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Abstract. In this paper, we address the modeling of topic and role in-
formation in multiparty meetings, via a nonparametric Bayesian model
called the hierarchical Dirichlet process. This model provides a powerful
solution to topic modeling and a flexible framework for the incorporation
of other cues such as speaker role information. We present our modeling
framework for topic and role on the AMI Meeting Corpus, and illustrate
the effectiveness of the approach in the context of adapting a baseline lan-
guage model in a large-vocabulary automatic speech recognition system
for multiparty meetings. The adapted LM produces significant improve-
ments in terms of both perplexity and word error rate.

1 Introduction

A language model (LM) aims to provide a predictive probability distribution
for the next word based on a history of previously observed words. The n-gram
model, which forms the conventional approach to language modeling in state-
of-the-art automatic speech recognition (ASR) systems, simply approximates
the history as the immediately preceding n − 1 words. Although this has been
demonstrated to be a simple but effective model, the struggle to improve over it
continues. Broadly speaking, such attempts focus on the improved modeling of
word sequences, or on the incorporation of richer knowledge. Approaches which
aim to improve on maximum likelihood n-gram models of word sequences in-
clude neural network-based models [1], latent variable models [2], and a Bayesian
framework [3,4]. The exploitation of richer knowledge has included the use of
morphological information in factored LMs [5], syntactic knowledge using struc-
tured LMs [6], and semantic knowledge such as topic information using Bayesian
models [7].

In this paper, we investigate language modeling for ASR in multiparty meet-
ings through the inclusion of richer knowledge in a conventional n-gram language
model. We have used the AMI Meeting Corpus1 [8], which consists of 100 hours
of multimodal meeting recordings with comprehensive annotations at a number

1 http://corpus.amiproject.org
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of different levels. About 70% of the corpus was elicited using a design scenario,
in which the four participants play the roles of project manager (PM), market-
ing expert (ME), user interface designer (UI), and industrial designer (ID), in
an electronics company that decides to develop a new type of television remote
control. Our work in this paper is motivated by the fact that the AMI Meeting
Corpus has a wealth of multimodal information such as audio, video, lexical,
and other high-level knowledge. From the viewpoint of language modeling, the
question for us is whether there are cues beyond lexical information which can
help to improve an n-gram LM. If so, then what are those cues, and how can
we incorporate them into an n-gram LM? To address this question, we here fo-
cus on the modeling of topic and role information using a hierarchical Dirichlet
process [9].

Consider an augmented n-gram model for ASR, with its context enriched
by the inclusion of two cues from meetings: the topic and the speaker role.
Unlike role, which could be seen as deterministic information available in the
corpus, topic refers to the semantic context, which is typically extracted by an
unsupervised approach. One popular topic model is latent Dirichlet allocation
(LDA) [10], which can successfully find latent topics based on the co-occurrences
of words in a ‘document’. However, there are two difficulties arising from the
application of LDA to language modeling of multiparty conversational speech.
First, it is important to define the notion of document to which the LDA model
can be applied: conversational speech consists of sequences of utterances, which
do not comprise well-defined documents. Second, it is not easy to decide the
number of topics in advance, a requirement for LDA.

The hierarchical Dirichlet process (HDP) [9] is a nonparametric generalization
of LDA which extends the standard LDA model in two ways. First, the HDP
uses a Dirichlet process prior for the topic distribution, rather than the Dirichlet
distribution used in LDA. This enables the HDP to determine the number of
topics required. Second, the hierarchical tree structure enables the HDP to share
mixture components (topics) between groups of data. In this paper we exploit
the HDP as our modeling approach for automatic topic learning. Moreover, we
also find it easier to incorporate roles together with topics by expressing them
as an additional level of variables into the HDP hierarchy.

