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Abstract
We consider the problem of parameter estimation in full-

covariance Gaussian mixture systems for automatic speech
recognition. Due to the high dimensionality of the acoustic fea-
ture vector, the standard sample covariance matrix has a high
variance and is often poorly-conditioned when the amount of
training data is limited. We explain how the use of a shrinkage
estimator can solve these problems, and derive a formula for the
optimal shrinkage intensity. We present results of experiments
on a phone recognition task, showing that the estimator gives a
performance improvement over a standard full-covariance sys-
tem.
Index Terms: speech recognition, acoustic models, regularisa-
tion, full covariance estimation, shrinkage estimator

1. Introduction
HMM-based systems for automatic speech recognition (ASR)
typically model the acoustic features using mixtures of multi-
variate Gaussians (GMMs). A variety of schemes have been
proposed for controlling the number of covariance parameters
of each Gaussian, which may vary between p, in the diago-
nal case, and 1

2
p(p + 1) in the full covariance case, where p is

the size of the acoustic feature vector. Examples include Semi-
Tied Covariance Matrices (STC) [1], Extended Maximum Like-
lihood Linear Transforms [2] and Subspace for Precision and
Mean [3]. Studies have shown that in general, the greater the
number of parameters used in the models, the better the recog-
nition performance [4].

These results have lead us to consider the case where each
Gaussian is modelled with the full 1

2
p(p+1) parameters. Given

observations x(t), with probabilities γm(t) of being generated
by a Gaussian m, the maximum likelihood estimate of the true
covariance matrix, Σm is given by

Sm =

P
t γm(t)(x(t)− μ̂m)(x(t)− μ̂m)TP

t γm(t)
(1)

where μ̂m is the maximum likelihood estimate of the mean for
the Gaussian m. We set βm =

P
t γm(t).

The maximum likelihood estimator (MLE) has several at-
tractive properties. Firstly, it is consistent: the MLE of a pa-
rameter θ, based on n samples, tends to θ as n → ∞. Sec-
ondly, it is asymptotically efficient: as n → ∞, the MLE has
the minimum variance achieved by any unbiased estimator. Fur-
thermore, the maximum likelihood estimate is easy to compute
from data. In HMM-GMM systems, whilst the MLE cannot be
obtained directly, the well-known EM algorithm is an iterative
algorithm, with each successive estimate guaranteed to increase
the likelihood of the training data.

However, use of ML estimation for machine learning has
several drawbacks. Learning theorists have challenged the use-
fulness of asymptotic results, pointing out that rarely can we

consider the amount of training data to be approaching infin-
ity [5]. In ASR applications where high-dimensional feature
vectors are usual, the amount of training data may not even be
much larger than the number of parameters required to be es-
timated. The problem is particularly acute for full covariance
matrix estimation, withO(p2) parameters. Furthermore, in lim-
ited data situations, the ML covariance matrix estimate is likely
to be ill-conditioned: that is to say, the ratio between the largest
and smallest eigenvalues is large, resulting in the amplification
of numerical errors when the matrix is inverted – as it is when
computing the probability density function of the Gaussian. In
the extreme case, when n < p, the matrix is, in general, non-
invertible.

In this paper we aim to address two problems associated
with limited data covariance-matrix estimation in ASR. Firstly,
the problem that the MLE does not have minimum variance in
the case that the asymptotic assumption does not hold. If an
estimator has high variance then it is likely to be over-fitted to
the training data, leading to poor performance on test data. Sec-
ondly, the problem of the matrix being ill-conditioned. Both
problems can be solved by regularising the estimator appropri-
ately.

This paper is structured as follows: firstly we introduce the
shrinkage estimator – as a regularised covariance matrix estima-
tor – and discuss its properties. We briefly discuss other meth-
ods for covariance regularisation. We go on to explain how the
shrinkage estimator can be obtained in the context of an HMM-
GMM system, and test the new estimator on a phone recogni-
tion task where the amount of training data is limited.

2. The shrinkage estimator
2.1. Introducing shrinkage

Stein [6] first introduced the concept of “shrinkage” as applied
to high-dimensional estimators (specifically, of the mean of a
distribution), deriving the surprising result that the performance
of the MLE can always be improved upon by shrinking by a
given factor λ (the “shrinkage intensity”). More recently, Ledoit
and Wolf [7] showed how this procedure can be applied to co-
variance matrices. We consider a new estimator, U , of Σ, given
by

U = (1− λ)S + λD (2)

where D, the “shrinkage target”, is a diagonal matrix. It can
be seen that as λ is increased to one, the off-diagonal elements
of U shrink towards zero. (For clarity, we have suppressed the
dependence on m).

