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Abstract

The linear dynamic model (LDM), also known as the Kalman filter model, has been
the subject of research in the engineering, control, and more recently, machine learn-
ing and speech technology communities. The Gaussian noise processes are usually
assumed to have diagonal, or occasionally full, covariance matrices. A number of
recent papers have considered modelling the precision rather than covariance ma-
trix of a Gaussian distribution, and this work applies such ideas to the LDM. A
Gaussian precision matrix P can be factored into the form P = UT SU where U
is a transform and S a diagonal matrix. By varying the form of U , the covariance
can be specified as being diagonal or full, or used to model a given set of spatial
dependencies. Furthermore, the transform and scaling components can be shared
between models, allowing richer distributions with only marginally more parameters
than required to specify diagonal covariances.

The method described in this paper allows the construction of models with an
appropriate number of parameters for the amount of available training data. We
provide illustrative experimental results on synthetic and real speech data in which
models with factored precision matrices and automatically-selected numbers of pa-
rameters are as good as or better than models with diagonal covariances on small
data sets and as good as models with full covariance matrices on larger data sets.
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1 Introduction

The method presented here was developed on an automatic speech recogni-
tion (ASR) task, but is applicable to any task using linear dynamical models
(LDMs). The method’s key property is that it allows the construction of mod-
els with a number of parameters in between those of models using diagonal
and full covariance matrices; the number of parameters can be automatically
determined. In situations without sufficient data to estimate full covariance
matrices, the method allows modelling of just some of the spatial correlations,
which can be significantly better than using diagonal covariances.

ASR systems frequently employ mixture Gaussian distributions to model the
acoustic features associated with each hidden Markov model (HMM) state
(Young, 1995; Gold and Morgan, 1999). Extraction of speech features such
as Mel-frequency cepstral coefficients (MFCCs) includes steps which reduce
(though do not entirely remove) the correlations between dimensions of the
feature vectors (Macho et al., 1999). To reduce parameterization and compu-
tation time, Gaussian components are frequently estimated to have diagonal
rather than full covariance matrices.

The first plot of Figure 1 shows a set of 2-dimensional spatially correlated data,
sampled from a multivariate Gaussian distribution. The second plot shows the
same data, but reflected in the y-axis. The parameters of diagonal and full
covariance Gaussian distributions were estimated from the data, and in each
plot single standard deviations from the mean of their output distributions
are shown by the dashed and full ellipses respectively. The full covariance
models are able to rotate the principal axes of the distribution and therefore
give a more informative description of the data. Furthermore, with one set of
data a reflection of the other, identical diagonal covariance distributions are
estimated for each, and classification of unseen data based on those models is
impossible. This illustrates some advantages of modelling the dependencies in
spatially correlated data.

1.1 Factoring Gaussian precision matrices

The probability density function (pdf) of a p-dimensional Gaussian-distributed
random variable y ∼ N(µ, Σ) is defined by:

f(y|µ, Σ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(y − µ)T Σ−1(y − µ)

}
(1)

The covariance matrix Σ, and hence the precision P = Σ−1 are symmetric
positive definite, a property which makes a factorization of the form P =
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Fig. 1. Single standard deviation ellipses for diagonal and full covariance multivariate
Gaussian models estimated on spatially correlated data. The data in the second plot
are a reflection of those in the first.

UT SU possible, where S is a diagonal matrix, and U is a transform. The
distribution described in Equation 1 can then be written as:
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f(y|µ, U, S) =
|UT SU |1/2

(2π)p/2
exp

{
−1

2
(y − µ)T UT SU(y − µ)

}
(2)

=
|U ||S|1/2

(2π)p/2
exp

{
−1

2
(U(y − µ))T S (U(y − µ))

}
(3)

Factoring the precision matrix into a combination of transform and diagonal
components provides the possibility to model none, all, or a subset of the
spatial dependencies present in a set of features. Furthermore, the transforms
can be shared between Gaussian components, giving richer models with only
a modest increase over the number of free parameters required to specify a
diagonal covariance.

