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Abstract
Automatic speech animation remains a challenging problem
that can be described as finding the optimal sequence of ani-
mation parameter configurations given some speech. In this pa-
per we present a novel technique to automatically synthesise lip
motion trajectories from a speech signal. The developed sys-
tem predicts lip motion units from the speech signal and gen-
erates animation trajectories automatically employing a ”Tra-
jectory Hidden Markov Model”. Using the MLE criterion, its
parameter generation algorithm produces the optimal smooth
motion trajectories that are used to drive control points on the
lips directly. Additionally, experiments were carried out to find
a suitable model unit that produces the most accurate results.
Finally a perceptual evaluation was conducted, that showed that
the developed motion units perform better than phonemes.
Index Terms: talking head, lip synchronisation, audio-visual
speech

1. Introduction
Correct lip synchronisation is essential to make character an-
imation believable. Humans are very aware of facial expres-
sions and can detect the smallest discrepancies between the an-
imation and the speech signal. Speech animation is therefore
a very labour intensive process for which automation is highly
desirable. Automatic speech animation remains a challenging
problem that can be described as finding the optimal sequence
of animation parameter configurations given some speech. The
dependencies between a sequence of phonemes and the cor-
responding animation parameters are highly non-linear, as the
same sound can be produced in various ways. In addition co-
articulation convolutes the problem further as long range depen-
dencies between the parameters have to be taken into account.
Still, phonemes have a high correlation with lip motion.

We can characterise previous approaches in terms of the in-
put to the system. Many systems use text and the corresponding
phoneme string as input and then use concatenation[1], domi-
nance functions[2] or trajectory generation [3] to produce the
desired animation. Other approaches use parameterised speech
directly as input and then use formant analysis [4], linear re-
gression [5], or probabilistic modelling [6] [7] to generate the
appropriate motion.

The choice between speech or text input depends largely
on the application. A dialogue system where the spoken text is
known, will most likely use a text based approach. An applica-
tion that has to deal with unknown speech, in particular applica-
tions that have to run fast and in real time, like rapid prototyping
for games and movies, will opt for speech based input. In this
paper we present a two step approach that produces the desired
lip animation from just speech. We utilise a trajectory Hidden
Markov Model (HMM) [8] because of its flexibility and train-
ability. Trainable probabilistic models have the advantage over
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Figure 1: System diagram of the automatic motion generation

other approaches, that they can easily be adapted to different
speakers. Additionally expanding these kind of models to other
types of data has been demonstrated[9], which increases their
applicability in animation systems. Our system distinguishes it-
self from Tamura et al. [3] in that our system uses speech and
not text as input. Furthermore our system generates lip motion
parameters from specifically designed modelling units.

2. System Overview
To generate speech animation we propose a hierarchical system
with each stage performing two steps; a recognition step and a
synthesis step where the same kind of model is used for both
steps. In the recognition step we choose the most likely unit se-
quence given some speech. During synthesis the unit sequence
is translated into motion trajectories. These two steps are per-
formed for each type of motion data. Figure 1 gives a graphical
overview of the process.

The models are trained on speech derived features and
tracking data simultaneously using the maximum-likelihood
criterion. Each type of data is modelled in a separate stream
where only the transition probabilities between states are shared
with the other streams. These streams are turned on and off de-
pending on synthesis or recognition. For example when predict-
ing lip units the stream that models the lip motion trajectories
is turned off and only the speech stream is turned on. Whereas
during synthesis the speech stream is turned off and the mo-
tion stream is turned on. The parameter generation algorithm
uses the predicted units, meaning that each unit corresponds to
a model, to synthesise a smooth trajectory.

During synthesis time, speech data is fed into the model
and lip motion units are recognised using the trained HMM.
Trajectories are generated from the HMM using the units. The
lip motion trajectories are used to drive control points on our
facial model.
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3. Corpus
We tracked markers on the face and the body. To minimise
the effects of head and body motion the relative distances be-
tween tracker points were used. Therefore only two features for
the lips (mouth opening, pucker) were calculated. The position
of the markers on the lips can be seen in Figure 2. The ac-
tor read 500 newspaper sentences selected for optimal phoneme
balance. He was also asked to act out various stories and jokes
for greater variety of motion. The newspaper data was automat-
ically phonetically labelled. We split the data into training and
testing data. The testing data was not seen during training.
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Figure 2: The location of the four lip markers. The distance
between the upper and lower lip and the distance between the
left and right corner of the mouth are modelled.

4. Modelling Lip Motion
The proposed method models lip motion directly using the
recorded motion capture points. Distributions of motion tra-
jectories are learnt for each speech unit by a trajectory Hidden
Markov Model (HMM). A trajectory HMM is a state-of-the-art
time series stochastic model that is able to model the dynamic
changes of a signal. Its parameter generation algorithm can pro-
duce smooth trajectories from the stochastic model [8].

