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Abstract

This paper addresses the problem of dialogue optimization o

large search spaces. For such a purpose, in this paper we pro-

pose to learn dialogue strategies using multiple Semi-bhark
Decision Processes and hierarchical reinforcement legrni
This approach factorizes state variables and actions ierdcd
learn a hierarchy of policies. Our experiments are basedsin a
mulated flight booking dialogue system and compare flat wersu
hierarchical reinforcement learning. Experimental resshow

that the proposed approach produced a dramatic search space

reduction (99.36%), and converged four orders of magnitude
faster than flat reinforcement learning with a very smaltlos
optimality (on averag®.3 system turns). Results also report
that the learnt policies outperformed a hand-crafted orseun
three different conditions of ASR confidence levels. This ap
proach is appealing to dialogue optimization due to fastemi-

ing, reusable subsolutions, and scalability to larger |enois.

Index Terms: Spoken dialogue systems, semi-Markov decision
processes, hierarchical reinforcement learning.

1. Introduction

Spoken dialogue systems that learnt to optimize their kiehav
have typically been investigated within the flat tabulanfeice-
ment learning paradigm [1, 2, 3, 4, 5]. However, the scailgbil
of this approach is limited due to the fact that search spaces
grow exponentially according to the state variables takea i
account (referred as “the curse of dimensionality”). Evess
tems with simple state representations may have largelsearc
spaces with quick growth towards intractability. Recenest
tigations employ function approximation [6] and prior klew
edge [5] in order to find solutions on reduced search spaces.
They have been applied to small-scale systems aiming fora si
gle global solution. However, little attention has beenaded
to finding solutions with the divide-and-conquer approach.
Previous work in the literature of artificial intelligence
has investigated divide-and-conquer approaches to althres
problem of reinforcement learning on large search spaces,
which is broadly referred as Hierarchical Reinforcemerdaine
ing (HRL). The fundamental theory behind HRL is based on
Semi-Markov Decision Processes (SMDPs) [7]. HRL is appeal-
ing due to the following benefits: a) improved exploration; b
cause exploration can take multi-time steps by using lowgtle
and high-level actions; b) reduced computational demanels,
cause breaking a problem into subproblems helps to ignere ir
relevant features of the flat environment state; and c) kedgé
transfer, because solutions learnt on previous problemsea
reused in new problems. However, the price to pay for such
benefits is that HRL methods may lear@ar optimal solutions.
Nevertheless, HRL methods learn the best policies acogtdin
the constraints specified in the hierarchy [8].

Related work on SMDPs and HRL can be broadly classi-
fied into two approaches: those that learn on a single SMDP
and those that learn on multiple SMDPs. Firstly, methodslea
ing on a single SMDP have focused on high-level and low-level
actions in order to speed up learning [9][10]. Although s
proach helps to reduce the curse of dimensionality problem,
is still limited because the environment is representeti flat
states rather than hierarchical states. This means thailga
using a single SMDP lacks scalability and knowledge transfe
Secondly, methods learning on multiple SMDPs can employ hi-
erarchical states, actions and rewards. The use of hiecatch
states is very useful in order to ignore irrelevant statéatdes,
meaning that smaller solutions can be found faster, witheced
computational demands, and with opportunities to reuse pol
cies [8]. Other related work concerns POMDPs for dialogue
management under uncertainty; however, its applicatictilis
limited to small-scale dialogue systems because this appro
is only feasible with small state-action spaces [4, 11].

In this paper we investigate learning dialogue strategses u
ing multiple Semi-Markov Decision Processes and Hieraathi
Reinforcement Learning. This approach has not been applied
before to dialogue optimization (though see [12] for a défe
HRL approach), and we will show that it is a promising method
to efficiently optimize the behaviour of large-scale spolér
logue systems.