Gales (1999) first applied such a factorization to Gaussian precision matrices
for ASR. This was a development of state-specific rotations as proposed by
Ljolje (1994), in which single full Gaussian covariances were estimated for
each state and used to derive decorrelating transforms. The transforms were
then fixed and applied to the features prior to estimating diagonal-component
Gaussian mixture models (GMMs) for each state.

Under Gales’ formulation, direct optimization of U ’s partial derivative,

∂ log f

∂U
= U−T − SU(y − µ)(y − µ)T (4)

where U−T denotes the transpose of U−1, is complex. Instead, an iterative
scheme is presented which, for U either full or block-diagonal, guarantees to
increase the model likelihood on the training data.

Olsen and Gopinath (2004) generalizes this approach by generating the pre-
cision matrix from a set of D basis elements such that P =

∑D
k=1 λkaka

T
k for

scalar λk and p-dimensional vector ak. By altering the number and makeup of
the basis elements, the covariance can be varied from diagonal to full.

Bilmes (2000) simplifies parameter estimation of such models by constraining
the form of U to be unit upper-diagonal. Along with ensuring that the fac-
torization of P = Σ−1 is unique, under such a model |U | = 1, so that the
specification of the distribution reduces to:

f(y|µ, U, S) =
|S|1/2

(2π)p/2
exp

{
−1

2
(U(y − µ))T S (U(y − µ))

}
(5)

and the partial derivative with respect to U is now linear in U . With Ip

denoting a p-dimensioned identity matrix, setting U = B + Ip, so that B
contains the off-diagonal elements of U and zeros along the diagonal, and
µ′ = Uµ, Equation 5 can be rewritten as:
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f(y|µ, B, S) =
|S|1/2

(2π)p/2
exp

{
−1

2
(y + By − µ′)

T
S (y + By − µ′)

}
(6)

=
|S|1/2

(2π)p/2
exp

−1

2

p∑
l=1

sll

yl +
p∑

k=l+1

blkyk − µ′
l

2
 (7)

For the remainder of this paper, we will use mij, mi• and m•j to denote
element (i, j), row i and column j of a matrix M respectively.

Factoring the likelihood in this way gives an insight into how the depen-
dencies between dimensions are captured by a full covariance multivariate
Gaussian distribution. Element yl of observation y is modelled as a linear
regression where yl+1, . . . , yp are the explanatory variables and bl,l+1, . . . , blp

are the regression coefficients. Thus yp is distributed as an unconditional uni-
variate Gaussian yp ∼ N(µ′

p, spp), element yp−1 is conditioned on yp with
yp−1|yp ∼ N(µ′

p−1− bp−1,p yp, sp−1,p−1) and so on until y1 which is conditioned
on all other elements of y. These observations show how dimensions i and j of
y can be modelled as statistically independent by setting bij = 0 (recall bij can
only be non-zero for j > i), and conversely including non-zero bij incorporates
any dependence between dimensions i and j into the covariance matrix.

1.2 Linear dynamic models

The linear dynamic model (LDM), also known as the Kalman filter model, is
the model with which this work is concerned. Letting yt and xt respectively
denote p and q dimensioned continuous-valued observation and state vectors
at time t, the LDM is described by the following pair of equations:

yt = Hxt + εt εt ∼ N(v, C) (8)

xt = Fxt−1 + ηt ηt ∼ N(w, D) (9)

and a distribution over the initial state, x1 ∼ N(π, Λ). The LDM is a gen-
erative model, giving a time-varying multivariate Gaussian distribution over
the observations. Underlying dynamics are modelled by the state evolution
which is according to a first-order auto-regressive (AR) process. Equation 8
describes the observation process and Equation 9 describes the state process.
The LDM comes from the family of linear Gaussian models (for further infor-
mation see Roweis and Ghahramani (1999) or Rosti and Gales (2001)), and
was first applied to speech recognition by Digalakis (1992), work which has
been continued in recent times by Ma and Deng (2004), Rosti (2004) and
Frankel and King (2007).

