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ABSTRACT

The so-calledtandemapproach, where the posteriors of
a multilayer perceptron (MLP) classifier are used as features
in an automatic speech recognition (ASR) system has proven
to be a very effective method. Most tandem approaches up
to date have relied on MLPs trained for phone classification,
and appended the posterior features to some standard feature
hidden Markov model (HMM). In this paper, we develop an
alternative tandem approach based on MLPs trained for ar-
ticulatory feature (AF) classification. We also develop a fac-
tored observation model for characterizing the posterior and
standard features at the HMM outputs, allowing for separate
hidden mixture and state-tying structures for each factor. In
experiments on a subset of Switchboard, we show that the AF-
based tandem approach is as effective as the phone-based ap-
proach, and that the factored observation model significantly
outperforms the simple feature concatenation approach while
using fewer parameters.
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1. INTRODUCTION

The tandemapproach refers a data-driven signal process-
ing method for extracting features for acoustic modeling of
speech [6, 4, 15]. The tandem approach involves first training
a MLP to perform phone classification at the frame level, and
then using the post-processed frame-level phone posterior es-
timates of the MLP as the acoustic observations in HMMs.
Commonly, the tandem features are appended to some stan-
dard feature vector such as the perceptual linear prediction
(PLP) coefficients. (We will assume without loss of gen-
erality that the PLP coefficients are the standard features.)
The tandem approach has given significant performance im-
provements for large vocabulary speech recognition of En-
glish conversational telephone speech (CTS) [15], and Arabic

and Mandarin broadcast news and conversations [11, 14]. The
tandem approach also seems to have some cross-domain and
cross-language generalization [12].

The majority of the previous tandem approaches have
been limited to phone-based posterior estimation. In this
work, we propose an alternate approach based on articulatory
features. The articulatory feature-based tandem features are
extracted from the posterior estimates of a set of MLPs trained
for articulatory feature classification, one for each feature.
The main motivations for the proposed AF-based tandem ap-
proach instead of the traditional phone-based approach are as
follows. First, the AFs in general can more accurately and
parsimoniously characterize the pronunciation and acoustic
variability associated with conversational speech [8]. Second,
AF classification is simpler, involving multiple classification
problems with a small number of classes each, instead of a
single phone classifier with a large number of classes. Third,
while not explored in this work, AFs are more language uni-
versal than phones, and therefore they can better generalize
and be easier to adapt to new languages [13].

As described earlier, the usual approach of using posterior
features in ASR systems is to concatenate them with some
standard features and model the concatenated feature vector
with a single HMM output distribution. The standard and
posterior features are forced to have the same hidden mix-
ture and state-tying structure, even though they are likely to
have quite different statistical properties, being derived from
two opposite paradigms, prior knowledge and heuristics vs.
data-driven statistical learning [12]. The large dimensional-
ity of the concatenated vector also gives highly concentrated
Gaussian probability estimates. In this work, we develop an
factored modeling approach, where each component is sep-
arately modeled at the HMM output distributions, avoiding
these problems. Our approach is similar to [9] which also
proposed an AF-based tandem method, but we directly com-
bine the posterior features with the standard features at the
HMM outputs, and experiment with new observation models.



Feature Values
Place labial, labio-dental, dental,

alveolar, post-alveolar, velar,
glottal, rhotic, lateral, none, silence

Degree/manner vowel, approximant,
flap, fricative, closure, silence

Nasality +, -, silence
Glottal state voiced, voiceless, aspirated, silence
Rounding +, -, silence
Vowel aa, ae, ah, ao, aw1, aw2, ax, ay1, ay2,

eh, er, ey1, ey2, ih, iy, ow1, ow2,
oy1, oy2, uh, uw, not-a-vowel, silence

Height very high, high, mid-high, mid,
mid-low, low, nil, silence

Frontness back, mid-back, mid, mid-front,
front, silence

Table 1. The articulatory feature set.

2. EXPERIMENTAL PARADIGM

We use SVitchboard, a set of reduced-vocabulary tasks de-
rived from Switchboard1 [7]. In particular, we use one of the
SVitchboard 500-word tasks, which has predefined training
(A, B, and C), cross-validation (D), and testing (E) sets, and
includes a total of6.4 hours of speech. The vocabulary is
closed at 500 words with no out-of-vocabulary words.

