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Abstract
Automatic speech recognition (ASR) is difficult in environ-

ments such as multiparty meetings because of adverse acous-
tic conditions: background noise, reverberation and cross-talk.
Microphone arrays can increase ASR accuracy dramatically in
such situations. However, most existing beamforming tech-
niques use time-domain signal processing theory and are based
on a geometric analysis of the relationship between sources and
microphones. This limits their application, and leads to perfor-
mance degradation when the geometric properties are unavail-
able, or heterogeneous channels are used. We present a new
posterior-based approach for microphone array speech recogni-
tion. Instead of enhancing speech signals, we enhance posterior
phone probabilities which are used in a tandem ANN-HMM
system. Significant improvements were achieved over a sin-
gle channel baseline. Combining beamforming and our method
is significantly better than beamforming alone, especially in a
moving speakers scenario.
Index Terms: speech recognition, microphone array, beam-
forming, tandem approach

1. Introduction
Extending ASR to the meetings domain is challenging because
of adverse acoustic conditions. Headset microphones can alle-
viate this problem, but is inconvenient for users. Microphone
arrays are less intrusive and can significantly improve recogni-
tion accuracy, via noise suppression [1, 2, 3, 4, 5] and direction-
ality enforcement [6, 7].

Currently, most array processing methods operate on the
acoustic signals, and assume that SNR enhancement will lead
to ASR error reductions. Classical array processing relies on
the time-delay patterns of the wave front reaching every sensor
in the array, and applies delay compensation on each channel to
beamform the array to the desired direction, thus enhancing the
SNR. Different noise patterns need different beamformers [4].

Despite the differences in design and implementation, all
existing beamformers can be called acoustic beamformers be-
cause the operate on the acoustic signals. Although power-
ful and efficient, acoustic beamformers can suffer severe per-
formance degradation in some circumstances, especially when
the time-delay is hard to accurately estimate, or when the ar-
ray channels are heterogeneous. The first scenario happens
when speakers move whilst talking, in which case even cross-
powerspectrum phase analysis [11] may fail [6]. The second
scenario happens when channels with different physical prop-
erties coexist in the array system, e.g., both lapel and distant
microphones, or if some channels are missing.

This paper presents a novel posterior-based approach for
array processing. This is motivated by the tandem ANN-HMM
hybrid framework proposed by Hermansky et al. [12], in which

posterior probability based features, or PPFs, obtained from a
multi-layer perceptron (MLP), are used to augment the conven-
tional acoustic features of a standard HMM-based ASR system.
In our method, the posterior probabilities of each frame are cal-
culated via the MLP for each microphone channel, and then
accumulated over all channels. These accumulated posteriors
are used as PPFs. Compared to acoustic beamforming (which
enhances speech signals), the new approach directly enhances
posterior probabilities, so might be called posterior beamform-
ing, in the sense of channel selection and accumulation. Our
approach is an intermediate combination approach, somewhere
between acoustic beamforming and hypothesis integration (e.g.,
systems that use ROVER [2]). Posterior beamforming has sev-
eral potential advantages: (1) time-delay estimation is not re-
quired, assuming the posteriors change smoothly; (2) heteroge-
neous channels can be combined easily; (3) channel selection is
more meaningful based on the posteriors. Moreover, posterior
beamforming and acoustic beamforming are complementary, as
we will demonstrate

We first present the posterior probability features and
how they are combined with conventional acoustic features.
Then we describe posterior beamforming and hybrid acoustic-
posterior beamforming. The results of experiments on the MC-
WSJ-AV 8-channel array corpus are provided to demonstrate
the effectiveness of our method.

Figure 1: Generating PPFs and Tandem features. In our experi-
ments, the MLP network uses PLP input features over a 9-frame
window (351 input units), has 2000 hidden units and 46 output
units corresponding to the 46 phones used in the ASR system.

2. Posterior probability based features
For classification problems, a decision based on posterior prob-
ability maximisation is optimal in the sense of discrimination,
and leads to minimum classification errors. Here we follow
the tandem framework introduced by Hermansky et al. [12] in
which framewise phone class posterior probabilities are trans-



Figure 2: An array-based ASR system using an acoustic delay-
sum beamformer. x1, x2, .. represent microphone elements in
the array, and the TD blocks represent time delay compensa-
tion for each channel. w1, w2, ... are weights applied to the
channels.

formed into PPF, via a logarithm and Karhunen-Loeve trans-
form (KLT). In our system, the PPFs are appended to MFCCs,
creating so called Tandem features, then passed to a conven-
tional HMM-based recogniser (Figure 1). With PPFs or Tandem
features, channel combination is straightforward at the feature
level, since posterior probabilities can be simply summed addi-
tive: this is the basis of our method.

3. Posterior-based array processing
3.1. Posterior beamforming

Figure 2 shows a traditional array-based ASR system using a
delay-sum beamformer, which first compensates each channel
with proper time-delay, and then accumulates the speech sig-
nal to generate enhanced speech. The enhanced speech sounds
much clearer to listeners, and performs much better in ASR,
than any single-channel signal.