The observation noise εt is typically set to have a diagonal covariance matrix
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(such as in Digalakis (1992) and Rosti (2004)), in which case the distribution
of errors is approximated by a projection of a lower dimensioned state via the
observation matrix H. This gives a model with significantly fewer parameters
than one with a fully specified noise covariance matrix, though represents a
loss in generality (Roweis and Ghahramani, 1999). Results reported in Frankel
and King (2007) show that phone classification using LDMs with full noise
covariance matrices yields higher accuracy than where diagonal covariances are
used. Insight into this finding is offered in the plots of Figure 2, which show the
correlation and mutual information structure of both speech parameters and
LDM prediction errors. The speech data comprises 480 validation utterances
taken from the TIMIT (Lamel et al., 1986) training set. The prediction errors
are calculated during a forward Kalman filter pass through the same validation
utterances using a set of LDMs with parameters estimated on the remainder
of the training data. The model used to filter each segment is chosen according
to the time-aligned phone labels.

The top two plots show the data and error correlations, where dark squares
signify high correlation between a pair of dimensions. With the 39 dimensioned
feature vector comprising a concatenation of 12 MFCCs, energy, and their
first and second derivatives, the top left plot shows that correlations tend
to be highest among lower order cepstral coefficients and their derivatives.
Furthermore, the diagonal line in the upper right of the plot shows that strong
correlations exist between features and their second derivatives. The error
correlation plot has been normalized by the data variance to show that some
of the structure present in the data has been accounted for by the model. An
ideal model would explain all the structure in the data, leaving uncorrelated
errors, however these plots demonstrate that spatial correlations persist.

The mutual information I(Y ; X) gives a measure of how much information one
random variable provides about another, and for continuous-valued variables,
such as feature dimensions, can be calculated using histogram-based methods
(Moddemeijer, 1989). With dark squares corresponding to high values, the
lower two plots show the mutual information between each pair of dimensions
for the original features and prediction errors. Many of the attributes of the
correlation plots are found here also: mutual information tends to be higher
between lower ordered cepstral coefficients, and also between features and their
second derivatives, as well as between the cepstral coefficients and energy.
These plots show that the LDMs have accounted for some, but not all, of the
mutual information between feature dimensions.

The LDM includes three Gaussian covariance matrices: those of the observa-
tion and state noise distributions, C and D respectively, and the initial state
covariance Λ. With adequate training data, fully specified covariance matri-
ces can be estimated. However, practical applications frequently encounter
problems of data sparsity, especially if models are context dependent such as
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Fig. 2. Graphical representation of the correlation and mutual information structure
of the speech parameters and LDM prediction errors from the TIMIT validation set.

in Rosti (2004), or there is switching between multiple models per phone as
in Ma and Deng (2004). This work considers modelling the LDM’s precision
rather than covariance matrices, thereby allowing the factorization outlined
above. Such an approach facilitates modelling a subset of the possible error de-
pendencies, producing error covariances which are between diagonal and full,
and furthermore allows flexible tying schemes in which the error structure can
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be shared between models and model-specific magnitudes estimated. These
techniques should prove useful tools in making the best use of available data.

2 Deriving EM updates for factored-covariance LDMs

With Y = yN
1 and X = xN

1 denoting sequences of N observation and state
vectors respectively, the Markovian structure of the model means that the
joint likelihood of state and observations can be written as

L(Θ|Y ,X ) = f(Y ,X|Θ) = f(x1|Θ)
N∏

t=2

f(xt|xt−1,Θ)
N∏

t=1

f(yt|xt, Θ) (10)

This yields a log-likelihood function of

l(Θ|Y ,X ) = log f(Y ,X|Θ) = lstate(Θ|Y ,X ) + lobs(Θ|Y ,X ) (11)

where lstate(Θ|Y ,X ) and lobs(Θ|Y ,X ) denote the contributions to the log-
likelihood of the state and observation respectively:

lstate(Θ|Y ,X ) = log f(x1|Θ) +
N∑

t=2

log f(xt|xt−1,Θ) (12)

lobs(Θ|Y ,X ) =
N∑

t=1

log f(yt|xt, Θ) (13)

