
Hierarchical Reinforcement Learning for

Spoken Dialogue Systems

Heriberto Cuaýahuitl
T

H
E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Communicating and Collaborative Systems

School of Informatics

University of Edinburgh

January 2009

Abstract

This thesis focuses on the problem of scalable optimizationof dialogue behaviour

in speech-based conversational systems using reinforcement learning. Most previous

investigations in dialogue strategy learning have proposed flat reinforcement learning

methods, which are more suitable for small-scale spoken dialogue systems.

This research formulates the problem in terms of Semi-Markov Decision Processes

(SMDPs), and proposes two hierarchical reinforcement learning methods to optimize

sub-dialogues rather than full dialogues. The first method uses a hierarchy of SMDPs,

where every SMDP ignores irrelevant state variables and actions in order to optimize

a sub-dialogue. The second method extends the first one by constraining every SMDP

in the hierarchy with prior expert knowledge. The latter method proposes a learning

algorithm called ‘HAM+HSMQ-Learning’, which combines twoexisting algorithms

in the literature of hierarchical reinforcement learning.Whilst the first method gener-

ates fully-learnt behaviour, the second one generates semi-learnt behaviour. In addi-

tion, this research proposes a heuristic dialogue simulation environment for automatic

dialogue strategy learning. Experiments were performed onsimulated and real envi-

ronments based on a travel planning spoken dialogue system.Experimental results

provided evidence to support the following claims: First, both methods scale well at

the cost of near-optimal solutions, resulting in slightly longer dialogues than the op-

timal solutions. Second, dialogue strategies learnt with coherent user behaviour and

conservative recognition error rates can outperform a reasonable hand-coded strategy.

Third, semi-learnt dialogue behaviours are a better alternative (because of their higher

overall performance) than hand-coded or fully-learnt dialogue behaviours. Last, hierar-

chical reinforcement learning dialogue agents are feasible and promising for the (semi)

automatic design of adaptive behaviours in larger-scale spoken dialogue systems.

This research makes the following contributions to spoken dialogue systems which

learn their dialogue behaviour. First, theSemi-Markov Decision Process (SMDP)

model was proposed to learn spoken dialogue strategies in a scalable way. Second,

the concept ofpartially specified dialogue strategieswas proposed for integrating si-

multaneously hand-coded and learnt spoken dialogue behaviours into a single learning

framework. Third, anevaluation with real usersof hierarchical reinforcement learning

dialogue agents was essential to validate their effectiveness in a realistic environment.

i

Keywords: Speech-based human-machine communication, spoken dialogue sys-

tems, dialogue strategy design, dialogue simulation/optimization/evaluation/coherence,

dialogue knowledge representation, stochastic sequential decision making, temporal

abstraction, hierarchical control, prior expert knowledge, finite state machines, Markov

decision processes (MDPs), Semi-Markov decision processes (SMDPs), flat reinforce-

ment learning, and hierarchical reinforcement learning.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text,and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Heriberto Cuaýahuitl)

iii

Acknowledgements

I would like to thank my supervisor Steve Renals without whose experienced guidance

this research work would not have been possible. I am also grateful for the feedback I

received from my co-supervisors Oliver Lemon and Hiroshi Shimodaira.

I am very grateful for the funding I received from the following Mexican insti-

tutions: PROMEP1 and the Autonomous University of Tlaxcala (UATx)2. I thank

the members of staff from both institutions for their help with administrative issues –

among many from whose help I benefitted are Serafin Ortı́z, Roman Mendoza, Antonio

Durante, Leticia Flores and Carlos Pérez.

I would like to thank those who shared their knowledge with meand enabled me to

complete the work described in this thesis: Ben Serridge forintroducing me to the fas-

cinating world of speech technologies; the authors of papers and books cited in this the-

sis; to the University of Edinburgh and the School of Informatics for making available

an excellent environment for research; to the staff of the Centre for Speech Technology

Research (CSTR) and Human-Computer Research Centre (HCRC)for their help and

friendship; to my fellow-students for our enriching discussions – Pei Yun Hsueh, Ivan

Meza, Zhang Le, Markus Becker, and Verena Rieser; to the Dialogs on Dialogs read-

ing group at CMU for their enriching meetings on Spoken Dialogue Systems; to Alan

Smaill for giving me the opportunity to be tutor for his course on Fundamentals of

Artificial Intelligence; to Mike Turnbull and Judy Cantley for their recommendations

on writing style; to the testers of my spoken dialogue systemfor giving me many ideas

to improve this kind of system; and to my thesis reviewers Johanna Moore and Steve

Young whose comments enriched the correctness and clarity of this thesis.

I am also grateful to all the people who made my PhD studies a pleasant experience

in Edinburgh and in Scotland. First of all, to Patricia Farf´an and Abraham Cuayáhuitl

for being very supportive in many different ways. I thank theMexican community in

Edinburgh including families Makita, Acosta and Bhattacharya for the great time we

had together. I thank Goff and Judy Cantley for such great Ceilidh dances and walks

around Edinburgh, and for hosting me while I was doing thesiscorrections. I thank

Arnold and Margaret Cody for their friendship and our lunches after mass in St Mary’s

Cathedral. I thank the folks of St Mary’s Cathedral choir – I really enjoyed being part

of this nice group of people.

1http://promep.sep.gob.mx
2www.uatx.mx

iv

http://promep.sep.gob.mx
www.uatx.mx

Last but not least, I thank my relatives in Mexico for being very supportive: my

father Alfredo Cuayáhuitl, my sisters Minerva and Flor, mynieces Laura, Danely and

Flor iveth, my nephew Victor Hugo, and my brothers-in-law. To all of you and to

anybody I forgot to mention – thank you very much!

Heriberto Cuayáhuitl

v

To the memory of my mother and brother.