In the posterior-based approach (Figure 3), we do not ac-
cumulate speech signals, but rather posterior probabilities. Pos-
terior beamforming does not consider any geometric properties
of the environment and requires no physical similarity among
channels. Posterior beamforming obviously has some short-
comings compared with acoustic beamforming; e.g., no use
is made of the SNR enhancement possible if working in the
time domain. Each MLP operates on an unenhanced signal.
Posterior beamforming can not really beamform the array to a

Figure 3: An array-based ASR system using the posterior accu-
mulation approach. x1,x2, .. represent microphone elements
in the array, and p(b), p(aa), .. represent the raw posterior
probabilities of this frame belonging to phone b, aa, etc. The
posterior probabilities from all channels are accumulated and
averaged. A logarithm and KLT transforms them into PPFs.

Figure 4: The diagram of the parallel approach to hybrid
acoustic-posterior breamfoming. The acoustic beamformed au-
dio is used to generate the acoustic components in the Tandem
feature, and the posterior beamformed PPFs form the posterior
components.

specific direction in the way that acoustic beamforming does,
unless super-directive microphones and channel selection are
used.

3.2. Hybrid acoustic-posterior beamforming

Acoustic and posterior beamforming appear to have comple-
mentary properties, making combination, either serially or in
parallel, into a hybrid system an obvious next step.

The serial hybrid processes the beamformed signal as just
another channel, and combines its posteriors with those of the
other (real) channels as in Figure 2. This approach did not im-
prove performance very much. The parallel hybrid (Figure 4)
uses the beamformed signal to provide the conventional acous-
tic features (MFCCs in our case) to which the posterior beam-
former appends PPFs to make tandem features. This method
performed the best in our experiments.

4. Experiments
4.1. Corpus

Experiments were performed on the MC-WSJ-AV corpus [1]
which contains sentences from the wsjcam0 development set
and evaluation sets recorded by new talkers in instrumented
meeting rooms at several sites including CSTR, IDIAP and
NTO. The speech was recorded simultaneously with individ-
ual headset microphones (IHM), lapel microphones (Lapel), a
single channel distant microphone (SDM) and two 8-channel
circular microphone arrays. In our experiments, we tested two
scenarios: the stationary-talker scenario in which talkers speak
from six static positions, and the moving-talker scenario in
which talkers move as they speak. For the stationary-talker sce-
nario, we used one of the circular arrays, which is relatively
small (diameter 20cm), while for the moving-talker scenario,
we used an ah hoc array which contains 8 microphones scat-
tered around the table in unknown positions (Figure 5).

The standard wsjcam0 training set was used for training
the MLP and HMMs, and the wsjcam0 development set was
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Figure 5: The microphone placements used in our experiments.
The small circle represents the calibrated 8-microphone array
and the 8 black dots represent the ad-hoc array.

Word error rate (WER) in %
IHM Lapel SDM A-beam

MFCC 7.8 13.1 65.9 48.2
PLP 7.7 12.3 65.0 44.2

Table 1: Performance of the baseline system with MFCCs or
PLPs under various conditions: individual headset microphone
(IHM), lapel microphone (Lapel), single distant microphone
(SDM) or acoustic beamforming (A-beam).

used to tune decoding parameters. Evaluation was performed
on the MC-WSJ-AV evaluation data which were recorded in
CSTR, University of Edinburgh. For the stationary-talker sce-
nario, there are 188 sentences in the evaluation set, and for the
moving-talker scenario, 179 sentences were used. Each sce-
nario contains 5 talkers.

Throughout the experiments, the evaluation was on a 5k-
vocabulary task. The dictionary used is generated from the one
developed for the AMI NIST RT05S system [13] and the stan-
dard MIT-Lincoln Labs 5k Wall Street Journal trigram language
model was used for decoding. Neither channel- nor speaker-
adaptation was performed, though speaker-based CMN/CVN
was applied wherever acoustic features appear. The HTK
toolkit [14] was used for HMM training and decoding, and the
tool QuickNet from ICSI for manipulating MLPs.

4.2. Stationary-speaker scenario

4.2.1. Baseline system with acoustic beamforming

Our baseline system uses conventional acoustic features and
acoustic beamforming. We tried both MFCC and PLP-based
features, each consisting of 13 cepstral coefficients (includ-
ing zero-order coefficient C0), plus first and second deriva-
tives, leading to a 39-dim vector. The blind delay-sum acoustic
beamformer estimates the time-delay of each channel to a refer-
ence channel by peak detection on the general cross-correlation
(GCC) [11].

Experimental results are presented in Table 1. A substantial
and significant WER reduction (about 20% absolute) was ob-
tained by acoustic beamforming over the SDM condition. The
PLP-based system outperformed MFCCs in all conditions, so
was selected for our baseline system in all remaining experi-
ments.