Given that the state noise covariance can be set to the identity or a diagonal
matrix with no loss in generality (Roweis and Ghahramani, 1999), we do not
consider factorizations of the state process parameters D and Λ 1 . Noting that
the log-likelihood function of Equation 11 is linearly separable in state and
observation parameters, we only consider lobs(Θ|Y ,X ) in the derivation which
follows.

From Equation 8 we can write the pdf of the observation given state as:

f(yt|xt, Θ) =
1√

(2π)p|C|
exp

{
−1

2
(yt −Hxt − v)T C−1(yt −Hxt − v)

}
(14)

We now make the following substitution:

C−1 = UT
C SC UC (15)

1 The techniques presented in this paper readily transfer to the state parameters.
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where as above, UC is unit upper-diagonal and SC is a diagonal matrices.
By Equation 13, and using an analogous rearrangement to that which gave
Equation 6, we find that

lobs(Θ|Y ,X ) ∝

− 1

2

N∑
t=1

{
− log |SC |+ (yt + BCyt −H

′
xt − v

′
)T SC(yt + BCyt −H

′
xt − v

′
)
}

(16)

where UC = I + BC , H
′
= UCH and v

′
= UCv.

2.1 Estimation with an observable state

Maximum likelihood (ML) parameter estimation involves finding the parame-
ter set which given some data, maximizes the likelihood (or equivalently, and
frequently more simply, the log-likelihood) function. For LDMs, this is com-
plicated by the hidden nature of the state, and so it is useful to first consider
a slightly altered scenario where the state is in fact observed. In this case, true
ML estimates of the model parameters can be produced by maximizing the
log-likelihood function given in Equation 16 for each parameter in turn. This
is a question of producing partial derivatives, equating to zero and solving.

In order to ensure an upper-diagonal structure with zeros along the diagonal in
the estimate of BC , maximization must use the log-likelihood function written
out explicitly as a set of sums.

It was shown above how a non-zero value of bc
ij (for j > i) occurs in a Gaus-

sian which models the dependency between dimensions i and j. To allow the
specification during estimation of which dimensions should be modelled as
dependent, and which to be assumed statistically independent, we introduce
the following notation. Let Bc

i be an ordered set containing the column indices
of the non-zero elements of row i of BC , and |BC | denote the number of ele-
ments in the set. By definition, this set has the property that ∀j ∈ Bc

i , j > i.
Then for a matrix M , [{mij}j∈Bc

i
] denotes a 1×|Bc

i | row vector containing the
elements from row i of M which appear in the columns indexed by Bc

i .

Using the notation introduced above, we can then use [{mk•}k∈Bc
i
] to denote

a |Bc
i | × p submatrix consisting of the rows of M which are indexed by the

non-zero elements of row i of BC . By extension, [{mkj}k∈Bc
i , j∈Bc

i
] represents

a submatrix of size |Bc
i | × |Bc

i | containing the elements in rows and columns
indexed by Bc

i .
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Given that for a diagonal matrix such as SC ,

|SC | =
p∏

l=1

sc
ll (17)

we can express the observation process log-likelihood of Equation 16 as the
following set of sums:

lobs(Θ|Y ,X ) ∝

−1

2

N∑
t=1

−
p∑

l=1

log sc
ll +

p∑
l=1

sc
ll

ylt +
∑

k∈Bc
l

bc
lkykt −

q∑
k=1

h
′

lkxkt − v
′

l

2


(18)

Partial derivatives can then be taken in terms of h
′
ij, v

′
i and bc

ij, the individual

elements of the observation process parameters H
′
, v

′
and BC . This proceeds

as follows for h
′
ij:

∂lobs

∂h
′
ij

=
N∑

t=1

sc
ii

yit +
∑

k∈Bc
i

bc
ikykt −

q∑
k=1

h
′

ikxkt − v
′

i

 xjt = 0

⇒
q∑

k=1

ĥ
′

ik

N∑
t=1

xktxjt =
∑

k∈Bc
i

b̂c
ik

N∑
t=1

yktxjt − v̂
′

i

N∑
t=1

xjt +
N∑

t=1

yitxjt (19)

and for v
′
i:

∂lobs

∂v
′
i

=
N∑

t=1

sc
ii

yit +
∑

k∈Bc
i

bc
ikykt −

q∑
k=1

h
′

ikxkt − v
′

i

 = 0

⇒ v̂
′

i =
1

N

N∑
t=1

yit +
1

N

∑
k∈Bc

i

b̂c
ik

N∑
t=1

ykt −
1

N

q∑
k=1

ĥ
′

ik

N∑
t=1

xkt (20)

Finally, taking partial derivatives with respect to bc
ij for j ∈ Bc

i (the non-zero
elements in row i of BC), gives:

∂lobs

∂bc
ij

=−
N∑

t=1

sc
ii

yit +
∑

k∈Bc
i

bc
ikykt −

q∑
k=1

h
′

ikxkt − v
′

i

 yjt = 0

⇒
∑

k∈Bc
i

b̂c
ik

N∑
t=1

yktyjt =
q∑

k=1

ĥ
′

ik

N∑
t=1

xktyjt + v̂
′

i

N∑
t=1

yjt −
N∑

t=1

yityjt (21)
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We now introduce the set of sufficient statistics Γ(x), Γ(y), Γ(xx), Γ(yy) and Γ(yx),
defined as:

Γ(x) =
1

N

N∑
t=1

xt Γ(y) =
1

N

N∑
t=1

yt (22)

Γ(xx) =
1

N

N∑
t=1

xtx
T
t Γ(yy) =

1

N

N∑
t=1

yty
T
t (23)

Γ(yx) =
1

N

N∑
t=1

ytx
T
t (24)

Note that we follow the notational convention introduced above, and use γ
(x)
i,j

to reference element i, j of Γ(x). Then for i = 1, . . . , p, Equations 19, 20, and
21 can be rewritten as a set of q + 1 + |Bc

i | simultaneous equations in matrix
form:

ĥ′
i• Γ(xx) + v̂

′

i Γ(x)T − [{bij}j∈Bc
i
] [{γ(yx)

k• }k∈Bc
i
] = γ

(yx)
i•

ĥ′
i• Γ(x) + v̂

′

i − [{bij}j∈Bc
i
] [{γ(y)

k }k∈Bc
i
] = γ

(y)
i

ĥ′
i• [{γ(yx)

k• }k∈Bc
i
]T + v̂

′

i [{γ(y)
k }k∈Bc

i
]T − [{bij}j∈Bc

i
] [{γ(yy)

kj }k∈Bc
i , j∈Bc

i
] = [{γ(yy)

ij }j∈Bc
i
]

(25)

With the number of parameters and hence simultaneous equations varying
according to the size of Bc

i , closed form parameter estimates must be found
for each row in turn. Combining the set of equations in 25 into partitioned
matrices yields:

[
ĥ′

i• v
′
i [{b̂ij}j∈Bc

i
]

]

=
[
γ

(yx)
i• γ

(y)
i [{γ(yy)

ij }j∈Bc
i
]

]


Γ(xx) Γ(x) [{γ(yx)
k• }k∈Bc

i
]T

Γ(x)T 1 [{γ(y)
k }k∈Bc

i
]T

−[{γ(yx)
k• }k∈Bc

i
] −[{γ(y)

k }k∈Bc
i
] −[{γ(yy)

kj }k∈Bc
i , j∈Bc

i
]


−1

(26)

Given the upper-diagonal form of UC = BC + Ip, inversion to find U−1
C and

hence UC = U−1
C H

′
and v = U−1

C v
′
is straightforward.

