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Abstract
This paper addresses the problem of dialogue optimization on
large search spaces. For such a purpose, in this paper we pro-
pose to learn dialogue strategies using multiple Semi-Markov
Decision Processes and hierarchical reinforcement learning.
This approach factorizes state variables and actions in order to
learn a hierarchy of policies. Our experiments are based on asi-
mulated flight booking dialogue system and compare flat versus
hierarchical reinforcement learning. Experimental results show
that the proposed approach produced a dramatic search space
reduction (99.36%), and converged four orders of magnitude
faster than flat reinforcement learning with a very small loss in
optimality (on average0.3 system turns). Results also report
that the learnt policies outperformed a hand-crafted one under
three different conditions of ASR confidence levels. This ap-
proach is appealing to dialogue optimization due to faster learn-
ing, reusable subsolutions, and scalability to larger problems.
Index Terms: Spoken dialogue systems, semi-Markov decision
processes, hierarchical reinforcement learning.

1. Introduction
Spoken dialogue systems that learnt to optimize their behaviour
have typically been investigated within the flat tabular reinforce-
ment learning paradigm [1, 2, 3, 4, 5]. However, the scalability
of this approach is limited due to the fact that search spaces
grow exponentially according to the state variables taken into
account (referred as “the curse of dimensionality”). Even sys-
tems with simple state representations may have large search
spaces with quick growth towards intractability. Recent inves-
tigations employ function approximation [6] and prior knowl-
edge [5] in order to find solutions on reduced search spaces.
They have been applied to small-scale systems aiming for a sin-
gle global solution. However, little attention has been devoted
to finding solutions with the divide-and-conquer approach.

Previous work in the literature of artificial intelligence
has investigated divide-and-conquer approaches to address the
problem of reinforcement learning on large search spaces,
which is broadly referred as Hierarchical Reinforcement Learn-
ing (HRL). The fundamental theory behind HRL is based on
Semi-Markov Decision Processes (SMDPs) [7]. HRL is appeal-
ing due to the following benefits: a) improved exploration, be-
cause exploration can take multi-time steps by using low-level
and high-level actions; b) reduced computational demands,be-
cause breaking a problem into subproblems helps to ignore ir-
relevant features of the flat environment state; and c) knowledge
transfer, because solutions learnt on previous problems can be
reused in new problems. However, the price to pay for such
benefits is that HRL methods may learnnearoptimal solutions.
Nevertheless, HRL methods learn the best policies according to
the constraints specified in the hierarchy [8].

Related work on SMDPs and HRL can be broadly classi-
fied into two approaches: those that learn on a single SMDP
and those that learn on multiple SMDPs. Firstly, methods learn-
ing on a single SMDP have focused on high-level and low-level
actions in order to speed up learning [9][10]. Although thisap-
proach helps to reduce the curse of dimensionality problem,it
is still limited because the environment is represented with flat
states rather than hierarchical states. This means that learning
using a single SMDP lacks scalability and knowledge transfer.
Secondly, methods learning on multiple SMDPs can employ hi-
erarchical states, actions and rewards. The use of hierarchical
states is very useful in order to ignore irrelevant state variables,
meaning that smaller solutions can be found faster, with reduced
computational demands, and with opportunities to reuse poli-
cies [8]. Other related work concerns POMDPs for dialogue
management under uncertainty; however, its application isstill
limited to small-scale dialogue systems because this approach
is only feasible with small state-action spaces [4, 11].

In this paper we investigate learning dialogue strategies us-
ing multiple Semi-Markov Decision Processes and Hierarchical
Reinforcement Learning. This approach has not been applied
before to dialogue optimization (though see [12] for a different
HRL approach), and we will show that it is a promising method
to efficiently optimize the behaviour of large-scale spokendia-
logue systems.

2. Semi-Markov Decision Processes
SMDPs are a generalization of MDPs, aiming to model complex
decision making problems following the well known divide-
and-conquer approach using either a single or multiple models.
In the latter, the dividing part consists in breaking an MDP into
a hierarchy of SMDPs (subtasks), where each SMDP will be
referred to as a “composite action” lasting multiple time-steps,
and each single time-step action will be referred to as a “prim-
itive action”. In contrast with MDPs having only primitive ac-
tions, SMDPs can have both types of actions. The conquering
part consists in learning unified solutions for each subtaskuntil
finding a (near)optimal solution for the root subtask.