vi

Table of Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Research goal . 4

1.3 Approach . 5

1.4 Contributions . 6

1.5 Outline . 7

2 Reinforcement learning for spoken dialogue systems 8

2.1 Dialogue as an optimization problem 8

2.2 Background on reinforcement learning 10

2.2.1 Markov decision processes 11

2.2.2 Tabular reinforcement learning algorithms 14

2.3 Approaches for dialogue optimization 17

2.3.1 Dialogue as a Markov decision process 17

2.3.2 Dialogue as a partially observable MDP 18

2.3.3 Dialogue control using function approximation 20

2.3.4 Dialogue control using evolutionary reinforcement learning . 21

2.3.5 Learning with real and simulated dialogues 22

2.3.6 Evaluation of learnt dialogue policies with real users 24

2.4 Approaches for dialogue simulation 25

2.4.1 Rule-based simulated user models 26

2.4.2 Probabilistic simulated user models27

2.4.3 Probabilistic-goal-directed simulated user models. 27

2.4.4 Deterministic-probabilistic simulated user models. 28

2.4.5 Evaluation of simulated dialogues 28

2.5 Open questions in dialogue strategy optimization 30

2.6 Summary . 32

vii

3 Hierarchical reinforcement learning: a perspective on spoken dialogue 33

3.1 Introduction . 33

3.1.1 An illustrative decision-making problem 34

3.1.2 Temporal abstraction for dialogue strategy learning. 36

3.1.3 State abstraction for dialogue strategy learning 37

3.2 Hierarchical reinforcement learning approaches 38

3.2.1 Hierarchical abstract machines 39

3.2.2 MAXQ . 46

3.3 Semi-Markov Decision Processes 52

3.4 Current state of hierarchical reinforcement learning 53

3.5 Discussion . 54

3.6 Summary . 56

4 A heuristic simulation environment for learning dialoguestrategies 57

4.1 Introduction . 57

4.2 A heuristic dialogue simulation environment 59

4.3 Human-machine dialogue modelling60

4.3.1 Knowledge representation for conversational agents. 62

4.3.2 Modelling conversational behaviour63

4.3.3 Speech recognition error simulation65

4.3.4 Database querying simulation 66

4.4 Experimental spoken dialogue systems 66

4.4.1 Case study: flight booking system 66

4.4.2 Case study: travel planning system 68

4.5 Evaluating user and machine dialogue behaviour 68

4.5.1 Evaluation metrics for user behaviour68

4.5.2 A reasonable choice of baseline machine behaviour 75

4.6 Discussion . 77

4.7 Summary . 79

5 Hierarchical dialogue optimization: a divide-and-conquer approach 80

5.1 Introduction . 80

5.1.1 Background on dialogue strategy learning 81

5.1.2 Related work on hierarchical reinforcement learning. 83

5.2 Dialogue as a Semi-Markov Decision Process 84

5.2.1 Dialogue control using hierarchical SMDPs 85

viii

5.2.2 Decomposing a spoken dialogue manager into subtasks 86

5.2.3 Execution of dialogue subtasks 88

5.2.4 Termination of dialogue subtasks 88

5.2.5 State transitions in SMDP-based dialogue optimization 89

5.3 Reinforcement learning for hierarchical SMDPs 91

5.4 Experimental setup . 92

5.4.1 The flight booking case study 92

5.4.2 The travel planning case study 95

5.5 Experimental results . 98

5.5.1 The flight booking dialogue system 98

5.5.2 The travel planning dialogue system 99

5.5.3 Analysis of learnt behaviour without infinite loops 104

5.6 Discussion . 106

5.7 Conclusions . 108

6 Hierarchical dialogue optimization: a prior-knowledge approach 109

6.1 Introduction . 109

6.2 Partially specified dialogue strategies 111

6.2.1 Dialogue control using constrained hierarchical SMDPs . . . 112

6.2.2 Decomposing a dialogue manager into subtasks 113

6.2.3 Execution of dialogue subtasks 113

6.2.4 Termination of dialogue subtasks 113

6.2.5 State transitions in constrained hierarchical SMDPs. 115

6.3 Reinforcement learning for constrained hierarchical SMDPs 117

6.4 Experiments and results . 120

6.4.1 Experimental setup . 120

6.4.2 Experimental results: flight booking case study 124

6.4.3 Experimental results: travel planning case study 126

6.4.4 Analysis of learnt behaviours with finite dialogues 130

6.5 Related work . 132

6.6 Discussion . 133

6.7 Conclusions . 134

7 A spoken dialogue system using hierarchical reinforcement learning 135

7.1 Introduction . 135

7.2 System architecture . 137

ix

7.2.1 Facilitator agent . 138

7.2.2 Speech recognition agent . 138

7.2.3 Semantic parsing agent . 139

7.2.4 Dialogue act recognition agent 139

7.2.5 Database system agent . 140

7.2.6 Dialogue management agent 141

7.2.7 Language generation agent 143

7.2.8 Speech synthesis agent . 143

7.3 System evaluation . 144

7.3.1 Evaluation methodology . 144

7.3.2 Experimental setup . 145

7.3.3 Experimental results . 146

7.3.4 Evaluation of simulated behaviours 153

7.3.5 Do people want to talk to spoken dialogue systems? 157

7.4 Discussion and future directions 158

7.5 Conclusions . 159

8 Conclusions and future work 160

8.1 Future work . 161

8.1.1 Hierarchical dialogue action under uncertainty 161

8.1.2 Learning more complex dialogue strategies 161

8.1.3 Learning reusable dialogue strategies 162

8.1.4 Hierarchical dialogue control using function approximation . 162

8.1.5 Safe dialogue state abstraction 162

8.1.6 Hierarchy discovery of dialogue subtasks 163

8.1.7 Hierarchical dialogue reward functions 163

8.1.8 Online dialogue strategy learning from real users 163

8.1.9 Task-independent dialogue simulation 163

8.1.10 Richer knowledge representations164

8.1.11 A benchmark framework for spoken dialogue strategies 164

8.2 Findings . 165

A Notation 167

B Dialogue data structures 169

x

C Sample hierarchical dialogue 175

References 186

xi

List of Figures

1.1 A modular high-level architecture of a spoken dialogue system inter-

acting with a user. This thesis focuses on the dialogue manager module. 2

1.2 Illustration of flat sequential decision-making for spokendialogue. Empty

circles are dialogue states and their possible transitionsresult from an

executed action.. 3