2. Semi-Markov Decision Processes

SMDPs are a generalization of MDPs, aiming to model complex
decision making problems following the well known divide-
and-conquer approach using either a single or multiple fisode
In the latter, the dividing part consists in breaking an MD®i
a hierarchy of SMDPs (subtasks), where each SMDP will be
referred to as a “composite action” lasting multiple tinteps,
and each single time-step action will be referred to as artpri
itive action”. In contrast with MDPs having only primitivea
tions, SMDPs can have both types of actions. The conquering
part consists in learning unified solutions for each subtagk
finding a (near)optimal solution for the root subtask.

A discrete-time SMDP is a 4-tupl®/ =< S, A, T,R >
characterized as followsS is a set of environment stated;is
a set of actionsT is a transition function that observes the next
states’ given the current state and actiona with probability
P(s',7|s,a); and R(s,a) is the reward function that specifies
the rewards given to the agent for choosing actiomhen the
environment makes a transition frosrto s’. The random vari-
abler denotes the number of time-steps that take to execute ac-
tion a in states [7][8]. An MDP can be decomposed into multi-
ple SMDPs hierarchically organized inlayers andV/ models
per layer, denoted ast = {M;}, wherej € {0, ..., |M| — 1}
andi € {0,...,|L| — 1}. In this way, any given SMDP in the
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Figure 1:Architecture of the agent-environment interaction for
hierarchical reinforcement learning using multiple SMDPs

hierarchy is denoted a¥/; =< S}, A%, T}, R >, see figure 1.
The goal in an SMDP is to find a (near) optimal polic,

that maximizes the reward of each state. The optimal value

function denoted a¥ *(s), is the expected cumulative reward

of s underr™*. Similarly, the optimal action-value function de-

noted asR* (s, a), is the expected cumulative reward for exe-

cutinga in s following 7*. The Bellman equations fdr* and

Q™ of subtask\/} can be expressed as

Vii(s) = max | Rj(s,a) + Y 47 Pi(s',7ls,a) V(s |, (D)

s’ T

Q}i(s,a) = Ri(s,a)+ Y _ 47 Pi(s',7|s,0) max Q¥'(s',a’). (2)
Finally, the optimal policy for each subtask is given by
equation 3. This policy can be found by dynamic programming
or RL algorithms for SMDPs, the latter are preferred [7].

7% (s) = arg max Q;i(s,a),VS € Sji- anda € A; 3)

J

2.1. Hierarchical Reinforcement Learning Algorithms

The goal of Hierarchical Reinforcement Learning (HRL) is to
find solutions for complex Markov decision problems. To date
few methods have been investigated for learning a hieranthy
SMDPs such as HSMQ-Learning [13] and the MAXQ learning
algorithms [8]. These hierarchical reinforcement leagrétgo-
rithms share the following properties: a) They execute ashx
using the well known stack mechanism, b) they find solutions
with a form called “recursive optimality” rather than “hanchi-

cal optimality” or “global optimality” - making possible tind
context-independent (reusable) policies, and c) theyergato
recursively optimal policies with similar convergence jpecties

as Q-Learning [14].

3. Hierarchical Dialogue Optimization

The idea of hierarchical dialogue optimization consistfind-

ing a decision maker that takes the best high-level and éwetl
actions for every different situation in the conversatidm.the

rest of the paper we address the question “How to apply the
theory of SMDPs and HRL to spoken dialogue systems?”
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Figure 2:An SMDP interacting with a simulated user when ma-
chine actions are dialogue act§" or a;" (distorted). The long
line shows a sample interaction, where state transitiorsad-
served from states;” holding information about the dialogue.

3.1. Dialogue asa Semi-Markov Decision Process (SM DP)

We propose treating the problem of dialogue optimizatioa as
Semi-Markov Decision Process, which employs hierarchdeal
alogues rather than flat dialogues. Based on notation from fig
ure 2, a hierarchical dialogue consists of a sequence oésupl
(s1",al", st,at) and subdialogued; lasting  time-steps.
Equations 4-5 denote a dialogue with a child subdialoguecde
a dialogue with decendants form a hierarchy of subdialogues
where every subdialogue is optimized with a separate SMDP.
This work assumes deterministic state transitions in the
SMDPs in order to ensure coherent and consistent dialogues,
see figure 2. Briefly, the conversants use knowledge-ridesta
k™ andk®, which do not enumerate the vast combinations, they
only keep the current state of the world. The knowledge-rich
statesk: employ ontological dialogue structures that represent
knowledge about the conversation (e.g., dialogue goatsase
tic frames, slots, retries, database, last conveyed dialagts,
etc.) Finally, the knowledge-compact statesused to choose
actions they do enumerate a compact number of combinations.