A discrete-time SMDP is a 4-tupleM =< S, A, T, R >
characterized as follows:S is a set of environment states;A is
a set of actions;T is a transition function that observes the next
states′ given the current states and actiona with probability
P (s′, τ |s, a); andR(s, a) is the reward function that specifies
the rewards given to the agent for choosing actiona when the
environment makes a transition froms to s′. The random vari-
ableτ denotes the number of time-steps that take to execute ac-
tion a in states [7][8]. An MDP can be decomposed into multi-
ple SMDPs hierarchically organized inL layers andM models
per layer, denoted asM = {M i

j}, wherej ∈ {0, ..., |M | − 1}
andi ∈ {0, ..., |L| − 1}. In this way, any given SMDP in the
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Figure 1:Architecture of the agent-environment interaction for
hierarchical reinforcement learning using multiple SMDPs.

hierarchy is denoted asM i
j =< Si

j , A
i
j , T

i
j , Ri

j >, see figure 1.
The goal in an SMDP is to find a (near) optimal policyπ∗,

that maximizes the reward of each state. The optimal value
function denoted asV ∗(s), is the expected cumulative reward
of s underπ∗. Similarly, the optimal action-value function de-
noted asQ∗(s, a), is the expected cumulative reward for exe-
cutinga in s following π∗. The Bellman equations forV ∗ and
Q∗ of subtaskM i

j can be expressed as

V ∗i
j (s) = max

a

2

4Ri
j(s, a) +

X

s′,τ

γτ P i
j (s′, τ |s, a)V ∗i

j (s′)

3

5 , (1)

Q∗i
j (s, a) = Ri

j(s, a)+
X

s′,τ

γτ P i
j (s′, τ |s, a) max

a′

Q∗i
j (s′, a′). (2)

Finally, the optimal policy for each subtask is given by
equation 3. This policy can be found by dynamic programming
or RL algorithms for SMDPs, the latter are preferred [7].

π∗i
j (s) = arg max

a
Q∗i

j (s, a), ∀s ∈ Si
j anda ∈ Ai

j . (3)

2.1. Hierarchical Reinforcement Learning Algorithms

The goal of Hierarchical Reinforcement Learning (HRL) is to
find solutions for complex Markov decision problems. To date,
few methods have been investigated for learning a hierarchyof
SMDPs such as HSMQ-Learning [13] and the MAXQ learning
algorithms [8]. These hierarchical reinforcement learning algo-
rithms share the following properties: a) They execute subtasks
using the well known stack mechanism, b) they find solutions
with a form called “recursive optimality” rather than “hierarchi-
cal optimality” or “global optimality” - making possible tofind
context-independent (reusable) policies, and c) they converge to
recursively optimal policies with similar convergence properties
as Q-Learning [14].

3. Hierarchical Dialogue Optimization
The idea of hierarchical dialogue optimization consists infind-
ing a decision maker that takes the best high-level and low-level
actions for every different situation in the conversation.In the
rest of the paper we address the question “How to apply the
theory of SMDPs and HRL to spoken dialogue systems?”
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Figure 2:An SMDP interacting with a simulated user when ma-
chine actions are dialogue actsam

t or ãm
t (distorted). The long

line shows a sample interaction, where state transitions are ob-
served from statesκm

t holding information about the dialogue.

3.1. Dialogue as a Semi-Markov Decision Process (SMDP)

We propose treating the problem of dialogue optimization asa
Semi-Markov Decision Process, which employs hierarchicaldi-
alogues rather than flat dialogues. Based on notation from fig-
ure 2, a hierarchical dialogue consists of a sequence of tuples
(sm

1 , am
1 , su

1 , au
1 ) and subdialoguesDτ

t lasting τ time-steps.
Equations 4-5 denote a dialogue with a child subdialogue, hence
a dialogue with decendants form a hierarchy of subdialogues,
where every subdialogue is optimized with a separate SMDP.

This work assumes deterministic state transitions in the
SMDPs in order to ensure coherent and consistent dialogues,
see figure 2. Briefly, the conversants use knowledge-rich states
κm andκu, which do not enumerate the vast combinations, they
only keep the current state of the world. The knowledge-rich
statesκt employ ontological dialogue structures that represent
knowledge about the conversation (e.g., dialogue goals, seman-
tic frames, slots, retries, database, last conveyed dialogue acts1,
etc.) Finally, the knowledge-compact statesst used to choose
actions they do enumerate a compact number of combinations.

DT
1 = {(sm

1 , am
1 , su

1 , au
1 ), ...,Dt+τ

t , ..., (sm
T , am

T , su
T , au

T )} (4)

Dt+τ
t = {(sm

t , am
t , su

t , au
t ), ..., (sm

t+τ , am
t+τ , su

t+τ , au
t+τ )} (5)

3.2. Decomposing a Dialogue Manager into Subtasks

We propose a two-stage approach to divide a dialogue task into
subtasks. The first stage decomposes a dialogue manager based
on its set of dialogue goals. LetG = {g1, ..., gX} be the set
of dialogue goals. This decomposition will haveX subtasks.
The second stage decomposes every subtaskX into a set of slot
filling strategies (e.g., mandatory slots, optional slots,terminal
slot). LetF = {f1, ..., fY } be the set of slot filling strategies.
In this way, the global decomposition will have1+Y or1+X+
XY subtasks for a single-goal or multi-goal dialogue system,

1Sample dialogue acts for a single interaction of both conversants:
am =request(date),au =provide(date=1Dec2007,time=morning).