1.3 Illustration of hierarchical sequential decision-makingfor spoken di-

alogue, where empty circles represent dialogue states withknowledge

at different levels of granularity, and their transitions result from exe-

cuted high- and low-level actions.. 5

1.4 Taxonomy of stochastic sequential decision-making for spoken dia-

logue. The shaded branch shows the model that forms the principal

focus of this thesis.. 6

2.1 The agent-environment interaction for MDP-based reinforcement learn-

ing. 12

2.2 Backup diagrams for (a) state value function, (b) action-value func-

tion, (c,d) optimal state- and action-value functions, respectively(Sut-

ton and Barto, 1998). 13

2.3 A unified view of reinforcement learning methods(Sutton and Barto,

1998), they can be classified according to their type of backups. Nota-

tion: empty circles represent states, dark circles represent actions, and

rectangles represent terminal states.. 15

2.4 Conversational interaction between a simulated user modeland a spo-

ken dialogue system(machine), adapted from Eckert et al. (1997).. . 25

xii

3.1 Dialogue state for the flight booking spoken dialogue strategy. Each

variable Xi with domain values D0 has five possible values, variable X7

has six possible values, and variable X8 has 3 possible values, resulting

in 56×6×3 = 281250states. 34

3.2 Illustration of state trajectories in MDPs and SMDPs.. 38

3.3 Architecture of the agent-environment interaction for HAM-based rein-

forcement learning, where a HAM tells the agent the available actions

per state. 40

3.4 Hierarchical Abstract Machine (HAM) for the flight booking dialogue

system. The decision-making points are in machine choice states with

deterministic or stochastic choices. Abbreviations: req=request, acc=accept

w/high confidence, mic=multiple implicit confirmation, sic=single im-

plicit confirmation, apo=apology, mec=multiple explicit confirmation,

sec=single explicit confirmation, dbq=database query, sta=status of

dialogue, pre=present information, ofr=offer choices.. 42

3.5 Top-down hierarchy of subtasks for the flight booking system. A par-

ent subtask can invoke child subtasks, when they terminate,control is

returned to the caller.. 46

3.6 Example of MAXQ value function decomposition for the flight book-

ing dialogue strategy, where the values of state-action pairs are de-

composed hierarchically into two values. The left tree usesnatural

language and the right one uses formal notation. The sequence of re-

wards ri is given for executing primitive actions.. 50

3.7 Dynamics in a Semi-Markov decision process, where state transitions

and rewards depend on the amount of time taken by actions to complete

their execution. 53

4.1 The agent-environment interaction for simulating human-machine con-

versations, useful for learning or testing dialogue strategies for spoken

dialogue systems.. 59

xiii

4.2 Dynamics of human-machine communication at the dialogue act level

(this diagram does not follow the conventions of dynamic Bayesian net-

works). A conversant in a knowledge-rich state kt , observes a knowledge-

compact state st , and takes dialogue act at in order to feed it to its

knowledge-rich state and convey it to its partner, receiveddistortedly

asãt . The current knowledge kt , action at and partner response deter-

mine the next knowledge-rich state kt+1, and so on until the end of the

dialogue. 61

4.3 Discrete probability distributions for sampling three-tiered speech recog-

nition confidence levels assigned to keywords in distorted user dia-

logue actsãu
t . 65

5.1 A pipeline model of speech-based human-machine communication, where

dialogue state smt is used by the dialogue manager to choose action am
t .

For dialogue strategy learning the speech signals and wordscan be

omitted. 81

5.2 Conceptual hierarchical dialogue at runtime with states st , actions at

(lastingτ time steps) and rewards rt+τ. Actions at can be either prim-

itive or composite, the former yield single rewards and the latter yield

cumulative discounted rewards.. 84

5.3 Hierarchy of SMDPs Mij , where i denotes a level and j the model per

level. 85

5.4 Conceptual example of heuristic dialogue state abstraction showing:

(a) a dialogue state with the full set of state variables, (b)a hierar-

chical dialogue state ignoring irrelevant state variablesper subtask,

and (c) a more compact representation of the hierarchical dialogue

state based on clustered state variables describing the status of child

dialogue subtasks.. 87

5.5 An SMDP for spoken dialogue control. Notation: bottom circles repre-

sent knowledge-rich states, upper circles represent knowledge-compact

states, rectangles represent actions, and diamonds represent rewards.

The dynamics indicate that dialogue states st are observed from knowl-

edge states kt , and actions at can be either primitive (executed within

the same SMDP) or composite (invoke a child SMDP).. 89

xiv

5.6 Example in the flight booking domain of knowledge-rich states kt and

knowledge-compact states st for dialogue-based SMDPs – note that

only the latter states are used for decision-making. Whilst(a) and

(b) show the data structures for both states, (c) and (d) showthose

structures at runtime corresponding to the first four machine actions

of the dialogue shown in page 35.. 90

5.7 Architecture of the agent-environment interaction for SMDP-based hi-

erarchical reinforcement learning using a hierarchy of dialogue sub-

tasks Mi
j . The subtasks are executed in a top-down hierarchical way

using the well-known stack mechanism.. 91

5.8 A subtask hierarchy for the 6-slot flight booking spoken dialogue sys-

tem, where each dialogue subtask is represented as a separate SMDP.

The corresponding state variables and actions for each subtask Mi
j can

be found in Table 5.1.. 94

5.9 A subtask hierarchy for the 26-slot travel planning spoken dialogue

system, where each dialogue subtask is represented as a separate SMDP.