Some previous work has been done in the area of combining n-gram mod-
els and topic models such as LDA and probabilistic latent semantic analysis
(pLSA) for ASR on different data, for example, broadcast news [11,12], lecture
recordings [13], and Japanese meetings [14]. The new ideas we exploit in this
work cover the following aspects. First, we use the nonparametric HDP for topic
modeling to adapt n-gram LMs. Second, we consider sequential topic model-
ing, and define documents for the HDP by placing a moving window over the
sequences of short sentences. Third, we incorporate the role information with
topic models in a hierarchical Bayesian framework. In the rest of this paper, we
will review topic models, and introduce our framework for modeling topic and
role information using the HDP, followed by a set of perplexity and word error
rate (WER) experiments.
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2 Probabilistic Topic Model

Topic models, which have received a growing interest in the machine learning
community, are used in document modeling to find a latent representation con-
necting documents and words — the topic. In a topic model, words in a document
exchangeably co-occur with each other according to their semantics, following
the “bag-of-words” assumption.

Suppose there are D documents in the corpus, and W words in the vocabulary.
Each document d = 1, . . . , D in the corpus is represented as a mixture of latent
topics, with the mixing proportions over topics denoted by θd. Each topic k =
1, . . . , K in turn is a multinomial distribution over words in the vocabulary, with
the vector of probabilities for words in topic k denoted by φk.

In this section, we review two “bag-of-word” models, LDA and the HDP,
following Teh et al. [9,15,16].

2.1 Latent Dirichlet Allocation

Latent Dirichlet allocation [10] is a three-level hierarchical Bayesian model, which
pioneered the use of the Dirichlet distribution for latent topics. That is, the

Fig. 1. Graphical model depictions for (A) latent Dirichlet allocation (finite mixture
model), (B) Dirichlet process mixture model (infinite mixture model), (C) 2-level hi-
erarchical Dirichlet process model, and (D) the role-HDP where Grole denotes the DP
for one of the four roles (PM, ME, UI, and ID) in the AMI Meeting Corpus. Each
node in the graph represents a random variable, where shading denotes an observed
variable. Arrows denote dependencies among variables. Rectangles represent plates, or
repeated sub-structures in the model.
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topic mixture weights θd for the dth document are drawn from a prior Dirichlet
distribution with parameters α, π:

P (θd|απ) =
Γ (

∑K
i=1 απi)

∏K
i=1 Γ (απi)

θαπ1−1
1 . . . θαπK−1

K (1)

where K is the predefined number of topics in LDA, Γ is the Gamma function,
απ = {απ1, . . . , απK} represents the prior observation counts of the K latent
topics with απi > 0: π is the corpus-wide distribution over topics, and α is called
the concentration parameter which controls the amount of variability from θd

to their prior mean π.
Similarly, Dirichlet priors are placed over the parameters φk with the param-

eters βτ . We write:

θd|π ∼ Dir(απ) φk|τ ∼ Dir(βτ ) (2)

Fig. 1.(A) depicts the graphical model representation for LDA. The generative
process for words in each document is as follows: first draw a topic k with
probability θdk, then draw a word w with probability φkw . Let wid be the ith
word token in document d, and zid the corresponding drawn topic, then we have
the following multinomial distributions:

zid|θd ∼ Mult(θd) wid|zid, φzid
∼ Mult(φzid

) (3)

2.2 Hierarchical Dirichlet Process

LDA uses Dirichlet distributed latent variables to represent shades of member-
ships to different cluster or topics. In the HDP nonparametric models are used
to avoid the need for model selection [16]. Two extensions are made in the HDP:
first the Dirichlet distributions in LDA are replaced by Dirichlet processes in the
HDP as priors for topic proportions; second, the priors are arranged in a tree
structure.

Dirichlet Process. The Dirichlet process (DP) is a stochastic process, first
formalised in [17] for general Bayesian modeling, which has become an impor-
tant prior for nonparametric models. Nonparametric models are characterised by
allowing the number of model parameters to grow with the amount of training
data. This helps to alleviate over- or under-fitting problems, and provides an
alternative approach to parametric model selection or averaging.

A random distribution G over a space Θ is called a Dirichlet process dis-
tributed with base distribution H and concentration parameter α, if

(G(A1), . . . , G(Ar)) ∼ Dir(αH(A1), . . . , αH(Ar)) (4)

for every finite measurable partition A1, . . . , Ar of Θ. We write this as G ∼
DP(α, H). The parameter H , a measure over Θ, is intuitively the mean of the
DP. The parameter α, on the other hand, can be regarded as an inverse variance
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of its mass around the mean H , with larger values of α for smaller variances.
More importantly in infinite mixture models, α controls the expected number of
mixture components in a direct manner, with larger α implying a larger number
of mixture components a priori.