Adopting the terminology of classical statistics, we mea-
sure the performance of an estimator X of a parameter θ by its
mean squared error (MSE), given by

MSE(X) = E(X − θ)2 (3)
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(where the expectation is with respect to θ). Note the standard
result, that

MSE(X) = E((X − EX) + (EX − θ))2 (4)

= E(X − EX)2 + (EX − θ)2 (5)

= var(X) + bias2(X) (6)

Typically, a higher dimensional estimator will have a lower bias,
but higher variance – minimising the MSE of an estimator can
be viewed as optimising the trade-off between the two.

Subject to a minor correction factor, S is an unbiased esti-
mator of Σ, whilst D is biased in its off-diagonal elements. The
shrinkage procedure can therefore be viewed as “backing off”
from the high-variance, unbiased S to the low-variance, biased
D. It will be seen below that the optimal shrinkage factor λ can
be directly computed.

To measure the MSE of a matrix estimator, we use the
Frobenious norm, given by

‖A‖F =
√

trAT A = (
X

i

X
j

|Aij |2) 1
2 (7)

This arises from the inner product 〈A, B〉 = tr AT B. The MSE
of U is given by E‖U − Σ‖2F . In the equations that follow, the
Frobenius norm is used implicitly.

In [7], D is taken to be a uniform diagonal matrix D =
ρI . However, Schäfer and Strimmer [8] discuss a variety of
alternative targets. As they explain, the case where D consists
of the diagonal elements of S is attractive for several reasons,
and it is this target which we use throughout this work.

2.2. Finding the optimal shrinkage intensity

In [7] a method was obtained for computing the optimal shrink-
age intensity analytically, whilst [8] generalised them to a vari-
ety of shrinkage targets. We seek λ to minimise

E‖U − Σ‖2 = E‖λ(D − Σ) + (1− λ)(S − Σ)‖2 (8)

= λ2
E‖D − Σ‖2 + (1− λ)2E‖S − Σ‖2

+ 2λ(1− λ)E〈D − Σ, S − Σ〉 (9)

Differentiating with respect to λ and setting the result equal to
zero, we obtain

λ[E‖D − Σ‖2 + E‖S − Σ‖2 − 2E〈D − Σ, S − Σ〉]
= E‖S − Σ‖2 − E〈D − Σ, S − Σ〉 (10)

λE‖(S−Σ)−(D−Σ)‖2 = E〈S−Σ, (S−Σ)−(D−Σ)〉 (11)

and so

λ =
E〈S − Σ, S −D〉

E‖S −D‖2 (12)

In the case that D consists of the diagonal elements of S, and us-
ing the fact that S is unbiased, the numerator becomes the sum
of off-diagonal elements of the matrix var(S). The denomina-
tor becomes the expected sum of the off-diagonal elements of
S. From the formula (12) it can be noted that λ increases with
var(S), so that for small sample sizes, the shrinkage target, D,
achieves more prominence.

2.3. Estimator properties

2.3.1. Matrix conditioning

In [7] it is shown that the eigenvalues of the sample covariance
matrix are, on average, more dispersed than the eigenvalues of
the true covariance matrix. This means that the sample covari-
ance matrix is likely to be less well-conditioned that the true co-
variance matrix, leading to numerical problems when the matrix
is inverted. The eigenvalues of D (just the diagonal elements)
have the same mean as the eigenvalues of S, but are less dis-
persed, so the linear combination of S and D used in the shrink-
age estimator will shrink the eigenvalues towards m. (See [7]
for technical probabilistic results concerning the conditioning
of the shrinkage estimator).

2.3.2. Bayesian viewpoint

For simplicity of presentation, we have not adopted a Bayesian
framework in this paper. However, it is quite possible to con-
sider the above equations in this way. The MSE of an estimator
U is equivalent to the Bayes’ risk with a quadratic loss function:

R(U) =

Z
Σ

‖U − Σ‖2f(Σ|x)dΣ (13)

where f(Σ|x) is the posterior probability. If a non-informative
prior is chosen, we obtain the minimum risk at U = S as in the
classical MLE case. The shrinkage estimator can be obtained
by choosing a suitable prior for Σ centred on the shrinkage tar-
get. As the amount of data is reduced, the influence of the prior
is increased, and the minimum Bayes’ risk estimator becomes
closer to D.