The corresponding state variables and actions for each subtask Mi
j can

be found in Table 5.2.. 96

5.10 Learning curves of dialogue policies in the 6-slot flight booking spoken

dialogue system. The best learnt policy outperformed the hand-crafted

behaviour by 0.2, 1.3, and 3.7 system turns on average in all cases

(from top to bottom). 100

5.11 Learning curves of dialogue policies in the 26-slot travel planning sys-

tem using the reward function defined by equation 5.9. In the last104

dialogues the hierarchical policy averaged−0.2, 4.2, and13.4 fewer

system turns than hand-crafted behaviour for the differentdistributions

of confidence levels (from top to bottom).. 101

5.12 Learning curves of dialogue policies in the 26-slot travel planning sys-

tem using the reward function defined by equation 5.10. In thelast104

dialogues the hierarchical policy averaged4.9, 9.2, and 17.9 fewer

system turns than hand-crafted behaviour for the differentdistributions

of confidence levels (from top to bottom).. 103

xv

6.1 Constrained hierarchical SMDPs are defined with induced SMDPs

M
′ i
j = H i

j ◦Mi
j , where abstract machine Hij partially specifies the be-

haviour of subtask Mij . 112

6.2 Example of induced dialogue subtasks M
′ i
j = Hk

l ◦Mi
j , where Hk

l is an

abstract machine inH and Mi
j is a subtask inM . Note that the hier-

archy of abstract machines, Figure (a), and the hierarchy ofdialogue

subtasks, Figure (b), may be different because the abstractmachines

may be reused in the induced dialogue subtasks. The hierarchy of (in-

duced) dialogue subtasks is specified by the system developer. 114

6.3 A constrained SMDP for spoken dialogue control, where kt represent

knowledge-rich states, wt = (st, s̄n) represent joint states, rectangles

represent actions (provided by a HAM), and diamonds represent re-

wards. Knowledge-compact states st, extracted from states kt , are only

observed in machine choice statess̄n, so that a restricted set of actions

(primitive or composite) is to be available at dialogue state wt 115

6.4 Runtime example of HAM-based dialogue control using the abstract

machine ‘getMandatorySlots’ from page 42. The first column shows a

sequence of machine states corresponding to the first four primitive ac-

tions of the dialogue shown on page 44. The second and third columns

show knowledge-rich states kt and knowledge-compact states st that

correspond to machine choice statess̄n. The fourth column shows joint

states wt = (st, s̄n) used for decision-making. The last column shows

the actions available in state wt . The same example without machine

states is shown in page 90.. 116

6.5 Architecture of the agent-environment interaction for reinforcement

learning using hierarchical induced SMDPs M
′i
j = Hk

l ◦Mi
j . The en-

vironment observes joint dialogue states w= (s, s̄), where s is an envi-

ronment state in SMDP Mij ands̄ is a choice state in HAM Hkl . The re-

inforcement learning agent uses a hierarchy of policiesπi
j for decision-

making, where i denotes a level and j the model per level.. 118

6.6 A hierarchy of induced subtasks for the 6-slot flight bookingspoken

dialogue system. The abstract machines are specified in page42 of

chapter 3 and the state variables for each dialogue subtask Mi
j are

specified in Table 5.1.. 120

xvi

6.7 A hierarchy of induced subtasks for the 26-slot travel planning spoken

dialogue system. The abstract machines (denoted as Hk
l) are speci-

fied in Figures 6.8 and 6.9, and the state variables for each dialogue

subtask Mi
j are specified in Table 5.2.. 121

6.8 Abstract machines for the travel planning spoken dialogue system (Part

1), where state transitions can be stochastic or based on deterministic

constraints Ci . 122

6.9 Abstract machines for the travel planning spoken dialogue system (Part

2), where state transitions can be stochastic or based on deterministic

constraints Ci . 123

6.10 Learning curves of dialogue policies using flat and hierarchical rein-

forcement learning (with and without prior knowledge) in the flight

booking system.. 125

6.11 Learning curves of dialogue policies in the 26-slot travel planning sys-

tem using the reward function defined by equation 5.9. In the last104

dialogues the HAM-based policy averaged6.2, 10.6, and19.9 fewer

system turns than hand-crafted behaviour for the differentdistributions

of confidence levels (from top to bottom).. 127

6.12 Learning curves of dialogue policies in the 26-slot travel planning sys-

tem using the reward function defined by equation 5.10. In thelast104

dialogues the HAM-based policy averaged7.6, 12.1, and21.4 fewer

system turns than hand-crafted behaviour for the differentdistributions

of confidence levels (from top to bottom).. 129

7.1 Architecture of the CSTR travel planning spoken dialogue system sup-

porting deterministic or learnt dialogue behaviour. Human-machine

communication is carried out with speech signals xt , words wt , con-

cepts or slots ct , and dialogue acts at 137

7.2 Box plots of dialogue evaluation metrics per machine behaviour in

the CSTR travel planning spoken dialogue system. The systemperfor-

mance in the top plots is interpreted as ‘the higher the better’ and in

the bottom plots as ‘the lower the better’.. 151

7.3 Probability density functions estimated from observed speech recogni-

tion confidence scores of keywords in data collected by the CSTR travel

planning system. 153

xvii

7.4 F-measures of real vs. simulated user responses in functionof the data

size, showing that the more real dialogue data is used, the higher the

precision-recall.. 155

7.5 Scatter plot showing participants’ preference given the following ques-

tion: ‘Would you use spoken dialogue systems for other tasksbased on

this experience?’.. 157

xviii

List of Tables

2.1 A summary of previous research on MDP-based dialogue strategy learn-

ing. 19

2.2 Evaluation metrics for spoken dialogues (Walker, 2000).. 24

2.3 Previous works on user simulation approaches for slot filling applica-

tions.. 26

2.4 Evaluation metrics for human-machine dialogue simulation. 29

3.1 Sample human-machine dialogue in the flight booking domain,where

the dialogue state is formed by the state variables shown in Fig. 3.1,

and a set of actions is available per state. At this point action-selection

is arbitrary (before learning).. 35

3.2 Induced state-action space resulting from the cross product of the en-

vironment states of Figure 3.1 and choice states of the HAM shown in

Figure 3.4. The rest of the state-action pairs are omitted because they

have one available action per state.. 43

3.3 Sample HAM-based dialogue in the flight booking domain usingin-

duced dialogue states (s, s̄). The induced states shown in Table 3.2

have stochastic choices (require optimization) and the remaining ones

perform deterministic action-selection.. 44

3.4 Action spaces in the hierarchy of dialogue subtasks for the flight book-

ing system, where the root subtask uses both composite and primitive

actions and the child subtasks use only primitive actions. See Table 3.1

for a description of primitive actions.. 47

3.5 Sample hierarchical dialogue in the flight booking domain. Figure 3.1

describes the dialogue state, and Table 3.4 shows the actions available

per subtask.. 48

4.1 Dialogue act types for task-oriented human-machine dialogues. . . . 62

xix

4.2 Sample dialogue in the flight booking system. Although simulations are

only based on dialogue acts, an equivalent wording is given for a better

understanding. This dialogue shows a sample speech recognition error

after the first user utterance.. 67

4.3 Sample simulated dialogue in the travel planning system (part one). . 69

4.4 Sample simulated dialogue in the travel planning system (part two). . 70

4.5 Sample sub-dialogue with user responses assumed from logged real data. 71

4.6 Sample sub-dialogue with simulated coherent user responses. 71

4.7 Sample sub-dialogue with simulated random user responses.. 71

4.8 Dialogue similarity results for real vs simulated coherentsub-dialogues.73

4.9 Dialogue similarity results for real vs simulated random sub-dialogues. 73

4.10 Results of coherence for real and simulated user responses.. 75

4.11 Speech recognition events in spoken dialogue systems.. 75

4.12 Sample dialogue in the flight booking domain annotated with speech

recognition events, showing an EvER score of33%(including 3 incor-

rect events and six correct ones). Notation: ca=correct acceptance,

cc=correct confirmation, cr=correct rejection, fa=false acceptance,

fc=false confirmation, fr=false rejection.. 76

4.13 Confirmation strategies for different recognition confidence score re-

gions. Notation: IC=implicit confirmations, EC=explicit confirma-

tions, and AP=apologies.. 77

5.1 State variables and actions of the subtask hierarchy in the flight book-

ing spoken dialogue system (see Tables B.3 and B.4 for their corre-

sponding description). 94

5.2 State variables and actions of the subtask hierarchy in the travel plan-

ning spoken dialogue system (see Tables B.5, B.6, and B.7 fortheir

corresponding description).. 97

5.3 Size of state-action spaces for the flight booking dialogue system.. . . 98

5.4 Size of state-action spaces for the travel planning dialogue system.. . 99

5.5 Average system turns of policies in the last104 training dialogues,

where the third column used the reward function described byequa-

tion 5.9 and the fourth column used the reward function described by

equation 5.10.. 104

xx

5.6 Test results showing the average number of primitive actions per di-

alogue for hand-crafted and learnt behaviour, the latter used equa-

tion 5.10 and behaved according to equation 5.11. The average num-

ber of actions per dialogue (in bold) within each ASR confidence level

distribution were compared with t-tests and showed statistical signifi-

cance at p< 0.01. 105

6.1 Size of state-action spaces for the flight booking dialogue system.. . . 124

6.2 Size of state-action spaces for the travel planning dialogue system.. . 126

6.3 Average system turns of policies in the last104 training dialogues,

where the third column used the reward function described byequa-

tion 5.9 and the fourth column used the reward function described by

equation 5.10.. 128

6.4 Test results showing the average number of primitive actions per dia-

logue of semi-learnt policies with different amounts of ASRconfidence

levels (low, medium, high). The number of actions per dialogue (in

bold) within each ASR confidence level distribution were compared

with t-tests and showed statistical significance at p< 0.01. 130

6.5 Test results showing the average number of primitive actions per dia-

logue of semi-learnt policies (acting according to eq. 5.11) with differ-

ent amounts of ASR confidence levels. The number of actions (in bold)