Draws from a DP are composed as a weighted sum of point masses located at
the previous draws θ1, . . . , θn. This leads to a constructive definition of the DP
called the stick-breaking construction [18]:

βk ∼ Beta(1, α) πk = βk

k−1∏

l=1

(1 − βk) θ∗k ∼ H G =
∞∑

k=1

πkδθ∗
k

(5)

Then G ∼ DP(α, H). θ∗k is a unique value among θ1, . . . , θn, and δθ∗
k

denotes
a point mass at θ∗k. The construction of π can be understood as follows [15].
Starting with a stick of length 1, first break it at β1, assign π1 to be the length
of stick just broken off. Then recursively break the other portion to obtain π2, π3

and so forth. The stick-breaking distribution over π is sometimes written as
π ∼ GEM(α)2, and satisfies

∑∞
k=1 πk = 1 with probability one. This definition

is important for the inference for the DP.
Recall in Equation 2 for LDA, a finite-dimensional Dirichlet distribution (i.e.,

in which π is a K-dimensional vector) is used as prior for distribution of topic
proportions. LDA, in this sense, is a finite mixture model. If we use a DP instead
as prior for mixing topic proportions, that is, θd ∼ DP(α, H) where φk|H ∼
Dir(βτ ), then the stick-breaking construction for π ∼ GEM(α) will produce a
countably infinite dimensional vector π. In this way, the number of topics in this
DP-enhanced LDA model is potentially infinite, the number of topics increasing
with the available data.

This model, as shown in Fig. 1.(B), is called the Dirichlet process mixture
model (also known as an infinite mixture model).

Hierarchical Framework. Besides the nonparametric extension of LDA from
Dirichlet distribution to Dirichlet process, Teh et al. [9] further extended the
Dirichlet process mixture model from a flat structure to a hierarchical structure,
called a hierarchical Dirichlet process mixture model. This extended model uses
the hierarchical Dirichlet process as priors. Similar to the DP, the HDP is a prior
for nonparametric Bayesian modeling. The difference is that in the HDP, it is
assumed that there are groups of data, and that the infinite mixture components
are shared among these groups.

Considering a simple 2-level HDP as an example, as shown is Fig. 1.(C),
the HDP defines a set of random probability measure Gj , one for each group
of data, and a global random probability measure G0. The global measure G0

is distributed as a DP with concentration parameter γ and base probability
measure H , and the random measure Gj , assuming conditionally independent
given G0, are in turn distributed as a DP with concentration parameter α and
base probability measure G0:

G0|γ, H ∼ DP(γ, H) Gj |α, G0 ∼ DP(α, G0) (6)
2 GEM stands for Griffiths, Engen, and McCloskey.
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This results in a hierarchy of DPs, in which their dependencies are specified
by arranging them in a tree structure. Although this is a 2-level example, the
HDP can readily be extended to as many levels as required.

An HDP-enhanced LDA model, therefore, will have a potentially infinite num-
ber of topics, and these topics will be shared among groups of data. If an HDP is
used as a prior for topic modeling, then the baseline distribution H provides the
prior distribution for words in the vocabulary, i.e., φk|H ∼ Dir(βτ ). The distri-
bution G0 varies around the prior H with the amount of variability controlled by
γ, i.e., G0 ∼ DP(γ, Dir(βτ )). The actual distribution Gd for dth group of data
(words in dth document in topic models) deviates from G0, with the amount
of variability controlled by α, i.e., Gd ∼ DP(α, G0). Together with (3), this
completes the definition of an HDP-enhanced LDA topic model.

3 Modeling Topic and Role Using HDP

In this section we discuss three key questions concerning the modeling of topic
and role using the HDP. First, how should a document be defined in a multiparty
meeting? Second, how do we introduce role into the HDP framework? Third, how
can the local estimates from an HDP be used to adapt a baseline n-gram LM
for an ASR system?

