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Abstract
It is now possible to synthesise speech using HMMs with a com-
parable quality to unit-selection techniques. Generating speech
from a model has many potential advantages over concatenat-
ing waveforms. The most exciting is model adaptation. It has
been shown that supervised speaker adaptation can yield high-
quality synthetic voices with an order of magnitude less data
than required to train a speaker-dependent model or to build a
basic unit-selection system. Such supervised methods require
labelled adaptation data for the target speaker. In this paper, we
introduce a method capable of unsupervised adaptation, using
only speech from the target speaker without any labelling.

Index Terms: speech synthesis, HMM-based speech synthesis,
HTS, trajectory HMMs, speaker adaptation, MLLR

1. Introduction
1.1. Speech synthesis using HMMs

In recent Blizzard Challenge speech synthesis evaluations [1,
2], HMM-based systems have been found to have comparable
quality to state-of the art concatenative systems. These HMM-
based system use the so-called ‘Trajectory HMM’ [3] which is
an algorithm for generating an observation sequence from an
HMM that uses delta and delta-delta coefficients in the obser-
vation vector. By generating output that has the correct statis-
tics with respect not only to the static coefficients, but also with
respect to the delta and delta-delta coefficients, a smooth trajec-
tory in observation space is produced. The observation vector
used must contain sufficient information to generate a speech
waveform. Typically, this might be spectral envelope informa-
tion (represented as a cepstrum), a small number of coefficients
of a multi-band noise model, and F0.

1.2. Comparison with speech recognition using HMMs

The models used for speech synthesis are essentially conven-
tional HMMs, as used for automatic speech recognition (ASR).
Therefore, it is relatively straightforward to apply techniques
developed for ASR to models used for synthesis. Perhaps the
most exciting of these is speaker adaptation, which is able to
produce speech synthesis voices using as few as 100 sentences;
compare this to a minimum of 1000 sentences to build a simple
unit-selection system, and 10 000 to build a good system.

There are of course a number of significant differences in
the way models are configured for speech synthesis, compared
to ASR, although the underlying statistical model is the same
is most respects. The observation vector for speech synthesis
contains a more detailed spectral envelope (we use 40th-order
Mel-cepstral features derived from STRAIGHT spectral enve-
lope estimation), plus coefficients not required for ASR (we use

the log energy of the aperiodic component of the signal in 5 fre-
quency bands, plus log F0). Delta and delta-delta coefficients
are appended: total observation vector dimension is 138.

Other differences include partitioning the observation vec-
tor into streams, explicit duration models, multi-space probabil-
ity distributions to handle voiced/unvoiced regions and 5-state
(rather than 3-state) phone models. These are not central to this
work, so the reader is referred to [3] and references therein. The
models we used have the same configuration as the HTS entry
to the 2005 Blizzard Challenge [4], but built using HTS 2.1beta.

1.3. Speech synthesis uses highly context-dependent models

The subword units for synthesis are context-dependent
phones, as in ASR, but the context is much richer.
We use quinphones plus supra-segmental features: po-
sition of segment in syllable, position of syllable in
word/phrase, position of word in phrase, stress/accent/length
features of current/preceding/following syllables, distance from
stressed/accented syllable, POS of current/preceding/following
word, length of current/preceding/following phrase, end
tone of phrase, length of utterance measured in sylla-
bles/words/phrases. These ‘full context’ models make unsuper-
vised adaptation harder for synthesis than for ASR.

1.4. Supervised adaptation

The use of adaptation to create new voices for speech synthesis
makes HMM-based speech synthesis very attractive. To date,
supervised adaptation has been used: full context labels are re-
quired for the adaptation data (i.e., all supra-segmental feature
values must be known). These labels are produced in the same
way as those for the training data: they are predicted from the
text using a TTS front-end. Note that no attempt is made to
ensure these detailed labels accurately match what the speaker
actually said (apart from checking that the words match), al-
though that would be expected to improve results.

The work reported here uses Constrained Maximum Like-
lihood Linear Regression (CMLLR), because it performed well
in initial experiments. More sophisticated schemes have re-
cently become available [5]. CMLLR adapts HMMs by apply-
ing a linear transform to each Gaussian; the same transform is
applied to the mean and variance of any particular Gaussian.
This transform is learned using labelled adaptation data. Be-
cause the adaptation data are generally limited in quantity, and
context-dependent models are used, there will not generally be
an example of every model in the adaptation data. So, it is
necessary to share transforms between groups of states, known
as ‘regression classes’. The grouping of states into regression
classes is part of the model training process; the classes are ar-
ranged into a tree, so that the number of classes can be varied
to suit the amount of adaptation data available. In this work, we
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use only regression trees for adaptation, since they are compu-
tationally cheaper than decision trees. In reality, the regression
classes do not contain entire states, but just the parameters for
an individual stream in a state (spectral envelope, noise bands
or F0). For clarity, we will omit this detail in the remainder of
this paper and describe the method only in terms of states.