2.4. Alternative estimators

Most large-vocabulary ASR systems employ some form of co-
variance regularisation. Most simply, flooring diagonal covari-
ance elements to some proportion of global variance is standard
practice, considered essential in systems with many Gaussians.
When p is large, the covariance matrix may be constrained
to have a block-diagonal structure: in this case, the minimum
number of samples required for the sample matrix to be invert-
ible is equal to the size of the largest block.

Methods such as [1, 2, 3], do not set out to regularise
the covariance matrices, but the sharing of covariance param-
eters across Gaussians does reduce the variance of the estima-
tors used. The full covariance systems described in [9] apply
smoothing to off-diagonal elements of the covariance matri-
ces. In effect this results in a shrinkage estimator: however,
the smoothing factor used does not have the same optimality
properties as described here, and requires a hyper-parameter
to be specified. In the same work, smoothing functions are
used to control the minimum eigenvalues of discriminatively-
estimated covariance matrices. The maximum eigenvalues are
not controlled, however, so the matrices are not necessarily
well-conditioned.

[10] describes an estimator obtained by maximising l1-
penalised likelihood. The resulting estimator has sparse in-
verses, and is well-conditioned. However, the estimation
procedure is computationally expensive, and again, a hyper-
parameter is required.
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3. Estimating the shrinkage parameter
Recall that for the case where the shrinkage target D consists of
the off-diagonal elements of S, the formula (12) gives

λ =

P
i�=j var Sij

E
P

i�=j S2
ij

(14)

Neither the numerator nor the denominator of this expression
can be obtained directly, and must themselves be estimated
from the training data. For this, we follow the procedure of
[8], extended for use with GMMs. We replace ES2

ij by S2
ij and

var(Sij) by its sample variance. An important result from [7] is
that this estimator is consistent under a much weaker asymptotic
assumption: rather than assuming that the number of samples
tends to infinity, it is only necessary to assume that the ratio of
the number of parameters to the number of samples is bounded.

We now explain how the sample variance of Sij can be ob-
tained within the context of the EM algorithm. In what follows,
we suppress the dependence on the Gaussian m for clarity of
notation. We define

wij(t) = (xi(t)− μ̂i)(xj(t)− μ̂j) (15)

The sample mean of this is given by

w̄ij =
1

β

X
t

γ(t)wij(t) (16)

And the sample estimate of var(wij) is given by

cvar(wij) =
1

β

X
t

γ(t)(wij(t)− w̄ij)
2

(17)

=

P
t γ(t)wij(t)

β
− w̄2

ij (18)

Now since

Sij =
1

β

X
t

γ(t)wij(t) (19)

then treating the wij(t) as IID random variables, we have

cvarSij =

P
t γ(t)2

β2
cvarwij (20)

This formula is clearly analogous to that derived in [8] when the
true class of each sample is observed. As an aside, it should be
noted that the variance estimators used here are slightly biased.
This could be remedied by applying a correction factor at each
stage, given by

β2

β2 −P
t γ(t)2

(21)

However, we found that this correction makes little difference
in practice.

The shrinkage estimate is obtained at each iteration of the
EM algorithm. It does not affect the algorithm’s convergence
properties. It can be seen from (20) that the computation of
λ requires two additional sets of statistics to be accumulated,
namely the sums of w2

ij and γ2. The additional computational
cost is small compared to that already incurred computing of
γ(t) for each frame.

4. Experiments
To evaluate the potential benefits for ASR systems of using the
shrinkage estimator over the standard full covariance matrix es-
timator, we carried out phone recognition experiments on the
TIMIT corpus. Since our particular interest lies in the case
when the amount of training data is small, we conducted ex-
periments where the amount of training data is artificially re-
duced. Data was removed from the full training set on a phone-
by-phone basis, using the high-accuracy hand-alignments avail-
able for the corpus. We removed instances of each phone at
random across the whole corpus, but in such a way as to ensure
that the overall distribution of phones remained constant. In the
smallest case, data consisted of just 10% of the full training set.
This method of reducing the data meant that the HMMs could
not be trained using embedded re-estimation: however, use of
this technique is not essential for systems trained on TIMIT.