Document Definition. The target application of the HDP in this paper is
the adaptation of LMs for a multiparty conversational ASR system. For each
sentence in the testing data, we need to find a corresponding document for the
HDP, based on which topics are extracted, and then the LM is dynamically
adapted according to the topic information. Documents also include informa-
tion about speaker role. In the AMI Meeting Corpus, meetings are manually
annotated with word transcription (in *.words.xml), with time information be-
ing further obtained via forced alignment. Also available in the corpus are the
segment annotations (in *.segments.xml). Role information can be easily de-
termined from the annotations in the corpus. We used the following procedure,

foreach meeting m in the corpus
retrieve words with time and role info for m;
align all words in m to a common timeline;
foreach segment s in m
st = starttime(s); et = endtime(s)
if et-st < winlen L: st = et-L;
foreach w in words[st:et]
if not stopword(w): doc(s) += w;

end
role(s) = role assigned to most words;

end
end

Fig. 2. The procedure used to define documents for the HDP/rHDP
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as shown in Fig. 2, to obtain documents: for each scenario meeting, first align
all the words in it along a common timeline; then for each sentence/segment,
collect those non-stop words belonging to a window of length L, by backtracing
from the end time of the sentence/segment, as the document. The role that has
been assigned to the most of words in the window is selected as the role for that
document.

By collecting all documents for meetings belonging to the training and testing
data respectively, we can obtain the training data for HDP model and the test-
ing data for perplexity evaluation. A similar idea applies to finding documents
dynamically for ASR experiments. The difference is that we do not have the
segment annotations in this case. Instead speech segments, obtained by either
automatic or manual approaches, are used as units for finding documents as
well as for ASR. In the ASR case we use an online unsupervised method: ASR
hypotheses (with errors and time information) from previous segments are used
to define documents for HDP inference for the current segment. In both cases
above, we simply ignore those segments without corresponding documents.

Incorporation of Role Information. As a preliminary attempt, we consider
the problem of introducing role into the HDP hierarchy to enable better topic
modeling. In the scenario meetings of the AMI Meeting Corpus, each of the
four participants in a meeting series was assigned a different role (PM, ME, UI,
or ID). Since different participants have different roles to play, there may be
a different topic distribution, and in turn different dominant words, specific to
each role. However, we still expect topic models to work as a whole on the corpus
rather than having four separate topic models. The HDP is thus an appropriate
model, because it has a flexible framework to express DP dependencies using a
tree structure.

Documents were defined as described above for those scenario meetings with
role information, a one-to-one mapping. We grouped the documents for each
of the four roles, and assigned a DP Grole for each role, which then served as
the parent DP in the HDP hierarchy (the base probability measure) for all DPs
corresponding to documents belonging to that role. To share the topics among
four roles, a global DP G0 was used as the common base probability measure
for the four role DPs Grole. See the graphical model shown in Fig. 1.(D) for the
HDP hierarchy. Formally speaking, we used a 3-level HDP, referred to as rHDP,
to model topic and role information in the AMI Meeting Corpus:

G0|γ, H∼DP(γ, H), Grole|α0, G0 ∼ DP(α0, G0), Gj |α1, Grole∼DP(α1, Grole) (7)

Combination with n-grams. A topic in an HDP is a multinomial distribu-
tion over words in the vocabulary (denoted as φk), which can be considered as a
unigram model. To be precise, we use Phdp(w|d) to denote the unigram probabil-
ities obtained by the HDP based on the jth document d. The HDP probability
Phdp(w|d) is approximated as a sum over all the latent topics φk for that docu-
ment, supposing there are K topics in total in the HDP at the current time:



Modeling Topic and Role Information in Meetings 221

Phdp(w|d) ≈
K∑

k=1

φkw · θdk (8)

where the probability vector φk is estimated during training and remains fixed
in testing, while the topic weights θd|G0 ∼ DP(α0, G0) are document-dependent
and thus are calculated dynamically for each document. For rHDP, the difference
is that the topic weights are derived from role DPs, i.e., θd|Grole ∼ DP(α1, Grole).

As in [19], we treat Phdp(w|d) as a dynamic marginal and use the following
equation to adapt the baseline n-gram model Pback(w|h) to get an adapted n-
gram Padapt(w|h), where z(h) is a normalisation factor:

Padapt(w|h) =
α(w)
z(h)

· Pback(w|h) α(w) ≈
(

Phdp(w|d)
Pback(w)

)μ

(9)

4 Experiment and Result

We report some experimental results in this section. The HDP was implemented
as an extension to the SRILM toolkit3. All baseline LMs used here were trained
using SRILM, and the N-best generation and rescoring were based on a modified
tool from SRILM.