within each confidence level distribution were compared with t-tests

and showed statistical significance at p< 0.01. 131

7.1 Fragment of a real dialogue in the CSTR travel planning system using

policiesπ∗ij , the state representation is shown in Table 5.2.. 142

7.2 Sample tasks in the CSTR travel planning spoken dialogue system. In

the experiments reported here, each user participated in 3 single and

3 composite tasks.. 145

7.3 Subjective dialogue measures for qualitative evaluation.. 146

7.4 Results of the CSTR travel planning spoken dialogue system compar-

ing three different dialogue behaviours, organized according to the fol-

lowing groups of metrics: dialogue efficiency, dialogue quality, task

success and user satisfaction.. 147

xxi

7.5 Real dialogue with infinite loop in the CSTR travel planning dialogue

system, where the fully-learnt policy did not learn the action ‘rel=constraint

relaxation’ for the (mis-)recognized slot values, and kepttrying the ac-

tion ‘dbq=database query’.. 149

7.6 Results of the CSTR travel planning spoken dialogue system using data

from users – with only successful dialogues. They are organized in the

following groups of metrics: dialogue efficiency, dialoguequality, task

success and user satisfaction.. 152

7.7 Evaluation of real and simulated user behaviour with Precision-Recall

in terms of F-Measure (the higher the better) and KL-divergence (the

lower the better). 155

7.8 Event Error Rate (EvER) results of real dialogues for confirmation

strategies of Table 4.13. Abbreviations: ca=correct acceptance, cc=correct

confirmation, cr=correct rejection, fa=false acceptance,fc=false con-

firmation, fr=false rejection. 156

A.1 Notation for human-machine dialogue modelling.. 167

A.2 Notation for flat and hierarchical reinforcement learning.. 168

B.1 Description of dialogue-based classes to represent user knowledge.. . 170

B.2 Description of dialogue-based classes to represent machine knowledge.171

B.3 State variables for the 6-slot flight booking spoken dialogue system. . 172

B.4 Action space for the 6-slot flight booking spoken dialogue system. . . 172

B.5 Dialogue goals in the 26-slot travel planning spoken dialogue system. 173

B.6 Action space for the 26-slot travel planning spoken dialogue system.. 173

B.7 State variables for the 26-slot travel planning spoken dialogue system.174

C.1 Real conversation in the CSTR travel planning spoken dialogue system

using semi-learnt hierarchical dialogue control (PART 1).. 176

C.2 Real conversation in the CSTR travel planning spoken dialogue system

using semi-learnt hierarchical dialogue control (PART 2).. 177

C.3 Real conversation in the CSTR travel planning spoken dialogue system

using semi-learnt hierarchical dialogue control (PART 3).. 178

C.4 Real conversation in the CSTR travel planning spoken dialogue system

using semi-learnt hierarchical dialogue control (PART 4).. 179

xxii

C.5 Real conversation in the CSTR travel planning spoken dialogue system

using semi-learnt hierarchical dialogue control (PART 5).. 180

C.6 Real conversation in the CSTR travel planning spoken dialogue system

using semi-learnt hierarchical dialogue control (PART 6).. 181

C.7 Real conversation in the CSTR travel planning spoken dialogue system

using semi-learnt hierarchical dialogue control (PART 7).. 182

C.8 Real conversation in the CSTR travel planning spoken dialogue system

using semi-learnt hierarchical dialogue control (PART 8).. 183

C.9 Real conversation in the CSTR travel planning spoken dialogue system

using semi-learnt hierarchical dialogue control (PART 9).. 184

C.10 Real conversation in the CSTR travel planning dialogue system using

semi-learnt hierarchical dialogue control (PART 10).. 185

xxiii

Chapter 1

Introduction

Spoken dialogue interaction has been suggested by researchers and practitioners as a

promising alternative way of communication between humansand machines (Zue and

Glass, 2000). A compelling motivation is the fact that conversational speech is the most

natural, efficient, and flexible means of communication among human beings. Because

of the complexity of human-human interaction, human-machine conversations need to

be much simpler. In our contemporary world there are many machines used in our

daily lives such as computers, telephones, cars, and robots. We may not want to talk to

them all the time; however, the following are sample scenarios where a talking machine

would be useful:

• while driving a car our eyes and hands are busy, but we may wantto control the

car’s resources or access the internet;

• when many people call a company simultaneously to book a service or request

information and have lengthy waits on the line due to busy human operators;

• when we have to do complex searches for information that depend on a dialogue

history rather than on a single sentence and we only have a small keyboard;

• when giving instructions to a robot capable of a wide range oftasks;

• when a disabled person wants to interact with a machine;

• when a person does not want to use a keyboard.

Talking to a machine requires a spoken dialogue system. These systems may be al-

ternatively referred to in the literature as ‘conversational agents’, ‘spoken language

systems’ or ‘conversational interfaces’ (Jurafsky and Martin, 2008; Huang et al., 2001;

1

Chapter 1. Introduction 2

McTear, 2004). Such systems should be able to understand what a person says, take

an appropriate action, and then provide a response. Ideally, spoken dialogue systems

should yield successful, efficient and natural conversations within a given domain.

However, building such systems is still a challenge for science and engineering.

A spoken dialogue system can be described as having four interlinked modules:

speech recognition and understanding, a dialogue manager,language and speech gen-

eration, and knowledge base (Figure 1.1). It operates cyclically as follows: the user

makes a verbal response and the corresponding speech wave isgiven to the speech

recognition and understanding module to extract a compact representation (referred

to as ‘meaning’) of what the user has said; such a meaning is used by the dialogue

manager to choose an action based on the current dialogue history; the language and

speech generation module takes that action so as to generatea spoken response. The

cycle continues until one of the conversants (user or machine) terminates the dialogue.

In addition, the knowledge base keeps track of all the information generated through

the dialogue history, which is queried and/or updated by anyof the system modules.

Figure 1.1: A modular high-level architecture of a spoken dialogue system interacting

with a user. This thesis focuses on the dialogue manager module.

Although currently available human language technologiesallow the building of

working systems, they still face a number of problems and arelikely to fail in the fol-

lowing situations: noisy environments, unknown vocabularies and meanings, unknown

speech accents, requirements for world knowledge, or richer dialogue behaviour. This

thesis is concerned with the design of spoken dialogue managers that are capable of

learning to optimize their dialogue behaviour in a scalableand efficient way.

Chapter 1. Introduction 3

1.1 Motivation

Designing the behaviour of spoken dialogue managers for successful, efficient and

natural conversations is a challenging goal. Dialogue managers behave by following a

dialogue strategy, also referred to as ‘dialogue policy’ or ‘dialogue behaviour’. Dia-

logue strategies are stochastic sequential decision makers as illustrated in Figure 1.2.

For each situation (dialogue state) the strategy has to choose an action to change the

current state – these transitions are stochastic because the dialogue state is not known

with certainty. The task of the dialogue strategy is to choose appropriate actions for

each possible dialogue state. Such strategies are typically hand-crafted by system de-

signers. However, it turns out that this approach has a number of limitations: (1) it is

not always easy to specify action-selection at some points in the dialogue (lack of op-

timization); (2) dialogue behaviour for the entire user population is generic and static

(lack of adaptivity); (3) this is a labour-intensive task, especially for large systems.

Figure 1.2: Illustration of flat sequential decision-making for spokendialogue. Empty

circles are dialogue states and their possible transitionsresult from an executed action.