The speech and motion data are simultaneously modelled
using context dependent HMMs. The data is described as a se-
quence of context dependent viseme models. Each model con-
sists of five streams. One stream for the speech features, three
streams for F0, and one stream for the motion features. The
lip motion is modelled using two features, that is, the distance
of the upper and lower lip and the distance between the left
and right corner of the mouth. Additionally the first and sec-
ond derivative of the lip motion features are also used to better
model the dynamics of the motion trajectories. The speech is
modelled using the first 12 mel cepstrum coefficients and en-
ergy. The first and second derivative of the speech features
are also modelled. F0 is modelled using three streams, one for
the static features and one stream each for the first and second
derivative respectively. The HMMs use a mixture of Gaussian
distributions at each state.

5. Synthesising Lip Motion
To synthesise lip motion, speech is input into the model. Recog-
nition is performed using the multi-stream HMMs. During the
recognition step only the speech feature streams are used, pro-
ducing a sequence of visemes. The visemes give the sequence
of context dependent models that are used for synthesising the
actual trajectories.

Synthesising from a stochastic model like a conventional
HMM is like rolling a dice. At each state, a value is sampled
from the distribution, the resulting output is stochastic and not

smooth. Conventional HMMs are good at recognising patterns
but the sampled trajectories are not representative of the actual
trajectories that are in the training data. Using the parameter
generation of the trajectory HMM, a smooth output can be syn-
thesised by taking the first and second derivatives of the data
into account.

5.1. Optimal Motion

It is straightforward to justify the above procedures. For sim-
plicity, let us explain the case where we generate motion vec-
tor sequences for the lips OL = (oL1 , oL2 , . . . , oLT ) from a
given speech vector sequence OS = (oS1 , oS2 , . . . , oST ) with
a length of T frames. Lip motion has a high correlation with the
speech vector sequence.. Thus we may solve the optimisation
problem:

O∗
L = argmax

OL

P (OL|OS) (1)

We can work out the optimisation problems by incorporating the
motion-unit sequence uL = (uL1 , ..., uLe), which represent
the lip movements corresponding to the given speech sequence.
Using the motion labels units, the first optimisation regarding
lip motion can be approximated by

O∗
L = argmax

OL

P (OL|OS) (2)

= argmax
OL

X

uL

P (OL|uL, OS)P (OS |uL)P (uL) (3)

� argmax
OL

P (OL|u∗L) (4)

where

u∗L = argmax
uL

P (OS |uL)P (uL) (5)

Thus we recognise the lip motion units uL from the given
speech data OS using the Viterbi algorithm and then gener-
ate a lip motion sequence from HMMs corresponding to the
recognised units. For the probability P (uL), we use back-off
bi-gram models estimated from the training database.

5.2. Trajectory HMM

We explain the parameter generation algorithm for the HMMs.
Since the basic HMMs are generative models, the output se-
quence which the model produces is stochastic and discontin-
uous. Although it is possible to use only mean values of the
Gaussian distributions of the emission probabilities instead, it
is still discontinuous and unnatural. For smooth and natural
output, an extension of the HMM paradigm is needed, which
is called a Trajectory HMM [10]. This is similar to Kalman
smoothing or regularisation theory in the respect that those
smoothing techniques also have some continuity constraints.
The Trajectory HMM uses two explicit constraints on the ob-
servation features as the continuity constraints, obtained from
equations for calculating their velocity and acceleration fea-
tures. The observation vector at frame t, denoted by ot, is de-
fined by

ot = [x�t , Δ1x�t , Δ2x�t ]� (6)

where ·� denotes the matrix transpose and xt is the original
static feature. The velocity and acceleration features are cal-
culated as the first and second time derivative estimates of the
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static features and they are given by

Δ1xt = −0.5xt−1 + 0.5xt+1 (7)

Δ2xt = xt−1 + 2xt + xt+1. (8)

Thus the parameter generation algorithm of the trajectory
HMM generates a sub-optimal smoothed parameter sequence
x∗ = (x∗1, x

∗
2, . . . , x

∗
T ) without the dynamic and acceleration

features as follows

(x∗1, x
∗
2, . . . , x

∗
T ) = argmax

(x1,x2,...,xT )

P (o1, o2, . . . , oT |u∗L) (9)

s.t. Δ1xt = −0.5xt−1 + 0.5xt+1 (10)

Δ2xt = xt−1 + 2xt + xt+1. (11)

When single Gaussian distributions are used as the emission
probabilities, we can easily solve this problem in a closed form
in a maximum likelihood sense [10]. A sample of the trajectory
generated from HMMs is shown in Figure 3, in which we can
see that the generated trajectory (solid line) becomes smooth.
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Figure 3: A sample of the trajectory generated from trajectory
HMMs.