Since we considered the role information, which is only available in scenario
AMI meetings, we used part of the AMI Meeting Corpus for our experiments.
There are 138 scenario meetings in total, of which 118 were used for training and
the other 20 for testing (about 11 hours). We used the algorithm introduced in
Section 3 to extract the corresponding document for each utterance. The average
number of words in the resulting documents for window lengths of 10 and 20
seconds was 10 and 14 respectively. Data for n-gram LMs were obtained as usual
for training and testing.

We initialized both HDP and rHDP models with 50 topics, and β = 0.5
for Equation 2. HDP/rHDP models were trained on documents of 10 seconds
window length from the scenario AMI meetings with a fixed size vocabulary of
7,910 words, using a Markov Chain Monte Carlo (MCMC) sampling method.
The concentration parameters were sampled using the auxiliary variable sample
scheme in [9]. We used 3,000 iterations to ‘burn-in’ the HDP/rHDP models.

4.1 Perplexity Experiment for LMs

In order to see the effect of the adapted LMs on perplexity, we trained three
baseline LMs: the first one used the AMI n-gram training data, the second
used the Fisher conversational telephone speech data (fisher-03-p1+p2), and the
third used the Hub-4 broadcast news data (hub4-lm96). A fourth LM was trained
using all three datasets. All the four LMs were trained with standard parameters
using SRILM: trigrams, cut-off value of 2 for trigram counts, modified Kneser-
Ney smoothing, interpolated model. A common vocabulary with 56,168 words
3 http://www.speech.sri.com/projects/srilm

http://www.speech.sri.com/projects/srilm
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Table 1. The perplexity results of HDP/rHDP-adapted LMs

LMs Baseline HDP-adapted rHDP-adapted

AMI 107.1 100.7 100.7
Fisher 228.3 176.5 176.4
Hub-4 316.4 248.9 248.8

AMI+Fisher+Hub-4 172.9 144.1 143.9

was used for the four LMs, which has 568 out-of-vocabulary (OOV) words for
the AMI test data.

The trained HDP and rHDP models were used to adapt the above four base-
line n-gram models respectively, using Equation 9 with μ = 0.5. Different vo-
cabularies were used by the HDP/rHDP models compared with the baseline
n-gram models. Only those words occurring in both the HDP/rHDP vocabulary
and the n-gram vocabulary were scaled using Equation 9. Table 4.1 shows the
perplexity results for the adapted n-gram models. We can see both HDP- and
rHDP-adapted LMs produced significant reduction in perplexity, however there
was no significant difference between using the HDP or rHDP as the dynamic
marginal in the adaptation.

4.2 ASR Experiment

Finally, we investigated the effectiveness of the adapted LMs based on topic and
role information from meetings on a practical large vocabulary ASR system. The
AMIASR system [20] was used as the baseline system.

We began from the lattices for the whole AMI Meeting Corpus, generated by
the AMIASR system using a trigram LM trained on a large set of data coming
from Fisher, Hub4, Switchboard, webdata, and various meeting sources including
AMI. We then generated 500-best lists from the lattices for each utterance. The
reason why we used N-best rescoring instead of lattice rescoring is because the
baseline lattices were generated using a trigram LM.

We adapted two LMs (Fisher, and AMI+Fisher+Hub4) trained in Section 4.1
according to the topic information extracted by HDP/rHDP models based on
the previous ASR outputs, using a moving document window with a length of 10
seconds. The adapted LM was destroyed after it was used to rescore the current
N-best lists. Two adapted LMs together with the baseline LM were then used to
rescore the N-best lists with a common language model weight of 14 (the same
as for lattice generation) and no word insertion penalty.

Table 4.2 shows the WER results. LMs adapted by HDP/rHDP both yield
an absolute reduction of about 0.7% in WER. This reduction is significant using
a matched-pair significance4 test with p < 10−15. However, again there was no
significant difference between the HDP and the rHDP.