As an alternative approach to hand-crafted design, Levin and Pieraccini (1997)

framed the problem of dialogue strategy design as an optimization problem, and sug-

gested MDP-based reinforcement learning for such a purpose. But it has proved dif-

ficult to develop spoken dialogue systems under this framework: two of the crucial

issues are that ofuncertaintyandscalability. In the former, the dialogue states are

assumed to be known with certainty; in the latter, the numberof unique dialogue states

grows exponentially as more information is incorporated. As an alternative approach,

Chapter 1. Introduction 4

Roy et al. (2000) suggested the POMDP model to handle uncertainty in the conversa-

tion, but it has been difficult to apply this model to large-scale dialogue systems.

Previous work has optimized the behaviour of spoken dialogue systems for simple

interactions using a single dialogue goal with only a few slots of information. The

development and deployment of larger-scale systems remainas an important research

avenue for their application in the real world. Proposing and evaluating a more scalable

dialogue optimization framework is what has motivated thisresearch.

Designing the behaviour of conversational agents in an automatic way matches the

so called ‘rational agents’ also known as ‘intelligent agents’ and is central to artifi-

cial intelligence. Building and testing such kind of agentsin large applications is of

importance to the advancement of this research field, and aredefined as follows.

For each possible percept sequence, a rational agent shouldselect an
action that is expected to maximize its performance measure, given the ev-
idence provided by the percept sequence and whatever built-in knowledge
the agent has (Russell and Norvig, 2003).

1.2 Research goal

This thesis investigates how to optimize the behaviour of spoken dialogue systems in

a scalable, efficient and effective way under the reinforcement learning paradigm. It

leaves aside the issue of uncertainty handling and focuses its attention on scaling the

MDP-based reinforcement learning framework. For such a purpose this research aims

to answer the following question:How to learn dialogue strategies for large-scale

information-seeking spoken dialogue systems?

A solution to this problem would contribute towards the development of larger-

scale spoken dialogue systems than those attempted so far. To that end three objectives

are established. Firstly, to simulate and evaluate task-oriented and multi-goal human-

machine conversations based on dialogue acts: this objective will be used to generate

a large number of conversations for dialogue strategy learning in an automatic way.

Secondly, to learn spoken dialogue strategies for large state-action spaces in order to

scale up the MDP (Markov Decision Process) framework with a hierarchical approach

(see next section). Although this research does not addressthe issue of uncertainty in

the dialogue state, the resulting framework aims to providerelevant findings that may

be used to scale up other models. Finally, to validate the findings from simulations by

evaluating learnt dialogue strategies in a realistic environment: this objective used a

real spoken dialogue system evaluated by real users.

Chapter 1. Introduction 5

1.3 Approach

Most previous work on dialogue strategy learning aimed for asingle global solution.

However, a dialogue strategy may not need to know the whole world knowledge in each

state. It may also not need the whole action set per state. This research tackles such

issues withhierarchical sequential decision making, which aims for a hierarchy of

solutions (see Figure 1.3). Under this approach dialogue states can be described at dif-

ferent levels of granularity, where actions can execute behaviour with either dialogue

acts or sub-dialogues. This approach offers the following benefits. First, modularity

helps to solve sub-problems that may be easier to solve than the whole problem. Sec-

ond, sub-problems may include only relevant dialogue knowledge in the states and rel-

evant actions, thus reducing significantly the size of possible solutions: consequently

they can be found faster. Last, sub-solutions can be reused when dealing with new

problems. These benefits are possible at the cost of sub-optimal solutions. Nonethe-

less, they may be well worth the gains in terms of scalabilityto large systems. This

thesis describes how to apply this approach to dialogue strategy learning.

Figure 1.3: Illustration of hierarchical sequential decision-makingfor spoken dialogue,

where empty circles represent dialogue states with knowledge at different levels of

granularity, and their transitions result from executed high- and low-level actions.

Chapter 1. Introduction 6

1.4 Contributions

The following contributions are derived from the work described in this thesis:

(1) The Semi-Markov Decision Process (SMDP) model for spoken dialogue.

This research proposed the SMDP model for dialogue strategylearning. Other models

from previous investigations mostly use flat methods corresponding to the left branch

of Figure 1.4. This contribution proposed a ‘divide and conquer’ approach using a

hierarchy of SMDPs, where every SMDP represents a sub-dialogue in the conversa-

tion. This approach produced dramatic state-action space reductions of more than 99%,

showed itself to be feasible for a spoken dialogue system with a flat state-action space

of 1023 state-actions, and is promising for larger-scale systems.

Figure 1.4: Taxonomy of stochastic sequential decision-making for spoken dialogue.

The shaded branch shows the model that forms the principal focus of this thesis.

(2) Partially specified dialogue strategies. This concept puts together hand-

crafted dialogue behaviours with learnt ones into a single framework. The former

consist of hierarchical finite state machines using deterministic state transitions for ac-

tions easy to specify and stochastic state transitions for actions less easy to specify.

The latter are designed by a hierarchical reinforcement learning agent. This contribu-

tion includes a learning algorithm called ‘HAM+HSMQ-Learning’ that combines two

existing algorithms in the literature of hierarchical reinforcement learning.

(3) Evaluation of learnt dialogue behaviours with real users. This includes the

development of a spoken dialogue system, with two metrics toevaluate simulated user

behaviour, and a metric for evaluating baseline dialogue strategies. The generated

real dialogues were crucial to evaluate fully-learnt, semi-learnt and baseline machine

dialogue behaviours; and also to evaluate the realism of simulated dialogues.

Chapter 1. Introduction 7

1.5 Outline

The rest of this thesis is structured as follows:

• Chapter 2 presents a survey that bridges the fields of reinforcement learning and

spoken dialogue systems. This chapter reviews some of the previously proposed

approaches for learning spoken dialogue strategies and also reviews approaches

for simulating and evaluating human-machine dialogues.

• Chapter 3 surveys hierarchical reinforcement learning methods, and focuses on

approaches based on the Semi-Markov Decision Process (SMDP) model. It also

discusses methods with more potential application to spoken dialogue.

• Chapter 4 proposes a simulation framework for generating human-machine con-

versations at the dialogue-act level using a heuristic approach. This chapter also

describes metrics for evaluating user simulations, and a baseline dialogue strat-

egy for assessing learnt dialogue behaviours.

• Chapter 5 proposes an approach for learning dialogue strategies using a hierar-

chy of Semi-Markov decision processes and hierarchical reinforcement learning.

Experiments were performed in the flight booking and travel planning domains.

• Chapter 6 extends the dialogue optimization approach of theprevious chapter

with the concept of ‘partially specified dialogue strategies’. Such strategies com-

bine prior expert knowledge and learnt behaviour into a single framework.

• Chapter 7 evaluates the performance of a travel-planning spoken dialogue sys-

tem with three behaviours: deterministic, fully-learnt and semi-learnt. This is

the largest dialogue system using the reinforcement learning paradigm so far in-

vestigated in the literature. In addition, it evaluates simulated user behaviour

based on data from real dialogues.

• In chapter 8 the thesis is summarized, promising future directions are discussed

and the findings on hierarchical dialogue strategy learningare listed.