For speech synthesis, a model trained on multiple speak-
ers’ data is called an ‘Average Voice model’ [6]. It can be
adapted into a speaker-specific model using CMLLR (or some
other method), using a small amount of adaptation data from
the target speaker to estimate the adaptation transforms.

2. Unsupervised adaptation for synthesis
In ASR, unsupervised adaptation can be as simple as running a
recogniser using unadapted models to obtain an initial phonetic
transcription of the adaptation data. This transcription is then
used as the labelling for supervised adaptation.

2.1. Obtaining full context labels for the adaptation data

The first approach that we considered was analogous to that for
ASR: obtain full context labels for the adaptation data. ASR us-
ing full context models would produce the required full context
labels for the adaptation data but is unfortunately not feasible. It
would be computationally very expensive (even lattice rescor-
ing would produce vast lattices when expanding from triphones
to full context); it is also likely to produce very inaccurate la-
bels because recognition of some features will be hard or im-
possible. Instead, we could perform ASR to obtain words, then
predict full context labels from this (as for the training data, or
adaptation data with known word labels). However, word errors
in ASR output may cause significant errors in the full context
labelling, since effects will spread beyond the word boundary.

2.2. Using only phonetic labels for the adaptation data

Obtaining full context labels for the adaptation appeared to be
difficult. Therefore, we considered an alternative, in which only
phonetic labels would be obtained for the adaptation data (us-
ing standard ASR techniques). The problem then changes to
one of performing adaptation using labels that do not match the
model set being adapted: we have phonetic labels, but full con-
text models. Our proposed method offers a way to achieve this.

2.3. The proposed method

2.3.1. Learning adaptation transforms using a reduced-context
labelling of the adaptation data

We need to estimate an adaptation transform for every state in
the full context model set. However, we only have adaptation
data labelled with triphones. Rather than attempt to produce
full context labels for the adaptation data, we decided to learn
adaptation transforms for a triphone model set, and then apply
these transforms to the full context models. The transform for
a full context model state is taken from the corresponding tri-
phone model state (the mapping is trivial: just drop most of the
context). The outline of the method is presented in Figure 1.

A set of Average Voice triphone models is required; they
must have to have the same number of emitting states as the full
context models (5) and the same observation vectors. These
models could be trained from scratch, or they could be derived
from the trained full context models. We chose the latter: it is
quicker because it requires fewer training steps; more impor-
tantly, the parameters of the triphone models are more likely
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Figure 1: Adapting full context models using transforms

learned by triphone models

to be close to those of the corresponding full context models,
which should lead to more transferable adaptation transforms.

2.3.2. Creating triphone models

The method used to convert full context models (one Gaussian
per state) to triphone models (also one Gaussian per state) is
to untie the full context model states and recluster them using
only a triphone question set. Since the triphone models we re-
quire must be HMMs rather than HSMMs,1 we converted the
full context HSMMs to HMMs by reinstating the transition ma-
trix and training it using EM. The model states are untied and
trained for one iteration, obtaining the required state occupancy
statistics. The clustering is performed on these untied states of
the full context model, but using only questions about their tri-
phone context. The result is a tree from which a complete list
of triphone models can be synthesised. Finally, these triphone
models were trained for a few more iterations of EM and a tri-
phone model adaptation regression tree is learned.

2.3.3. Estimating adaptation transforms for triphone models

A conventional phone recogniser was built using these single-
Gaussian triphone acoustic models and a simple bigram phone
language model (estimated from the phonetic transcription of
the acoustic training data). This recogniser is very simple: we
did not attempt to build the most accurate recogniser possi-
ble. This is because we were interested in the performance of

1This is only for technical reasons: decoding using HSMMs was

not supported by the code at the time this work was done. As a conse-

quence, we are not adapting the duration model.
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speaker adaptation when there is a significant error rate in the
labelling of the adaptation data, as would be expected in real
applications. The recogniser had a phone accuracy of around
50-60%. The output of the recogniser is a sequence of triphone
labels for the adaptation data.

Given these triphone labels, adaptation transforms were es-
timated for the triphone models, using the triphone regression
tree and corresponding regression classes. The result is that ev-
ery triphone model state (which belongs to a single regression
class) has a transform associated with it. Note that any triphone
model states that have their parameters tied will necessarily be-
long to the same regression class.

2.3.4. Transferring adaptation transforms from the triphone
models to the full context models

The mapping from a triphone model to the corresponding group
of full context models is trivial, but in order to actually apply the
transforms to the full context model parameters, we must first
deal with differences in the parameter tying structure between
the triphone and full context model sets.