When mixtures of Gaussian distributions are used as the
emission probabilities, the trajectory is optimised via the EM
algorithm to select the optimal Gaussian distributions.

5.3. Animation system

Instead of driving blend-shapes, we control points around the
lips of the character directly. The generated trajectories corre-
spond to the points shown in figure 4.

Figure 4: Screenshot of the model in Blender, showing the con-
trol points around the mouth.

The vertices of the mesh are weighted according to their
distance from the control point. Any transformation applied to

the control point is applied to the vertices around according to
their weight. This produces a skin-like effect. In particular:

v′ =
nX

i

wiMiv (12)

where n is the number of matrices, v is the vertex position, w is
the weight associated, and M is the transformation matrix.

6. Model Unit
For lip synchronisation, visemes were used as the basic mo-
tion units. The data was phonetically labelled and a mapping
between the phoneme labels and our viseme set was realised.
To model the co-articulation we generated context dependent
units, meaning that for each viseme, there were different units
depending on the left and right context. Furthermore, five dif-
ferent sets of visemes were implemented to test for the effects
of different motion units. In particular the sets are described as
follows: The 2vis set consists of just two visemes, one for open
mouth, and one for closed mouth. The simple set (sVis) groups
phonemes into 6 different classes that correspond roughly to
the following phoneme classes: vowels are classed according to
their height and backness, resulting in three classes and conso-
nants are either bilabial, labiodental, or just plain consonants.
The extended set (eVis), breaks these classes further down, dis-
tinguishing diphthongs (5), classing more vowels on its own
(4), and making further distinctions between consonants (10),
resulting in a total of 19 classes. Table 1 shows a comparison of
the different sets.

An experiment was carried out to find the optimal unit for
our model by comparing how well the lip closing in the synthe-
sised data lined up with the original data. If a mouth closing
occurred within 2 frames of the original mouth closing, a point
was awarded. The best performing sets were the extended ver-
sion of a simple set designed by us (eVIS) and the Preston-Blair
phoneme set (pbVis), that seems to be a standard in animation
[11]. Table 1 shows the different sets and its score in our eval-
uation. For our data and model the eVIS set yielded the best
results. Example animations were also produced for the viseme
sets and again the eVis set produced the highest quality anima-
tion as can be seen Figure 6.

no of Description Name Mean Score
Visemes

2 open or close 2vis 66.5
9 Preston Blair set pbVis 67.7
6 simple set sVis 67.4

19 extended set eVis 68.8
46 phone set phone 65.2

Table 1: Viseme sets and its scores. Better alignment between
the mouth closings of the original utterance and the synthesised
one produces a higher score.

What is interesting to note is that the Preston-Blair set
seems to perform worse in our experiments than our own de-
signed sets. This does not mean that one set is superior or
inferior to another but that for automatic generation of lip an-
imation, the viseme set used makes a difference. Therefore it is
important when modelling lip motion to chose the viseme set is
carefully.
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7. Evaluation
Figure 5 shows a comparison between a synthesised lip motion
trajectory and the original trajectory. The original movement
has a higher dynamic range which is a common problem when
using stochastic modelling but otherwise the synthesised trajec-
tory follows the original relatively closely.
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Figure 5: The synthesised trajectory clearly follows most of the
original trajectory. The differences in the dynamic range are
due to the nature of stochastic modeming.

To investigate the merit of the proposed method further, we
conducted a perceptual evaluation. Six different speech inputs
were synthesised in three variants, using the eVis viseme set,
the full phoneme set, and the original tracking data. Ten speech
technology experts were asked to judge the lip-synchronisation
of our character comparing these three conditions. The partic-
ipants saw two videos in succession and had to decide which
one had better lip synchronisation. They could view each video
as often as they like. Each permutation of the 3 conditions, was
seen twice to check for consistency giving a total of 36 trial.
They were presented in randomised order. Figure 6 shows the
score for each condition.
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Figure 6: The percentage of positive scores for each condition.

It is interesting to note that the specifically designed viseme
set is judged better than a standard phone set, when they are
compared with each other. When both sets are directly com-

pared with the original data, both sets are judged about equally
worse than the original.

8. Conclusion and Future Work
We have proposed an HMM-based method for achieving lip
synchronisation. Our work distinguishes itself from other work
in that it can generate lip motion from just speech by utilising
a two-step approach, allowing for a lot of flexibility. The pa-
rameter generation algorithm of the trajectory HMM is used to
generate smooth output trajectories. One of the major draw-
backs of our system is the corpus we are using. Because of
technical limitations we were only able to track 4 points around
the mouth, which resulted in impoverished models. Theoreti-
cally our models can work with an unlimited amount of track-
ing points, even producing other types of animation than just
lip motion. Therefore our next step will be to record better data
with more tracking points. However, given the current data we
were still able to demonstrate that the proposed approach is fea-
sible for animating a talking head.
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