Three appendices complement the chapters above as follows:first, appendix A lists

the notations used for reinforcement learning dialogue agents. Second, appendix B

describes dialogue data structures used to represent the knowledge of both conversants.

Finally, appendix C is a sample real dialogue showing hierarchical states, hierarchical

actions, and corresponding machine and user utterances.

Chapter 2

Reinforcement learning for spoken

dialogue systems

This chapter reviews literature in the field of reinforcement learning applied to spoken

dialogue systems. It describes the proposal of ‘dialogue asan optimization problem’

(Levin and Pieraccini, 1997), which aims to contribute towards the development of

more sophisticated dialogue systems. Section 2.2 reviews the tabular reinforcement

learning framework. Section 2.3 describes previous work onreinforcement learning for

dialogue strategy design. Section 2.4 describes previous work on dialogue simulation,

aiding the facilitation of the task of learning dialogue strategies. Section 2.5 discusses

some of the current challenges of learning efficient and effective dialogue behaviours

for spoken dialogue systems. The last section summarizes the key points of the chapter.

2.1 Dialogue as an optimization problem

Dialogue strategies control the behaviour of spoken dialogue systems, and have been

mainly hand-crafted by system designers and developers. Several approaches have

been proposed for such a purpose: finite state, frame-based,agenda-based, information

state, plan-based, and agent-based. The finite state approach is the simplest, and is suit-

able for system-initiative interactions, where the user answers questions in the form of

simple commands (McTear, 1998). The frame-based and agenda-based approaches are

suitable for mixed-initiative interactions, where the user can provide several items of

information in any order (Goddeau et al., 1996; Chu-Carroll, 1999; Rudnicky and Wu,

1999; Seneff and Polifroni, 2000; Pieraccini et al., 2001; Bohus and Rudnicky, 2003).

The information state approach is also suitable for mixed-initiative interactions, where

8

Chapter 2. Reinforcement learning for spoken dialogue systems 9

an action is triggered from a set of rules and a given dialoguestate (Larsson and Traum,

2000). The plan-based approach is suitable for collaborative dialogues (Rich and Sid-

ner, 1998). The agent-based approach is suitable for complex dialogue behaviour,

also includes planning, and involves behaviour in dynamically changing environments

(Allen et al., 2001b,a). However, none of these approaches automate or optimize the

dialogue strategy design. They usually require lengthy cycles of refinement in order to

fully deploy dialogue systems with reasonable performance.

Levin and Pieraccini (1997) cleverly observed that there were no scientific guiding

principles for designing the behaviour of spoken dialogue systems, which suggests

that this task can be considered more as an art, rather than engineering or science. This

issue motivated them to cast the problem of dialogue strategy design as anoptimization

problem. This proposal indeed matches the directions ofintelligent agents, where they

have to behave rationally by choosing the best actions according to some performance

measure (Russell and Norvig, 2003). In this context, automating the dialogue strategy

design shifts the practice from hand-coded static behaviours to automatic and adaptive

behaviours.

The idea ofdialogue as an optimization problemis as follows: given a set of

dialogue states, a set of actions, and an objective cost function, an optimal dialogue

strategy minimizes the objective function by choosing the actions leading to the lowest

cost for every reached dialogue state. Such states describethe system’s knowledge

about the conversation (e.g. user input, database information, user information, etc.).

The action set describes the system’s capabilities (e.g. asking or confirming informa-

tion, querying a database, giving help, etc.). The cost function assigns a cost for each

taken action. In this way, a dialogue can be seen as a finite sequence of states, actions

and costs{s0,a0,c1,s1,a1, ...,ct−1,st}, where the goal is to find an optimal strategy

automatically. Levin and Pieraccini (1997); Levin et al. (1998, 2000) also suggested

employing the reinforcement learning framework for such a task. But, optimizing dia-

logue strategies is not a simple process, specially for large spoken dialogue systems.

This chapter presents a survey bridging the fields ofreinforcement learningand

spoken dialogue systems. It introduces the reinforcement learning framework and de-

scribes approaches for optimizing dialogue strategies. Italso surveys recent advances

in the related field of dialogue simulation. Finally, this chapter discusses issues that

currently limit the practical application of reinforcement learning dialogue systems. In

this survey it was found that most of the literature has ignored the hierarchical learning

approach, and therefore it has been identified as a significant research omission.

Chapter 2. Reinforcement learning for spoken dialogue systems 10

2.2 Background on reinforcement learning

Reinforcement learning is a computational approach to building agents that learn their

behaviour by interacting with an environment (Kaelbling etal., 1996; Sutton and Barto,

1998; Bertsekas and Tsitsiklis, 1996). Areinforcement learning agentsenses and

acts in its environment in order to learn to choose optimal actions to achieve its goal.

It is not given a form of teacher, like other machine learningapproaches such as super-

vised learning that learn from examples (Russell and Norvig, 2003; Mitchell, 2004).

Instead, it has to discover by trial-and-error search how toact in a given environment.

For example, a robot may have sensors such as cameras and sonars to perceive the

environment state, and actions that change its state such asmoving in different di-

rections. For each action the agent receives feedback (alsoreferred to as a reward or

reinforcement) to distinguish what is good and what is bad. The agent’s task is to learn

a policy or control strategy for choosing the best actions inthe long run that achieve

its goal. For such a purpose the agent maintains acumulative reward for each state

or state-action pair.

More specifically, reinforcement learning systems have four main elements: a pol-

icy, a reward function, a value function, and optionally, a model of the environment. A

policy defines the behaviour of the learning agent. It consists of a mapping from states

to actions – for each state the agent chooses the action with the highest learnt value. A

policy can be represented with a look-up table, neural network, decision tree, or with a

search algorithm. Policies are the core of reinforcement learning systems because they

are sufficient to determine the agent’s way of behaving. Areward function specifies

how good the chosen actions are. It maps each perceived state-action pair to a single

numerical reward. The reward function awards the agent for its good or bad actions,

but only awards immediate actions. The ultimate objective of a learning agent is to

maximize the cumulative reward it receives in the long run, from the current state and

all subsequent next states. Avalue function specifies what is good in the long run.

The value of a given state is the total reward accumulated in the future, starting from

that state. The learning agent’s action-selection mechanism will be based on actions

with the highest values, not with the highest rewards. The efficient estimation of val-

ues is arguably the most important component of reinforcement learning algorithms.

Finally, themodel of the environment is something that mimics the environment’s

behaviour. A simulated model of the environment may predictthe next environment

state from the current state and action. Reinforcement learning algorithms using such a

Chapter 2. Reinforcement learning for spoken dialogue systems 11

model perform ‘model-based learning’, otherwise they perform ‘model-free learning’.

The environment is usually represented as a Markov DecisionProcess (MDP) or as a

Partially Observable MDP (POMDP).