To further investigate the power of HDP/rHDP-adapted LMs, we trained a
standard unigram, AMI-1g, on the AMI training data, which is the same data
4 http://www.icsi.berkeley.edu/speech/faq/signiftest.html

http://www.icsi.berkeley.edu/speech/faq/signiftest.html
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Table 2. The %WER results of HDP/rHDP-adapted LMs

LMs SUB DEL INS WER

Fisher 22.7 11.4 5.8 39.9
AMI-1g-adapted 22.4 11.3 5.7 39.4
HDP-adapted 22.2 11.3 5.6 39.1
rHDP-adapted 22.3 11.3 5.6 39.2

AMI+Fisher+Hub4 21.6 11.1 5.4 38.2
AMI-1g-adapted 21.3 11.0 5.4 37.8
HDP-adapted 21.2 11.1 5.3 37.6
rHDP-adapted 21.2 11.1 5.3 37.5

used for HDP/rHDP training. This unigram was trained using the same vocabu-
lary of 7,910 words as that for HDP/rHDP training. We then used this unigram
as dynamic marginal to adapt the baseline LMs, also using the formula in Equa-
tion 9. The “AMI-1g-adapted” lines in Table 4.2 shows the WER results. We
see, although AMI-1g-adapted LMs have lower WERs than that of the base-
line LMs, HDP/rHDP-adapted LMs still have better WER performances (with
0.2–0.3% absolute reduction) than AMI-1g-adapted. Significant testing indicates
that both improvements for the HDP/rHDP are significant, with p < 10−6.

5 Discussion and Future Work

In this paper, we successfully demonstrated the effectiveness of using the topic
(and partly role) information to adapt LMs for ASR in meetings. The topics were
automatically extracted using the nonparametric HDP model, which provides
an efficient and flexible Bayesian framework for topic modeling. By defining the
appropriate ‘documents’ for HDP models, we achieved a significant reduction
in both perplexity and WER for a test set comprising about 11 hours of AMI
meeting data.

To our understanding, the reasons for the significant improvements by adapted
LMs based on the topic and role information via the HDP come from the follow-
ing sources. First, the meeting corpus we worked on is a domain-specific corpus
with limited vocabulary, especially for scenario meetings, with some words quite
dominant during the meeting. So by roughly estimating the ‘topic’, and scaling
those dominant words correctly, it is possible to improve LM accuracy. Second,
HDP models can extract topics well, particularly on the domain-specific AMI
Meeting Corpus. One interesting result we found is that different HDP/rHDP
models, though trained using various different parameters, did not result in sig-
nificant differences in either perplexity or WER. By closely looking at the result-
ing topics, we found that some topics have very high probability regardless of
the different training parameters. One characteristic of those topics is that the
top words normally have very high frequency. Third, the sentence-by-sentence
style LM adaption provides further improvements, to those obtained using the
AMI-1g-adapted LMs in Table 4.2. Language models are dynamically adapted
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according to the changes of topics detected based on the previous recognized
results. This can be intuitively understood as a situation where there are K un-
igram LMs, and we dynamically select one unigram to adapt the baseline LMs
according to the context (topic). In this paper, however, both the number of uni-
gram models K and the unigram selected for a particular time are automatically
determined by the HDP/rHDP. Although this is unsupervised adaptation, it per-
forms better than LM adaptation using static LMs trained on reference data.

One the other hand, the rHDP had a similar accuracy to the HDP in terms
of both perplexity and WER. Our interpretation for this is that we did not ex-
plicitly use the role information for adapting LMs, only using it as an additional
DP level for sharing topics among different roles. As mentioned above, based on
the AMI Meeting Corpus, which has a limited domain and consequently limited
vocabulary words, this will not cause much difference in the resulting topics,
no matter whether HDP or rHDP is used for topic modeling. Despite this, in-
cluding the role information in the HDP framework can give us some additional
information, such as the topics proportion specified to each role. This implies
some scope to further incorporate role information into the hierarchical Bayesian
framework for language modeling, for example by sampling the role randomly for
each document, empirically analysing the differences between HDP and rHDP,
and explicitly using the role for language modeling. Another possibility for fur-
ther investigation is about the prior parameter for Dirichlet distribution: can
prior knowledge from language be used to set this parameter? Finally, more
ASR experiments to verify the consistence and significance of this framework on
more meeting data, e.g., a 5-fold cross-validation on the AMI Meeting Corpus,
would be informative.
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