Recall that the triphone states are parameter-tied by deci-
sion tree clustering, using conventional triphone questions. The
full context model states are also parameter-tied, but using a
tree containing quinphone and prosodic questions. As a con-
sequence, there is no guarantee of any simple correspondence
between the clusters of triphone model states and clusters of
full context model states. Because the same adaptation trans-
form will be applied to all members of any given cluster of tied
states, it is essential that each cluster is associated with exactly
one transform.

The method we devised does not compromise the quality of
the models. We manipulate the state tying scheme of the full
context model so that it is compatible with the triphone model
regression classes. We take each cluster of tied states in the full
context model and partition it into a number of smaller clusters
such that, within each new cluster of full context model states,
all the corresponding triphone model states are in the same re-
gression class. This is performed on fully trained models, so
the only effect is to increase the storage space required by the
model by a small factor. The parameter values of each state are
unchanged. Of course, instead of partitioning the state clusters
of the full context model, we could simply untie all full context
model states, but the resulting model would be very large.

3. Experimental conditions
The experimental test protocol was the same as that of the Bliz-
zard Challenge 2007 and used the same web-browser interface.
Each of the different configurations of our system (Figure 2)
was assigned an identifying letter and was entered as a ‘partici-
pant’ in this mini Blizzard Challenge. We omitted the section on
pairwise “same or different” judgements (intended for Multidi-
mensional Scaling analysis). The test sentences used were taken
from a previous Blizzard Challenge. 40 listeners (native speak-
ers of English, paid subjects, no self-reported hearing problems)
were divided into 10 blocks of 4 listeners. Using a balanced 10-
by-10 (systems -by- test sentences) Latin square design within
each section, each listener block was assigned a row of the Latin
Square, and was thus presented with 10 different test sentences,
each produced using a different system.

Different sentences were used in each of the three sections
of the test, making a total of 30 different test sentences. The
audio files for the test sentences are included with this paper.

The first section of the listening test provides listeners’
judgements on the similarity of the synthetic speech to the
original speaker. Three reference natural utterances (different
sentences to the synthetic speech) were provided. No natural
examples were used in the remainder of the experiment be-
cause we were primarily interested in comparisons between
speaker-dependent, supervised speaker-adapted and unsuper-
vised speaker-adapted systems. The second and third sections
of the test provide listeners’ Mean Opinion Scores (MOS) for
sentences from ‘conversational’ and ‘news’ domains respec-
tively. The final section provides Word Error Rate (WER) using
Semantically Unpredictable Sentences (SUS).

In general, the speaker-adapted systems performed slightly
worse than the speaker-dependent one. This was because we
used a relatively simple version of the Average Voice scheme,
and did not utilise all the recent improvements to this technique
[5].

We used the ARCTIC corpus [7]. Speakers awb, clb, jmk,
rms and slt were used as training data and speaker bdl was used
as the target speaker. The amount of data used is summarised
in Table 1. There were two reference systems: System A was a
speaker-dependent system trained on all the available bdl data,
and system B was a speaker-adapated system trained on all the
available data from the training speakers and adapted using the
correct full-context labels on all the available bdl data.

Data set Speakers Sentences Minutes

all except bdl awb, clb, jmk,

rms, slt

5648 310

all bdl bdl 1131 50

10% of bdl bdl 114 5

1% of bdl bdl 12 ∼1

Table 1: The data

4. Results
We present results in Figure 2, which summarises the results
graphically using the presentation method described in [2] with
the same scales. MOS values are not directly comparable, since
listeners’ judgements are relative. The somewhat small listen-
ing test (40 listeners) was not able to find statistically significant
differences between the different systems, so we can only inter-
pret differences as trends.

Adapting using phonetic labels vs. full context labels: In
order to separate the effects of errors in the labels for the adapta-
tion data, from the effects of learning the adaptation transforms
using triphone models, we compared full context models in a
supervised setting with triphone models in a supervised setting
(B vs. C). The comparison can also be made using less adap-
tation data ( E vs. F, or H vs. I). There is generally a small
reduction in similarity, naturalness and intelligibility with su-
pervised triphone adaptation vs. full context adaptation.

Supervised vs. unsupervised adaptation: The primary
goal of our experiments was to compare unsupervised adap-
tation against supervised adaptation. It is already known that
supervised adaptation can result in equal or better performance
than speaker-dependent HMM-based synthesis. We wished to
find out how much degradation would result from unsupervised
adaptation. The comparison of configurations C vs. D tells us
about the effect of a 40-50% phone error rate in the adaptation
labels. The comparison can also be made using less adaptation
data (F vs. G, or I vs. J).