The parameter SC which accompanies BC in specifying the observation noise
precision must also be maximized. Using the result that for symmetric Z,

d

dZ
log |Z| = Z−1 (27)
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ŜC can be found as follows:

∂l

∂SC

= NS−1
C −

N∑
t=1

(yt + BCyt −H
′
xt − v

′
)(yt + BCyt −H

′
xt − v

′
)T

= NS−1
C −

N∑
t=1

(
(I + BC)yt −H

′
xt − v

′) (
(I + BC)yt −H

′
xt − v

′)T

⇒ Ŝ−1
C = diag

 1

N
(I + B̂C)

N∑
t=1

yt

(
(I + B̂C)yt − Ĥ ′xt − v̂

′)T

− 1

N

N∑
t=1

(
Ĥ ′xt + v̂

′) (
(I + B̂C)yt − Ĥ ′xt − v̂

′)T

 (28)

= diag

ÛC

(
Γ(yy)ÛT

C − Γ(yx)H
′T − Γ(y)v

′T
)
− Ĥ ′Γ(yx)T ÛT

C

+Ĥ ′Γ(xx)Ĥ
′T + Ĥ ′Γ(x)v̂

′T − v̂
′
Γ(y)T ÛT

C + v̂
′
Γ(x)T Ĥ

′T + v̂
′
v̂

′T

(29)

where we use diag(M) to denote the diagonal matrix whose diagonal elements
are the elements of M .

This expression can be simplified using the matrix form of the ML estimates
of Ĥ

′
and v̂

′
. Taking partial derivatives of the log-likelihood function given in

16 and equating to 0 yields:

Ĥ ′ =
(
ÛCΓ(yx) − v̂

′
Γ(x)T

)
Γ(xx)−1 (30)

v̂
′
= ÛCΓ(y) − Ĥ ′Γ(x) (31)

Now substituting these expressions into the 3rd and last terms of Equation 29
respectively, we find that all terms but the first cancel, so that

Ŝ−1
C = diag

UC

(
Γ(yy) − Γ(yx)HT − Γ(y)vT

)
UT

C

 (32)

The estimates of factored covariance observation process parameters given in
Equations 26 and 32 simply extend to using multiple time series for estima-
tion, in which case the sufficient statistics are averaged over all relevant data
points. Similarly, parameter tying can be implemented by pooling the sufficient
statistics required to compute a given parameter among the models between
which it will be shared.
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2.2 Estimation with state hidden – application of the EM algorithm

The expectation maximization (EM) algorithm (Dempster et al., 1977; Bilmes,
1997) provides a means of iterating toward the ML solution in situations where
there is missing or incomplete data. In this case the incomplete data is the
state, and EM takes a model with parameters Θ(i) at the ith iteration and
makes an update to give Θ(i+1), such that the likelihood over the training
data is increased or left unchanged.

For distributions from the exponential family (of which the LDM with its
Gaussian output distribution is a member), the EM algorithm consists of
alternating between computing the complete-data conditional expectations of
the standard ML sufficient statistics using the most recent parameter set,
and using these expectations to update the parameter estimates (Dempster
et al., 1977). Writing xt|Y ∼ N(x̂t|N , Σt|N), the expectations which must be
computed are given by:

E[xt|Y , Θ(i)] = x̂t|N (33)

E[xtx
T
t |Y , Θ(i)g] = Σt|N + x̂t|N x̂T

t|N (34)

E[xtx
T
t−1|Y , Θ(i)] = Σt,t−1|N + x̂t|N x̂T

t−1|N (35)

A Rauch-Tung-Striebel (RTS) smoother (Rauch, 1963) can be used to com-
pute the complete-data state statistic estimates x̂t|N and Σt|N , with the cross-
covariance Σt,t−1|N found using the additional recursion given by Digalakis
et al. (1993) and Rosti and Gales (2001).

EM for LDMs therefore consists of evaluating the ML parameter estimates
given in Equations 26 and 32, replacing xt, xtx

T
t , and xtx

T
t−1 with their ex-

pectations 33–35.

