simulated environment in order to control the amount of
randomness in ASR confidence levels and user responses.

Figure 4 shows the partitionsP , dependent partitionsD, op-
tional partitionsO, and slotsQ used in our experiments. Exp1
used the first dialogue goal, Exp2 used the first two goals, and
Exp3 used the five goals. The MDP was configured as follows:
The state-action spaces were generated as illustrated in figure 1,
whilst reduced spaces used thesapReduction algorithm, full
spaces used only step 3;T used deterministic transitions by ob-
serving the next state based on the current state-action, user re-
sponse and confidence level (see section 4.2); and the rewardfunc-
tion R consisted of+100 if all slots were confirmed or skipped,
−20 if there was nothing to confirm/apologize, and−1 otherwise.

Finally, we used the following learning setup: algorithm= Q-
Learning; step sizeα = 100/(100 + t) with t elapsed time-steps;
discount factorγ = 0.9; selection strategy= ε-greedy (with20%
exploration); initial Q-values= 0; and convergence= explored
space≥ 99.9% and difference in average MaxQ values (Q-values
with maximum value) of last against previous104 episodes≤ 0.
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Figure 4:Structure of dialogue goals, partitionsP , dependent par-
titions D (e.g.,p1 require the slots ofp0 confirmed), and slotsQ.
The optional partitionsO are represented with shaded slots.

Table 1:Sizes of full and reduced composite state-action spaces.

Experi- Full Reduced Full Reduced % of SA
ment (S) (S) (SA) (SA) Reduction

Exp1 3126 630 93722 5636 93.98
Exp2 3255 663 95979 5760 93.99
Exp3 4125 957 110097 6672 93.93

4.2. The Random Simulated Environment

We used a slot-based confidence level model with the following
distribution: 0 ≤ l < 0.6, 0.6 ≤ m < 0.8, and0.8 ≤ h ≤ 1;
where averages were computed for multiple filled slots. The ran-
dom simulated user model consisted of the following features: a)
percentage of coherent In-Vocabulary (IV) responses, the comple-
ment consisted of random IV responses plus out-of-vocabulary
responses; b) two sets of responses for each kind of slot (ter-
minal and non-terminal), the second set aimed to refill the last
two slots before the user accepted a terminal slot; c) coherent
responses of single and multiple slots used the following distri-
bution: 0 ≤ single < 0.7 and0.7 ≤ multiple ≤ 1; d) cor-
rect confirmations used the following distribution:0 ≤ l ≤ 0.5,
0.5 ≤ m ≤ 0.7, and0.7 ≤ h ≤ 0.9; and e) finish the con-
versation if the ratio of number of user responses and numberof
slots in the system≥ 4. Finally, two simulated users were utilized,
one for learning and one for test, with90% and80% of coherent
responses respectively. In this way, the policies were learnt with
well-behaved users and tested with more difficult ones.

4.3. Results

Table 1 shows that the proposed algorithm reduced the state-action
spaces by94%, meaning that we can avoid unnecessary learning
very significantly. However, we must ask:“Can policies learnt on
reduced spaces achieve as good performance as those learnt on
full spaces?” Our results are favourable, and we analyzed them
in both learning and test phases with four kinds of plots as shown
in figure 5: Average Steps Per Episode (ASPE), Average Reward
Per Episode (ARPE), Average MaxQ values per Episode (AMPE),
and Explored Space Per Episode (ESPE). On the one hand, we
used ASPE and ARPE to observe the strategies performance; on
the other, we used AMPE and ESPE to observe their convergence.

Results from thelearningphase report no degradation in per-
formance, neither in steps per episode nor in average reward. Also,
average results from the learning phase report that policies learnt
on reduced spaces converged93% faster than policies learnt on full
spaces, which is not surprising because each policy used itsown
space and the sizes are different. Nevertheless, this result tells us
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Figure 5:Performance results (X-axis in log scale) in the learning and test phases, data points are averages of groups of 1000 episodes.

the importance of learning dialogue strategies on reduced spaces
by requiring a much lower amount of dialogues for learning.

Finally, results from thetestphase reveal that policies learnt
on reduced spaces can obtain higher performance. Average results
report8.4% less time steps and7.7% higher reward. This means
that policies learnt on full spaces do not always learn optimal ac-
tions, which may be attributed to the fact that the more invalid
state-actions, the more chance to learn non-optimal actions.

5. Conclusions and Future Work

The contribution of this paper is thesapReduction algorithm,
which generates composite reduced state-action spaces to learn
mixed-initiative multi-goal dialogue strategies using the reinforce-
ment learning paradigm. We argue that the proposed algorithm de-
rived from prior knowledge of valid state-actions is: generic to op-
timize confirmation, can be extended to optimize other statevari-
ables and does not require significant development effort. Average
results using strategies learnt on reduced spaces reveal the follow-
ing benefits against full spaces: 1) less computer memory (94%
reduction), 2) faster learning (93% faster convergence) and better
performance (8.4% less time steps and7.7% higher reward). To
our knowledge, our experiments are the first aiming optimization
of large-scale dialogue systems (with up to 20 slots), wherethe
utility of reduced spaces becomes crucial for more complex and
larger systems. The last we plan to investigate using hierarchical
learning with dialogue simulators learnt from data [7,12].
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