Amount of adaptation data: We compared use of all data
with 10% of the data and 1% of the data for full context mod-

1871



Training data Adaptation Adaptation Supervised? MOS WER

data labels sim news conv (%)

A all bdl none 2.9 2.8 2.8 10.9

B all except bdl all bdl full context Y 2.4 2.7 2.5 9.3

C all except bdl all bdl triphone Y 2.2 2.4 2.7 11.5

D all except bdl all bdl triphone N 2.1 2.5 2.3 14.6

E all except bdl 10% of bdl full context Y 2.5 2.7 2.7 10.6

F all except bdl 10% of bdl triphone Y 2.3 2.2 2.7 13.7

G all except bdl 10% of bdl triphone N 2.2 2.3 2.5 18.3

H all except bdl 1% of bdl full context Y 2.0 2.4 2.5 15.8

I all except bdl 1% of bdl triphone Y 2.0 2.3 2.5 15.5

J all except bdl 1% of bdl triphone N 1.9 2.1 2.5 14.6
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Figure 2: The table shows the various configurations of the system that were compared in the listening test. System A is speaker-

dependent; all other systems are speaker-adapted. The right hand part of the table summarises MOS and WER results. (sim: similarity

to original speaker; news: naturalness on news domain sentences; conv: naturalness on conversational domain sentences; WER: word

error rate on semantically unpredictable sentences). The results are displayed graphically in the three plots

els with supervised adaptation (B vs. E vs. H), triphone models
with supervised adaptation (C vs. F vs. I) and for triphone mod-
els with unsupervised adaptation (D vs. G vs. J). As expected,
quality decreases as data is reduced, but the decline is graceful
and, even with only around 100 sentences of adaptation data,
the system quality is still at a usable level.

5. Conclusions

We presented a simple method for adapting full context HMMs
when only phonetic labels are available for the adaptation
data, which enables unsupervised adaptation. The method still
adapts to the general supra-segmental characteristics of the tar-
get speaker, although adaptation to specific characteristics is
limited by the use of triphone models to learn the transforms.
There is a small degradation in quality from correct full con-
text labels to correct triphone labels (e.g., B vs. C). There is
a further degradation when adaptation is unsupervised, because
of errors in the triphone labels (e.g. C vs. D). WER increases
particularly when using unsupervised adaptation, although sim-
ilarity and naturalness are less severely impacted. With more
accurate triphone labels, the performance of the unsupervised
system would approach that of the supervised triphone system,
which is not far below that of the supervised full context sys-
tem. The gap in performance between the adapted and speaker-
dependent systems could be removed by use of recent improve-
ments to the Average Voice method [5].

Acknowledgements: This work was carried out when SK was an
invited researcher at NIT. SK holds an EPSRC Advanced Research Fel-
lowship. Vasilis Karaiskos ran the listening test. This work used the Ed-
inburgh Compute and Data Facility (www.ecdf.ed.ac.uk) which is
partially supported by eDIKT (www.edikt.org).

6. References
[1] M. Fraser and S. King, “The Blizzard Challenge 2007,” in Proc.

Blizzard 2007 (in Proc. Sixth ISCA Workshop on Speech Synthesis),
Bonn, Germany, August 2007.

[2] R. A. J. Clark, M. Podsiadlo, M. Fraser, C. Mayo, and S. King,
“Statistical analysis of the Blizzard Challenge 2007 listening test
results,” in Proc. Blizzard 2007 (in Proc. Sixth ISCA Workshop on
Speech Synthesis), Bonn, Germany, August 2007.

[3] H. Zen, K. Tokuda, and T. Kitamura, “Reformulating the HMM as
a trajectory model by imposing explicit relationships between static
and dynamic feature vector sequences,” Computer Speech and Lan-
guage, vol. 21, no. 1, pp. 153–173, January 2007.

[4] H. Zen, T. Toda, M. Nakamura, and K. Tokuda, “Details of Nitech
HMM-based speech synthesis system for the Blizzard Challenge
2005,” IEICE Trans. Information and Systems, vol. E90-D, no. 1,
pp. 325–333, January 2007.

[5] J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata, and J. Isogai,
“Analysis of speaker adaptation algorihms for HMM-based speech
synthesis and a constrained SMAPLR adaptation algorithm,” IEEE
Trans. Audio, Speech and Language Processing, 2008 (Accepted
for publication).

[6] J. Yamagishi and T. Kobayashi, “Average-voice-based speech syn-
thesis using HSMM-based speaker adaptation and adaptive train-
ing,” IEICE Trans. Information and Systems, vol. E90-D, no. 2, pp.
533–543, February 2007.

[7] J. Kominek and A. Black, “The CMU Arctic speech databases,” in
Proc. 5th ISCA speech synthesis workshop, Pittsburgh, USA, 2004,
pp. 223–224.

1872


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	------------------------------
	Abstract Book
	Abstract Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Simon King
	Also by Keiichi Tokuda
	Also by Heiga Zen
	Also by Junichi Yamagishi
	------------------------------
	File Accompanying this Manuscript
	Multimedia material description and links (HTML)

	------------------------------