We use 13-dimensional PLP coefficients and their first-
and second-order differences as input features to both the
MLP classifiers and the HMM acoustic models. Mean
subtraction and variance normalization are performed on a
per-speaker basis. All recognition systems are trained and
tested using the Graphical Models Toolkit (GMTK) [2]. For
context-dependent modeling, we use a new GMTK clustering
tool, gmtkTie , allowing for clustering by an arbitrary set of
user-defined questions and variables. Decoding is first-pass
using a standard bigram language model estimated from the
transcripts of the A, B, and C sets. The dictionary allows up
to three pronunciations per word. For each experiment re-
ported below, the language model scaling factor and insertion
penalty as well as the number of mixture components in the
observation models are optimized to minimize the word error
rate (WER) on a subset of the D set.

3. MLP ARTICULATORY CLASSIFIERS

The AF set that we used in our experiments is given in Ta-
ble 1. A separate MLP for each feature has been trained. The
MLPs are standard three-layer feedforward networks, classi-
fying each frame into one of the values of the correspond-
ing feature. The inputs to the MLP are the PLPs from the
current frame as well as those from the four frames forward
and backward in time, a total of 351 values. The MLPs are
gender-independent, and trained using a total of 1776 hours of
data from Fisher and Switchboard2, excluding Switchboard1
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Fig. 1. Articulatory feature-based tandem processing.

(thus SVitchboard). The number of the MLP hidden units are
selected so as to have a roughly1000:1 ratio of the number
of training frames to the number of parameters. The targets
for MLP training are obtained from a deterministic phone-to-
feature mapping of forced phonetic alignments from a SRI
CTS system. The training took around ten days per MLP,
on a 2.2GHz Sun v40z machine using highly optimized soft-
ware (e.g., multi-threading). The frame level accuracy of the
trained MLPs ranged from70% to 90%. See [5] for more
details.

We also trained two sets of MLPs on the SVitchboard
training data, for comparing AF- and phone-based tandem ap-
proaches: (1) a set of AF MLPs identical to the Fisher-trained
MLPs above except that the numbers of hidden units were
scaled down according to the amount of data, (2) a phone
MLP with 46 outputs corresponding to the SRI phone set.

4. ARTICULATORY FEATURE-BASED TANDEM
OBSERVATIONS

4.1. Tandem Processing

We extract the AF-based tandem features as follows (cf. Fig-
ure 1). For each time frame, the posterior probability esti-
mates from the each of the eight AF MLPs are joined to-
gether, a total of 64 values. Their logarithm is taken to ex-
pand the dynamic range of the posterior probabilities to the
real axis. Roughly speaking, the logarithm undoes the effect
of the final softmax nonlinearity at the MLP outputs, mak-
ing them more amenable to Gaussian modeling. After the
logarithm, the principal component analysis (PCA) is applied
to reduce the dimensionality to 26, which is determined to
contain the95% of the total variance. The PCA decorrelates
the features, and eliminates redundancies among the posterior
probabilities form different MLPs, as the AF set that we use is
not orthogonal. The PCA transform is estimated on the MLP
training set. Finally, per-speaker mean subtraction and vari-
ance normalization are applied. The resulting 26 dimensional
vectors along with 39-dimensional PLP vectors are used as
acoustic observations in HMM.



Feature WER
PLP 67.7
PLP + Phone tandem (SVBD) 63.0
PLP + AF tandem (SVBD) 62.3
PLP + AF tandem (Fisher) 59.7
PLP + AF tandem (Fisher) + Factoring 59.1

Table 2. WERs (%) for the monophone systems using PLP, and PLP in
combination with various tandem features, on the SVitchboard (SVBD) 500-
word E set. The corpus name in parentheses refers to the MLP training set.
All tandem systems except the last one concatenates PLP and tandem fea-
tures, and “factoring” refers to factored observation modeling (cf. Section 5).

4.2. Experiments

Using the procedure in Figure 1, we extracted two sets of 26-
dimensional AF-based tandem observations using the MLPs
trained on Fisher, and trained on SVitchboard. For compar-
ison, we also generate a set of 26-dimensional phone-based
tandem observations using the phone MLP trained on SVitch-
board. In Table 2 (the first four lines), we report the WER for
the baseline monophone system using PLPs, and the mono-
phone systems using various kinds of tandem features: the
AF-based tandem features from the Fisher AF MLPs, the AF-
based tandem features from the SVitchboard AF MLPs, and
the phone-based tandem features from the SVitchboard phone
MLP. In Table 3 (the first two lines), we report the WERs for
the cross-word triphone systems using PLPs, and using the
concatenated PLP and the tandem features from the Fisher AF
MLPs. The number of components per Gaussian mixture was
128 for the monophone systems, and64 for the triphone sys-
tems. The number of components was separately optimized
for each system on the SVitchboard 500-word D set. (As an
aside, we note that the WERs are uniformly high, mainly due
to the sparse training data, less than four hours, and the fact
that SVitchboard utterances often contain frequent words that
tend to have wide pronunciation and acoustic variability.)