WER
IHM Lapel SDM A-beam P-beam

Baseline 7.7 12.3 65.0 44.2 -
MPPF 7.7 18.1 59.8 52.8 58.0
PPPF 8.8 15.8 59.3 50.7 57.1

Table 2: Performance of posterior beamforming with an ASR
system based on 20-dim PPFs under various conditions. MPPF
denotes PPF features generated from a MLP with MFCC fea-
tures as the input, and PPPF denotes PPF features generated
from a MLP with PLP input. A-beam denotes acoustic beam-
forming. P-beam denotes posterior beamforming.

4.2.2. Posterior beamforming

Sentences in the wsjcam0 training corpus were phone labelled
by forced alignment, and then used to train the MLP. 70% phone
accuracy was obtained on the cross-validation set of 700 sen-
tences held out from the training set. On our task, KLT reduc-
tion of the log posteriors to the first 20 principal components
gave the best performance. We tried both PLP and MFCC fea-
tures as input to the MLP. Table 2 presents results.

From Table 2, we can observe that the posterior beamform-
ing does significantly improved the recognition performance
compared to the SDM condition, but it is not as good as acoustic
beamforming. The PPF-based systems work significantly better
than the baseline in the SDM condition, suggesting that PPFs
are more robust than acoustic features in noisy environments,
which is consistent with Hermansky’s results [12]. PLP-based
PPFs work better than the MFCC-based ones, so we use PLP-
based PPFs in all subsequent experiments.

4.2.3. Hybrid acoustic-posterior beamforming

As mentioned in section 3.2, we can combine acoustic beam-
forming and posterior beamforming into a hybrid system. This
section reports experiments on this hybrid approach, using Tan-
dem features (Section 2).

In our experiments, 46-dim PPFs are generated from a PLP-
based MLP, which then are concatenated with 39-dim MFCCs,
leading to 85-dim vectors. After KLT, the first 30 principal
components are retained, giving 30-dim tandem features. Hy-
brid beamforming is implemented by using the acoustic beam-
formed signal to generate the MFCCs and the 8-channel accu-
mulated posteriors to generate the PPFs.

Table 3 gives the results of various beamforming ap-
proaches with systems based on tandem features. The system
based on tandem features performs significantly better than the
baseline in the SDM condition, although a little bit worse in the
IHM and Lapel conditions. The hybrid system is better than
acoustic beamforming alone.

4.3. Moving-speaker scenario

In the moving-speaker scenario, acoustic beamforming is ex-
pected to be error-prone because time-delay estimation in this
time-delay-varying condition is more difficult. For the posterior
approach, the impact is expected to be less, since this approach
does not rely on time synchronisation.

Results are shown in Table 4. Compared to the stationary-
speaker scenario, the performance in all conditions is worse.
However, whilst the baseline system WER is increased by
nearly 8%, the tandem system is less affected. The hybrid
beamforming approach only suffers a 3.3% increase in WER



WER
IHM Lapel SDM A-beam P-beam AP-beam

Baseline 7.7 12.3 65.0 44.2 - -
Tandem 8.9 14.0 56.1 43.6 55.5 42.5

Table 3: The experimental results of the parallel hybrid beam-
forming approach based on tandem features. For the Tandem
system, in the conditions IHM, Lapel and SDM, both the MFCC
and PPF components of the tandem features come from the
same single audio channel. In A-beam, both these two com-
ponents come from acoustic beamformed speech. In P-beam,
the MFCC components come from the SDM channel, and the
PPFs come from posterior accumulation over the 8 array chan-
nels. Finally, AP-beam represents the hybrid acoustic-posterior
beamforming, for which the acoustic beamformed speech gen-
erates the MFCCs for the tandem features, and posterior accu-
mulation generates the PPFs.

WER
SDM A-beam P-beam AP-beam

Baseline 72.7 52.0 - -
Tandem 65.0 48.3 63.0 45.8

Table 4: Results for the moving-speaker scenario. The meaning
of each column is the same as Table 3.

and outperforms the acoustic beamforming system by 6.2%. A
pairwise t-test shows that the performance improvements of tan-
dem features and hybrid beamforming over acoustic beamform-
ing is statistically significant (p < 0.01).

5. Conclusions
In this paper, we presented a new posterior beamforming ap-
proach for microphone array-based speech recognition. In this
approach, posterior probabilities calculated from each array
channel are accumulated to form robust posterior probability-
based features. Our experimental results demonstrate a sig-
nificant performance improvement over baseline in the SDM
condition. Posterior beamforming can be combined with con-
ventional acoustic beamforming, leading to a hybrid acoustic-
posterior beamforming approach which is significantly bet-
ter than acoustic beamforming alone. We believe that MLPs
trained with normal speech signals are far from optimal when
used with beamformed signals, so a proper adaptation scheme
should be used. This is future work.
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