Table 1:State variables for the flight booking dialogue system.

Variable Values Description

SL0 {0, 1, 2, 3, 4} Status of slot “departure city”
SL1 {0, 1, 2, 3, 4} Status of slot “destination city”
SL2 {0, 1, 2, 3, 4} Status of slot “date”
SL3 {0, 1, 2, 3, 4} Status of slot “time”
SL4 {0, 1, 2, 3, 4} Status of slot “airline”
SL5 {0, 1, 2, 3, 4} Status of slot “flight offer”
SIF {0, ..., 5} Slot in focus
DBT {0, 1, 2} Number of database tuples

(1=none, 2=few, 3=many)

Table 2:Action space for the flight booking dialogue system.

Action Description

req Request slot in focus
apo+req Apology for mis-recognition + request slot in focus
sic+req Single implicit confirmation + request slot in focus
mic+req Multiple implicit confirmation + request slot in focus

sec Single explicit confirmation of the slot in focus
mec Multiple explicit confirmation of filled slots
acc Move to the next ascending slot with lower-value

dbq+sta Perform a database query + inform its tuples size
pre+ofr Information presentation + offer options
apo+ofr Apology for mis-recognition + offer options

respectively. This simple heuristic aims to be a guideline for
specifying the hierarchy of subtasks. Finding the best hierarchy
for a given dialogue system is beyond the scope of this paper.

4. Experiments and Results
The aim of our experiments was to compare flat versus hi-
erarchical Reinforcement Learning (RL) when flat learning is
still feasible. Our experiments are based on a six-slot mixed-
initiative flight booking spoken dialogue system employinga
simulated conversational environment at the dialogue-actlevel.

4.1. Experimental Setup

For flat RL, the search space representation has8 non-binary
state variables2 and10 primitive actions (see tables 1 and 2).
The reward function3 focuses on efficient dialogues and is given
by equation 6. For hierarchical RL, the hierarchical search
space representation has4 subtasks (one parent and three chil-
dren) with[4, 5, 1, 1] non-binary state variables4 and[4, 7, 3, 3]
actions, respectively (see figure3). The reward function isthe
same as the one used for flat learning, used in each subtask.

Our experiments employed the simulated environment de-
scribed in section 4.2. The learning setup used Q-Learning for
flat learning [14] and HSMQ-Learning for hierarchical learning
[13]. Finally, the learning parameters are the same for bothflat
and hierarchical learning: step sizeα = 100/(100 + t), with
t elapsed time-steps; discount factorγ = 1; selection strategy
usingǫ-Greedy, withǫ = 0.01; and initial Q-values of0.

R =

8

<

:

0 for successful dialogue (sub)goal
-10 for presenting too much or no information
-1 otherwise

(6)

2Slot values: 0=unknown, 1=known withlow confidence, 2=known
with mediumconfidence, 3=know withhigh confidence, 4=confirmed.

3Illegal actions had no effect in the dialogues and only wasted time,
e.g., request an already filled slot, request an already confirmed slot, etc.

4Values of state variables MAN, OPT, and TER in the root subtask
(see figure 3): 0=unfilled slots, 1=filled slots, 2=confirmed slots.

Root


Collect Man-

adatory Slots


Collect

Optional Slots


Collect

Terminal Slot


Var={MAN,OPT,TER,DBT}

A={a10,a11,a12,dbq+sta}


Var={SL0,SL1,SL2,SL3,SIF}

A={req,apo+req,sic+req,mic+


req,sec,mec,acc}


Var={SL4}

A={req,


apo+req,sec}


Var={SL5}

A={pre+ofr,


apo+ofr,sec}


a10
 a11
 a12


Figure 3:A task hierarchy for the six-slot flight booking system,
where each subtask is represented as a separate SMDP.

4.2. The Simulated Environment

The simulated environment consisted of three components: user
behaviour, ASR behaviour, and database behaviour. We used a
hand-crafted semi-stochastic simulated user model with consis-
tent user responses. Briefly, the simulated user behaved accord-
ing to the following probabilities: probability of in-vocabulary
wordsp(iv) = 0.9, probability of obediencep(ob) = 0.9 (for
filling the slot in focus), probability of reproviding informa-
tion in negative confirmationsp(ri) = 0.8, and probability of
filling multiple slots p(ms) = 0.4. The ASR model gener-
ated keyword substitutions with probability ofp(sub) = 0.2
and the confidence levels were generated randomly with three
different distributions for low, medium, and high values: a)
[1/4, 1/4, 1/2], b) [1/3, 1/3, 1/3], and c)[1/2, 1/4, 1/4]. This
setup aimed to test the learning agents and a baseline dialogue
strategy under different conditions. The database queriespro-
duced the following outcomes: a large number of tuples after
filling the first four slots, a small number of tuples after filling
the first five slots, an empty set was observed otherwise.