DI ={(s7",al",s¥,a), ... D{7, oy (s, ol 8%, a%)} (4)

D£+T = {(S;n7 a’£7l7 Sil', CL?), oty (Sﬁ.r, a;ﬁ*T? S?+T7 a?‘FT)} (5)

3.2. Decomposing a Dialogue Manager into Subtasks

We propose a two-stage approach to divide a dialogue task int
subtasks. The first stage decomposes a dialogue managdr base
on its set of dialogue goals. L&t = {g1, ..., gx } be the set

of dialogue goals. This decomposition will havé subtasks.

The second stage decomposes every subtasko a set of slot
filling strategies (e.g., mandatory slots, optional slegsminal

slot). LetF' = {fi,..., fy } be the set of slot filling strategies.

In this way, the global decomposition will have-Y or 1+ X +

XY subtasks for a single-goal or multi-goal dialogue system,

1sample dialogue acts for a single interaction of both cosawets:
a™ =request(date)y* =provide(date=1Dec2007,time=morning).



Table 1:State variables for the flight booking dialogue system.

| Variable | Values | Description |
SLO {0,1,2,3,4} | Status of slot “departure city”
SL1 {0,1,2,3,4} | Status of slot “destination city”
SL2 {0,1,2,3,4} | Status of slot “date”
SL3 {0,1,2,3,4} | Status of slot “time”
SL4 {0,1,2,3,4} | Status of slot “airline”
SL5 {0,1,2,3,4} | Status of slot “flight offer”
SIF 0,...,5} Slot in focus
DBT {0, 1,2} Number of database tuples

(1=none, 2=few, 3=many)

Table 2:Action space for the flight booking dialogue system.

[ Action | Description |
req Request slot in focus
apo+req | Apology for mis-recognition + request slot in focus
sictreq | Single implicit confirmation + request slot in focus
mic+req | Multiple implicit confirmation + request slot in focus
sec Single explicit confirmation of the slot in focus
mec Multiple explicit confirmation of filled slots
acc Move to the next ascending slot with lower-value
dbg+sta | Perform a database query + inform its tuples size
pre+ofr | Information presentation + offer options
apo+ofr | Apology for mis-recognition + offer options

respectively. This simple heuristic aims to be a guidelioe f
specifying the hierarchy of subtasks. Finding the bestinady
for a given dialogue system is beyond the scope of this paper.

4. Experimentsand Results

The aim of our experiments was to compare flat versus hi-
erarchical Reinforcement Learning (RL) when flat learniag i
still feasible. Our experiments are based on a six-slot diixe
initiative flight booking spoken dialogue system employiag
simulated conversational environment at the dialogudexed.

4.1. Experimental Setup

For flat RL, the search space representation hasn-binary
state variablésand 10 primitive actions (see tables 1 and 2).
The reward functiohfocuses on efficient dialogues and is given
by equation 6. For hierarchical RL, the hierarchical search
space representation hasubtasks (one parent and three chil-
dren) with[4, 5, 1, 1] non-binary state variablésnd[4, 7, 3, 3]
actions, respectively (see figure3). The reward functiothés
same as the one used for flat learning, used in each subtask.
Our experiments employed the simulated environment de-
scribed in section 4.2. The learning setup used Q-Learrung f
flat learning [14] and HSMQ-Learning for hierarchical |eizig
[13]. Finally, the learning parameters are the same for Hath
and hierarchical learning: step size= 100/(100 + ¢), with
t elapsed time-steps; discount factoe= 1; selection strategy
usinge-Greedy, withe = 0.01; and initial Q-values 06.