A few observations about the results of Tables 2 and 3
are in order. First, all of the systems using any type of tan-
dem feature (phone or AF-based, or SVitchboard or Fisher
trained) in both monophone and triphone models significantly
improve the performance over the baseline PLP system. Sec-
ond, the AF-based tandem features are as effective as the
phone-based tandem features (the difference is not statisti-
cally significant). Third, the Fisher MLPs are significantly
better than the SVitchboard MLPs for the purposes of AF-
based tandem processing. This is expected given that the
Fisher MLPs were trained on two orders of magnitude more
training data. Fourth, the AF-based tandem observations are
also very effective in triphone modeling, even though the rel-
ative improvement is lower (12% for monohones vs.7% for
triphones). All pairs of results in Tables 2 and 3, except the
phone- vs. AF-based tandem pair in Table 2, are statisti-
cally significant according to matched pairs sentence-segment
word error test (p < 0.01). Overall the AF-based tandem pro-
cessing seems to be highly effective.

Feature # of states WER
PLP 477 59.2
PLP + AF tandem (Fisher) 880 55.0
Feature concatenated
PLP + AF tandem (Fisher) 467 / 641 53.8
Observation factored

Table 3. WERs (%) for the various triphone systems on the SVitchboard
500-word E set. The number of states refers to the number of decision-tree
clustered triphone states; the pair for the observation factored model is the
number of states for the PLP and the tandem, respectively, factors. See Ta-
ble 2 caption for the notation.

5. FACTORED OBSERVATION MODELING

5.1. Model

In the basic tandem approach described in Section 4 and also
in most of the previous work (e.g., [6, 9, 4, 15]), the tandem
observation vectors were simply concatenated to PLPs, and
then jointly modeled using the same hidden mixture and state-
tying structures in HMMs with diagonal-covariance mixture
distributions. The HMM output distributions of these con-
catenated features can be represented as

p(x, y|q) =
∑

t

p(t|q) p(x|t, q) p(y|t, q) (1)

wherex andy denote the PLP and tandem, respectively, vec-
tors,q denotes the HMM state, andt denotes the hidden mix-
ture component. See Figure 2(a) for a graphical model depic-
tion (there is no arrow betweenx andy due to the diagonal-
covariance assumption).

The PLP and the tandem vectors are generated by two
very different philosophies, prior knowledge and heuristics
vs. data-driven statistical learning. Their statistical charac-
teristics are likely to be quite different, and enforcing the
same mixture structure and decision-tree state-tying scheme
could be inefficient for learning their distributions from sparse
data. In addition, the large dimensionality of the concate-
nated vector gives highly concentrated Gaussians, which in
previous work has been dealt with using a heuristic weighting
factor [15]. Instead, here we propose a principled approach
based on factored modeling of the PLP and tandem observa-
tion vectors at the HMM output distributions, allowing for
separate hidden mixture and state-tying structures for each
vector. In particular, the HMM output distributions for the
PLP and tandem vectors are factored as follows, as in multi-
stream ASR models [3],

p(x, y|q) =
(∑

z

p(z|q) p(x|z, q)
)

×
(∑

w

p(w|q) p(y|w, q)
)

(2)

wherew andz are the hidden mixture variables forx andy,
respectively. See Figure 2(b) for a graphical model depiction.
The product of sums in Equation 2 has a smoothing effect.
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Fig. 2. (a) Feature concatenation (assuming diagonal covari-
ance Gaussian modeling), and (b) factored modeling.

Notice that in Equation 2 the PLP and tandem vectors
are assumed to be conditionally independent given the HMM
state, whereas in Equation 1, they are indirectly coupled via
the hidden mixture variablet. However, in general, neither
form is subsumed by the other one due to Gaussian parame-
terization, and there are distributions that can be represented
by one and not the other one, and vice versa. The factored
modeling has the advantage that it can more accurately char-
acterize each of the PLP and tandem observation vectors by
modeling each of them separately. On the other hand, it could
be at a disadvantage if the PLP and tandem features are highly
correlated even when conditioned on the HMM state.

5.2. Experiments

Using the AF-based tandem observations from the Fisher
MLPs, we have compared factored modeling to feature con-
catenation. The results with the monophone models are in Ta-
ble 2, and those with the triphone models are in Table 3. The
decision tree-based state clustering for the triphone system
with the factored observation model was performed exactly
the same way it was performed for the feature-concatenated
system, except that the clustering procedure was invoked
twice, one for each factor in Equation 2.