In addition, in order to test the quality of the learnt policies,
we hand-crafted a deterministic dialogue strategy for our case
study. Its behaviour is briefly as follows: a) if slot in focusis
unknown then collect information (with implicit confirmation if
there were any filled slots), b) if slot in focus is known with low
confidence then do an apology, c) if slot in focus is known with
medium confidence then do an explicit confirmation, and d) if
slot in focus is known with high confidence then move the slot
in focus to the next ascending one with lower value. We used
this dialogue strategy as baseline of system behaviour.

4.3. Results

Experimental results show that the hierarchical search space
obtained a dramatic reduction of99.36%. Table 3 shows the
number of state-actions for both flat (2.8 million) and hierarchi-
cal (18K) search spaces. The learnt dialogue strategies gener-
ated coherent and consistent conversations. Figure 4 showsthe
learning curves of the dialogue policies, averaged over10 train-
ing runs of105 episodes. The three plots illustrate different
amounts of ASR confidence levels. The first thing to notice is
that hierarchical RL learns faster than flat RL by four ordersof
magnitude. The second thing to notice is that the deterministic
strategy performs almost as well as the learnt policies for only
one situation, but in general it was outperformed by the learnt
policies. This illustrates the benefits of using dialogue optimiza-
tion where more efficient conversations can be achieved by us-
ing (near) optimal dialogue strategies. However, this result also
suggests that the simulated environment must reflect as much
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Figure 4: Learning curves of policies using flat and hierarchical reinforcement learning in the 6-slot flight booking dialogue system.
The best learnt policy outperformed the hand-crafted one by0.2, 1.3, and3.7 system turns on average in all cases (from left to right).

Table 3:Search spaces for flat and hierarchical learning.

Learning Approach States Actions |S × A|

Flat 281250 10 2812500
Hierarchical [81,2500,5,5] [4,7,3,3] 17854

as possible the behaviour of the real environment, otherwise
the learnt dialogue policies will no longer be optimal. The last
thing to notice is that flat learning eventually performs slightly
better than hierarchical learning. An evaluation on the last 104

episodes (dialogues) reports that flat learning achieves slightly
more efficient conversations, on average0.3 system turns less
than hierarchical learning (atp < 0.01). Presumably because
in the hierarchical setting the optional slot (“airline”) cannot be
explicitly confirmed together with the mandatory slots. Nev-
ertheless, for practical purposes this loss in optimality may be
well worth the gains in terms of scalability to larger problems.

5. Conclusions and Future Work
In this paper we proposed to learn dialogue strategies usingmul-
tiple Semi-Markov Decision Processes and Hierarchical Rein-
forcement Learning. We investigated its application to a simu-
lated spoken dialogue system in the flight booking domain, and
compare the proposed approach against flat RL. This approach
has not been applied before to dialogue systems and the results
are promising. Our experimental results confirm those reported
by researchers in reinforcement learning - hierarchical learning
finds cheaper and faster solutions than flat learning with near-
optimal policies. In our case study the hierarchical searchspace
only used0.64% of the size of the flat search space. Our results
report that the learnt policies outperformed a hand-crafted one
in three different situations of ASR confidence levels. In addi-
tion, our results also report that hierarchical learning converged
four orders of magnitude faster than flat learning with a small
loss in optimality (on average0.3 system turns). These results
suggest that the proposed approach can be applied to complex
and large-scale spoken dialogue systems.

As future work we plan to combine the proposed approach
with constrained SMDPs [5], to evaluate the simulation frame-
work, to learn behaviour for a large-scale spoken dialogue sys-
tem, and to perform tests on an environment with real users.
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Heriberto Cuayáhuitl was sponsored by PROMEP and the Au-
tonomous University of Tlaxcala (http://promep.sep.gob.mx,
www.uatx.mx), and Oliver Lemon by ESPRC - EP/E019501/1.

7. References
[1] Levin, E., Pieraccini, R., and Eckert, W. A Stochastic Model of

Human Machine Interaction for Learning Dialog Strategies.In
IEEE Trans. on Speech and Audio Processing, 8:1, 2000.

[2] Scheffler, K. Automatic Design of Spoken Dialogue Systems.
PhD Thesis, Cambridge University, 2002.

[3] Pietquin, O. A Framework for Unsupervised Learning of Dia-
logue Strategies. PhD Thesis, Faculté Polytech. de Mons, 2004.
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