0 for successful dialogue (sub)goal
R = -10 for presenting too much or no information (6)
-1 otherwise

2Slot values: 0=unknown, 1=known witbw confidence, 2=known
with mediumconfidence, 3=know withigh confidence, 4=confirmed.

Slllegal actions had no effect in the dialogues and only whtitae,
e.g., request an already filled slot, request an alreadyrooedi slot, etc.

4Values of state variables MAN, OPT, and TER in the root subtas
(see figure 3): O=unfilled slots, 1=filled slots, 2=confirméats

Var={MAN,OPT,TER,DBT}
A={al0,al1,a12,dbg+sta}

al0

Collect Man-
adatory Slots

Var={SL0,SL1,SL2,SL3,SIF}
A={req,apo+req,sic+req,mic+
req,sec,mec,acc}

Collect
Optional Slots

Var={SL4}
A={req,
apo-treq,sec}

Collect
Terminal Slot

Var={SL5}
A={pre+ofr,
apo+ofr,sec}

Figure 3:A task hierarchy for the six-slot flight booking system,
where each subtask is represented as a separate SMDP.

4.2. The Simulated Environment

The simulated environment consisted of three componesé&s: u
behaviour, ASR behaviour, and database behaviour. We used a
hand-crafted semi-stochastic simulated user model witisise
tent user responses. Briefly, the simulated user behaveddacc
ing to the following probabilities: probability of in-vobalary
wordsp(iv) = 0.9, probability of obediencg(ob) = 0.9 (for
filling the slot in focus), probability of reproviding infara-
tion in negative confirmationg(ri) = 0.8, and probability of
filling multiple slotsp(ms) = 0.4. The ASR model gener-
ated keyword substitutions with probability pfsub = 0.2
and the confidence levels were generated randomly with three
different distributions for low, medium, and high values) a
[1/4,1/4,1/2],b)[1/3,1/3,1/3], and c)[1/2,1/4,1/4]. This
setup aimed to test the learning agents and a baseline dé&log
strategy under different conditions. The database queres
duced the following outcomes: a large number of tuples after
filling the first four slots, a small number of tuples afterifif
the first five slots, an empty set was observed otherwise.

In addition, in order to test the quality of the learnt padisj
we hand-crafted a deterministic dialogue strategy for @asec
study. Its behaviour is briefly as follows: a) if slot in fociss
unknown then collect information (with implicit confirmati if
there were any filled slots), b) if slot in focus is known witw
confidence then do an apology, c) if slot in focus is known with
medium confidence then do an explicit confirmation, and d) if
slot in focus is known with high confidence then move the slot
in focus to the next ascending one with lower value. We used
this dialogue strategy as baseline of system behaviour.

4.3. Results

Experimental results show that the hierarchical searcltespa
obtained a dramatic reduction 69.36%. Table 3 shows the
number of state-actions for both fl&§ million) and hierarchi-

cal (18K) search spaces. The learnt dialogue strategies gener-
ated coherent and consistent conversations. Figure 4 shews
learning curves of the dialogue policies, averaged a0drain-

ing runs of 10° episodes. The three plots illustrate different
amounts of ASR confidence levels. The first thing to notice is
that hierarchical RL learns faster than flat RL by four ordafrs
magnitude. The second thing to notice is that the detertignis
strategy performs almost as well as the learnt policies fiy o
one situation, but in general it was outperformed by theriear
policies. This illustrates the benefits of using dialogugrojza-

tion where more efficient conversations can be achieved by us
ing (near) optimal dialogue strategies. However, this ltegso
suggests that the simulated environment must reflect as much
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Figure 4: Learning curves of policies using flat and hierarchical feicement learning in the 6-slot flight booking dialogueteys
The best learnt policy outperformed the hand-crafted oné.®yl1.3, and3.7 system turns on average in all cases (from left to right).
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