3 Experiments

Two sets of experiments are described below which illustrate the operation
of the proposed method. The first uses synthetic data, and the second uses
speech data from the TIMIT corpus. In both cases, the LDMs have diagonal
initial state covariance Λ and state error covariance D, and it is the form of
the observation noise covariance C which is varied. Models are trained on the
data corresponding to each of a number of classes using the EM algorithm
as described above. During classification, model likelihoods are computed by
making a forward Kalman filter pass through each phone segment (token) as
described in Frankel and King (2007). In the synthetic data experiments of
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Section 3.1, the model with the highest likelihood is chosen, and in the speech
data experiments of Section 3.2 a Viterbi search with a bigram language model
is used to choose the most likely sequence of phone models (this is valid since
the state is reset at phone boundaries). Frankel and King (2007) contains a
full description of the experimental setup.

3.1 Synthetic data

This experiment compares the classification of unseen spatially-correlated time
series data using LDMs with three different observation noise models. These
are: diagonal covariance, full covariance, and factored precision with the trans-
form component tied across all models. The performance of these three models
is compared for varying amounts of training data.

The synthetic data was generated using a set of 18 LDMs with 4-dimensional
states. Each of these models had originally been trained on 13-dimensional
speech parameters corresponding to one of 18 distinct phone classes (data
used came from TIMIT corpus as described in Section 3.2 below). Before using
these models to generate a new set of data, the observation noise covariance
matrices were modified in the following way: a single Bv matrix was chosen to
be used for all models, and the elements within the model-specific diagonal Sv

matrices were normalized to have a uniform mean and variance across the 18
models. This step was included to prevent classification of unseen data being
simplified by significant variation in magnitude of the observation noise, whilst
retaining the structure of variation between dimensions within models.

The set of LDMs were then used to generate various sizes of data sets (see
table 1) comprising equal numbers of tokens from each class. Each token varied
between 4 and 30 frames in length, with the duration chosen at random from a
uniform distribution. Of these tokens, 10% were used as validation data, 20%
for testing, and the remaining 70% as training data.

Classification then proceeds as follows: an LDM is trained on the data corre-
sponding to each of the 18 classes and the parameters of the model set are
stored after each training iteration. The model set which gives the highest clas-
sification accuracy on the validation set is then used for classification of the
test data. Table 1 and Figure 3 show the classification accuracy for LDMs with
the three different observation noise models as the amount of training data
was varied from 2 to 50 tokens per class. Modelling the spatial correlations
in the observation noise distributions gives very large accuracy increases over
those of the diagonal covariance models, regardless of the amount of available
training data, and gives improvements over full covariance models, for small
data set sizes.
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Fig. 3. Classification accuracy on synthetic data as a function of quantity of training
data with three different observation noise models: diagonal covariance, full covari-
ance and factored precision with the transform component tied across all models.

3.2 Speech data

This experiment is similar to the first and examines the effect of varying the
form of observation noise model with parameters estimated on a range of train-
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# training Classification accuracy

tokens diagonal tied Bv full

36 19.7% 48.4% 41.8%

54 24.4% 61.1% 57.6%

72 21.8% 66.1% 64.8%

90 22.4% 71.2% 72.6%

180 29.4% 78.0% 83.1%

360 32.2% 79.5% 87.9%

900 33.9% 79.8% 90.9%

# parameters 1980 2058 3384
Table 1
Classification accuracy on synthetic data using LDMs with three different observa-
tion noise models: diagonal covariance, full covariance, and factored precision with
the transform component tied across all models. Results are given with the amount
of training data varying from 2 to 50 tokens per class (18 classes). For each separate
training set, the highest accuracy is shown in bold face. These results are shown
graphically in Figure 3.

ing set sizes, but this time using speech data. The classification procedure is
as above, except that after the validation data has been used to determine the
number of training iterations, models are retrained on data from the combined
training and validation sets prior to evaluation on the test data.