The system used for the experiments was a standard mono-
phone HMM system using 48 phone models, each with three
emitting states. The acoustic feature vector consisted of 12
MFCCs plus energy component, their deltas and double-deltas.
Following previous experiments, each full-covariance Gaussian
mixture component was initialised from a diagonal-covariance
system with the same number of Gaussians (and trained on the
same data). Results were obtained on the standard reduced test
set of 192 utterances, collapsing the labels to the usual 39-phone
set. A bigram language model was used for decoding, with the
language model scaling factor and insertion penalty fixed for all
experiments.

An important issue to consider is the optimal number of
Gaussians to use for each state. The issue is particularly prob-
lematic here because the optimal number of Gaussians will be
higher when the number of parameters per Gaussian is smaller,
as in the diagonal or semi-tied covariance cases, and will also
vary with the amount of training data available, and the form
of estimator used. Previous experiments indicated that perfor-
mance of diagonal-covariance systems, trained on the full train-
ing set, reaches an approximate peak of 69.6% accuracy with 64
Gaussians per state. Full covariance systems reach a peak at a
much lower number of Gaussians – usually around 12 per state,
depending on the amount of training data. With this in mind,
when experimenting with varying amounts of training data, we
fix the number of Gaussians at 12. In the results that follow, the
main comparison to be drawn is between the system using the
shrinkage covariance estimator, and that using the standard full
covariance estimator – these both have the same total number
of parameters – diagonal covariance and STC systems with the
same number of Gaussians1 are shown for interest, but these re-
sults are not indicative of their best performance. However, [3]
found that full-covariance systems can outperform STC systems
that have more Gaussians and a greater number of parameters
in total.

The results with 12 Gaussians per state are shown in Fig-
ure 1 and in Table 1. It can be seen that the system using the
shrinkage estimator outperforms all the other systems, for all
quantities of training data. The performance of standard full co-
variance system drops rapidly as the amount of training data is
reduced, whilst the shrinkage system maintains its robustness.
At 10% data, it continues to outperform the diagonal system.
Although results are not given for reasons of space, a similar
trend was observed with smaller numbers of Gaussians. The
best results are competitive with recently-reported results from

1STC transforms are tied at the state level
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Figure 1: Phone accuracy of covariance estimators with vary-
ing quantities of training data, using 12 Gaussians per state
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Figure 2: Phone accuracy of covariance estimators with vary-
ing Gaussian mixture components, using 50% of training data

similar systems on this task [11].

In Figure 2 we illustrate how the performance of the sys-
tems vary with the number of Gaussians, in the case when 50%
of the training set is used. Again, the shrinkage system outper-
forms the others in all experiments, whereas the standard full-
covariance system lacks robustness at higher number of Gaus-
sians. This is because as the number of Gaussians is increased,
the effective amount of data available to train each one is re-
duced.

5. Discussion
We have demonstrated that the use of the shrinkage estimator
can be beneficial for full-covariance ASR systems. This esti-
mator is simple to compute and requires no hyper-parameters to
be specified. The method is shown to be particularly beneficial
in sparse-data situations.

The sparse-data results shown here are somewhat artificial:
to demonstrate the benefits of the technique, it is useful to be
able to precisely control the amount of data available. However,
there are many ASR applications where the number of parame-
ters is large relative to the amount of training data: for example,
when adapting models to new speakers or environments using
limited adaptation data; or in systems using an expanded set of
acoustic features. We will seek to apply the technique to these

Table 1: Phone accuracy results.

Data (%) Diag STC Full Shrinkage

10 64.2 61.5 - 64.9
20 65.5 66.8 59.9 67.5
30 66.2 68.1 64.6 68.8
40 66.3 68.5 67.1 69.8
50 66.8 69.5 68.1 70.7
60 66.4 69.2 68.6 70.2
75 66.8 69.4 70.4 71.2
100 67.0 69.5 69.7 71.0

tasks in future work.
Finally, we note that the methods used do not seek to correct

for the invalidity of the model-correctness assumption under-
pinning MLE. We will therefore seek to adapt the regularisation
techniques for use with discriminative estimators, to maintain
robustness in limited-data conditions.
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