We can draw the following conclusions from Tables 2
and 3. First, factored observation modeling significantly im-
proves over feature concatenation (differences are statistically
significant). Therefore, the benefit from the more accurate
characterization of the PLP and tandem vectors individually
seems to outweight the loss from the conditional indepen-
dence assumption (and/or, dependencies are weak). Second,
the clustering results demonstrate that the factored approach
not only gives better results, but it is also more parsimonious.
The system with factored observation models has about40%
fewer parameters. The decision trees for the PLP and tandem
observations differ in both structure and size, corroborating
the earlier claim that the statistical properties of the PLPs and
tandem features are quiet different.

6. CONCLUSIONS

This paper has proposed the use of the processed output of
AF MLPs as features in a tandem-based system. Further-
more, a factored observation model has been proposed to
model the acoustic and tandem features with separate HMM

output distributions. Two main conclusions that can drawn
from the initial experiments conducted on SVitchboard are:
(1) AF-based tandem features are as effective as phone-based
tandem features, and (2) factored observation models, apart
from resulting in models with fewer parameters, outperform
the feature concatenation approach, suggesting that the dis-
tributions of acoustic feature and tandem features are better
modeled independently rather than jointly. Ongoing work fo-
cuses on highly factored observation models, one factor per
AF. An interesting future research direction is to relax the
conditional independence assumption in the factored model
by sparse cross-observation dependencies [1]. We also intend
to explore the applications to multilingual ASR.

AcknowledgmentsThis material is based upon work supported by the NSF
under Grant No. 0121285. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. This work was conducted at the
2006 JHU Workshop, as part of a project on articulatory feature-based speech
recognition [10]. It was supported in part by the Swiss NSF through IM2.

7. REFERENCES

[1] J. Bilmes, “Data-driven extensions to HMM statistical dependencies,”
in Proc. ICSLP, pp. 69–72, 1998.

[2] J. Bilmes and G. Zweig, “The Graphical Models Toolkit: An open
source software system for speech and time-series processing,” inProc.
ICASSP, pp. 3916–3919, 2002.

[3] H. Bourlard, S. Dupont, and C. Ris, “Multi-stream speech recognition,”
Technical ReportIDIAP-RR 96-07, IDIAP, 1996.

[4] D.P.W. Ellis, R. Singh and S. Sivadas, “Tandem acoustic modeling in
large-vocabulary recognition,” inProc. ICASSP, pp. 517-520, 2001.

[5] J. Frankel et al., “Articulatory feature classifiers trained on 2000 hours
of telephone speech,” submitted toICASSP, 2007.

[6] H. Hermansky, D.P.W. Ellis, S. Sharma, “Tandem connectionist fea-
ture extraction for conventional HMM systems,” inProc. ICASSP, pp.
1635–1638, 2000.

[7] S. King, J. Bilmes, and C. Bartels, “SVitchboard 1: Small-vocabulary
tasks from Switchboard 1,” inProc. INTERSPEECH, pp. 3385-3388,
2005.

[8] S. King et al., “Speech production knowledge in automatic speech
recognition,” submitted toJASA, 2006.

[9] K. Kirchhoff, G. A. Fink, and G. Sagerer, “Combining acoustic and
articulatory feature information for robust speech recognition,”Speech
Communication, vol. 37, pp. 303–319, 2000.

[10] K. Livescu et al., “Articulatory feature-based methods for acoustic and
audio-visual speech recognition: Summary from the 2006 JHU Sum-
mer Workshop,” submitted toICASSP, 2007.

[11] X. Lei, M.-Y. Hwang, and M. Ostendorf, “Incorporating tone-related
MLP posteriors in the feature representation for Mandarin ASR,” in
Proc. INTERSPEECH, pp. 2981–2984, 2005.

[12] A. Stolcke et al., “Cross-domain and cross-language portability of
acoustic features estimated by multilayer perceptrons,” inProc.
ICASSP, pp. 321–324, 2005.

[13] S. Stueker, F. Metze, T. Schultz, and A. Waibel, “Integrating mul-
tilingual articulatory features into speech recognition,” inProc. EU-
ROSPEECH, pp. 1033-1036, 2003.

[14] J. Zheng et al., “Combining discriminative feature, transform, and
model training for large vocabulary speech recogniton,” submitted to
ICASSP, 2007.

[15] Q. Zhu, A. Stolcke, B.Y. Chen, and N. Morgan. “Incorporating tan-
dem/HATs MLP features into SRI’s conversational speech recognition
system,” inProc. DARPA RT Workshop, 2004.