In addition to diagonal, tied-transform and full models, partially specified
observation noise models are now considered. The parameter estimation of
Section 2 shows how to estimate noise covariance matrices which are between
diagonal and full by including a subset of the possible spatial dependencies.
The dependencies to include were chosen for this experiment in the following
way: a set of diagonal covariance LDMs was trained, and prediction errors
calculated on held out validation data as described in Section 1.2. The mutual
information between dimensions of the prediction errors was then calculated
and a new set of LDMs trained in which 0.5%, 1%, 5%, 10%, 25%, 50% or
75% of spatial dependencies were included, with ranked mutual information
used to determine the order in which dependencies were included. Using 0%
and 100% of dependencies corresponds to diagonal and full covariance LDMs
with 528 and 1269 free parameters respectively. For each size of training set,
the models giving the highest phone classification accuracy on the validation
data were then chosen for final evaluation on the test data. This process was
repeated for each size of training set, with a set of dependencies chosen for
each phone.

The results presented in Table 2 and Figure 4 show that where data is limited,
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# training Classification accuracy

tokens diagonal partial tied Bv full

305 24.9% 41.4% (0.5%) 30.3% 12.7%

610 39.5% 45.0% (0.5%) 37.0% 21.7%

1220 49.5% 49.5% (0.5%) 40.1% 32.7%

3025 52.4% 53.0% (1%) 47.6% 48.7%

6025 58.1% 58.1% (1%) 54.6% 56.5%

11896 63.5% 64.2% (75%) 61.7% 64.4%

28954 67.8% 69.5% (75%) 66.7% 69.9%

142780 68.9% 71.4% (75%) 68.9% 72.0%
Table 2
Classification accuracy using LDMs on speech data with four different observation
noise models: diagonal covariance, partially-specified (% possible dependencies given
in parentheses), factored precision with the transform component tied across all
models, and full covariance. Results are given with the number of training tokens
varying from 305 to 142780 (full TIMIT train set). For each separate training set, the
highest accuracy is shown in bold face. Figure 4 presents these results graphically.

partially specified covariance models give the highest classification accuracies.
Given sufficient data, full covariance models give the best performance, but
partially-specified covariance models are very close behind.

For the 5 smallest training sets, the gains from using partially specified covari-
ance models over full covariance models are statistically significant (consistent
across the test data). For two of the eight training sets, partially specified and
diagonal models give equal classification accuracy, and for the remainder the
partially specified models yield statistically significant accuracy increases over
the diagonal models.

4 Conclusions

This work has considered the form of the observation noise model for LDMs
and introduces a technique for estimating factored precision matrices. This
allows estimation of covariance matrices other than simply diagonal or full,
and facilitates separate tying of the transform and magnitude components
between models.

In the illustrative experiments, the partially specified covariance models are
as good as diagonal covariance models when there are few data and as good as
full covariance models with larger amounts of data. Furthermore, the number
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Fig. 4. Classification accuracy as a function of the quantity of training data using
LDMs on TIMIT speech data with four different observation noise models: diagonal
covariance, partial set of dependencies, factored precision with the tied transform,
and full covariance. Note that, for all data set size, the partially-specified covariance
model gives either the highest, or very close to the highest accuracy.

of model parameters can be varied smoothly between those two extremes, to
adapt to any size data set.

18



Given sufficient training data, these results support the use of full covariance
observation noise models 2 . However, the techniques introduced in this pa-
per have been shown to make efficient use of small training sets. As noted
above, data sparsity can arise as a result of a particular implementation. For
example, switching models require multiple LDMs per phone (Ma and Deng,
2004), or the data sparsity inherent in a system based on triphones (context-
dependent phone models) (Rosti, 2004) makes tying at some level inevitable.
Modelling factored precision matrices should prove a useful tool in such cases.
Furthermore, in a implementation such as triphones, it may be reasonable
to assume that within clusters, the errors would be distributed in a similar
enough fashion that tying transforms would come into its own.
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