Reinforcement learning is distinguished from other machine learning approaches

by the following characteristics:trial-and-error search anddelayed reward. In the

former the agent has to try all actions per state many times inorder to discover which

actions lead to the highest cumulative reward. In the latter, the executed actions af-

fect not only the current reward, but also the subsequent rewards. In many problems

such as games the reward is only given at the end (Tesauro, 1995), which has to be

back-propagated accordingly to the actions that produced such reward. In summary,

reinforcement learning agents employ their own experiencein order to improve their

performance over time.

2.2.1 Markov decision processes

A reinforcement learning agent interacts with an environment that can be described by

a Markov Decision Process (MDP) – see Figure 2.1. An MDP is a mathematical model

used to optimize stochastic sequential decision making problems (Putterman, 1994;

Sutton and Barto, 1998). This model is defined as a 4-tuple<S,A,T,R> characterized

as follows:

• S, is a set of states in the environment, whereS= {s0,s1, ...,sN} andst is the

state at timet. The states in an MDP are directly observable, used to describe

all different situations in the environment, and the basis for action-selection. In

an episodic task, the state set includes non-terminal states and terminal state (s).

The state at timest+1 is also denoted ass′.

• A, is the set of actions available in the environment, whereA = {a0,a1, ...,aM}

andat is the action at timet. When actionat is executed it changes the current

state of the world fromst to st+1. The action at timeat+1 is also denoted asa′.

• T(s′,a,s), is a state transition function that observes the next states′ given the

current states and actiona. The state transitions are represented with a condi-

tional probability distributionP(s′|s,a) satisfying∑s′∈SP(s′|s,a) = 1,∀(s,a).

• R(s′|s,a), is the reward function that specifies the immediate rewardrt at timet

given to the agent for choosing actiona when the environment makes a transition

from s to s′. The reward at timert+1 is also denoted asr ′.

Chapter 2. Reinforcement learning for spoken dialogue systems 12

Figure 2.1: The agent-environment interaction for MDP-based reinforcement learning.

The solution to a Markov decision process is a decision-making function or policy

π, which is a mapping from environment statess∈ S to actionsa∈ A with probability

π(s,a). The optimal solution for an MDP is that of taking the best action at available

in statest , i.e. the action that collected as much reward as possible over time. A given

sequence of states, actions, and rewards{s0,a0, r1,s1,a1, r2,s2,a2...}, receives a total

cumulative discounted reward expressed as

r = r1+ γr2+ γ2r3+ ...γτ−1rτ =
τ−1

∑
k=0

γkrk+1, (2.1)

where the discount rate 0≤ γ≤ 1 makes future rewards less valuable than immediate

rewards as it approaches 0. Such sequences can be episodic orcontinuing. The former

last a finite number of time stepsτ. The latter last an infinite number of time steps

τ = ∞ and the rewards must be discounted withγ < 1. In the equation above, the term

on the right-hand side is referred to as ‘the expected value of the reward’, and can be

computed recursively using a state-value functionVπ(s), which returns the value of

starting in statesand then following policyπ thereafter. The value-function is defined

by the Bellman equation forVπ expressed as

Vπ(s) = ∑
a

π(s,a)∑
s′

P(s′|s,a)
[

R(s′|s,a)+ γVπ(s′)
]

. (2.2)

Alternatively, the expected value of the reward can be also computed recursively

using an action-value functionQπ(s,a), which returns the cumulative reward of starting

Chapter 2. Reinforcement learning for spoken dialogue systems 13

Figure 2.2: Backup diagrams for (a) state value function, (b) action-value function,

(c,d) optimal state- and action-value functions, respectively(Sutton and Barto, 1998).

in states, taking actiona and then following policyπ thereafter. The action-value

function is defined by the Bellman equation forQπ expressed as

Qπ(s,a) = ∑
s′

P(s′|s,a)
[

R(s′|s,a)+ γVπ(s′)
]

. (2.3)

The Bellman equations forVπ andQπ are illustrated in Figures 2.2(a) and 2.2(b).

They show the relationships when value information is carried back to the current state

(or state-action pair) from the next states (or state-action pairs), these operations are

therefore referred to asbackups. An optimal policyπ∗ can be found by using the

following Bellman equations that represent a system of equations, one for each state:

V∗(s) = max
π

Vπ(s) = max
a ∑

s′
P(s′|s,a)

[

R(s′|s,a)+ γV∗(s′)
]

, (2.4)

or state-action pair:

Q∗(s,a) = max
π

Qπ(s,a) = ∑
s′

P(s′|s,a)

[

R(s′|s,a)+ γmax
a′

Q∗(s′,a′)

]

. (2.5)

Figures 2.2(c) and 2.2(d) show the backups for the optimal functionsV∗ andQ∗.

Finally, anoptimal policy performs action-selection according to

π∗(s) = argmax
a

Q∗(s,a). (2.6)

Chapter 2. Reinforcement learning for spoken dialogue systems 14

The optimal policy can be learnt by either classical dynamicprogramming methods

such as value iteration (Putterman, 1994), or by reinforcement learning methods such

as Q-Learning or SARSA (Kaelbling et al., 1996; Bertsekas and Tsitsiklis, 1996). The

next subsection explains why the latter are preferred.

2.2.2 Tabular reinforcement learning algorithms

A reinforcement learning algorithm has the objective of computing an optimal pol-

icy for behaving in a given environment described by a Markovdecision process. A

learning algorithm computes a value functionV∗ or action-value functionQ∗ from the

following dynamics: at each time stept, the algorithm is given the current environment

states∈ Sand a set of actionsA(s) ∈ A, the algorithm takes an actiona and the MDP

executes it, then the algorithm receives next states′ ∈ S and rewardr ′. If the current

state is a terminal state, the episode terminates its execution. This process is executed

an infinite number of times until the learnt value function stabilizes.

Reinforcement learning algorithms offer two important advantages over classical

dynamic programming: they are online and can employ function approximation to

represent their knowledge. In the former, they do not require a full model of the envi-

ronment (complete probability distributions of all transitions). In the latter, alternative

representations can be used other than look-up tables. Figure 2.3 illustrates a unified

view of reinforcement learning methods: Dynamic Programming (DP), Monte Carlo

(MC) methods, and Temporal Difference (TD) learning (Kaelbling et al., 1996; Sutton

and Barto, 1998). All of them are based on delayed rewards andcan be distinguished

in the way they employ backups:samplebackups are based on a sample trajectory,

full backups are based on all possible trajectories,shallowbackups are based on a one-

step trajectory, anddeepbackups are based on trajectories reaching a terminal state.

In this way, DP employs full and shallow backups, MC employs sample and deep

backups, and TD employs sample and shallow backups. Whilst DP requires complete

knowledge of the environment, MC methods require only experience, namely sample

sequences of states, actions and rewards. However, MC methods are not suited for

step-by-step incremental computation. Furthermore, TD learning is a combination of

DP and MC methods because it does not require a complete modelof the environment

and because it employs shallow backups. Each reinforcementlearning method has its

own strengths and weaknesses, and one may pick one over another depending on the

task. It is perfectly reasonable to apply a joint method withaspects of more than one

Chapter 2. Reinforcement learning for spoken dialogue systems 15

Figure 2.3: A unified view of reinforcement learning methods(Sutton and Barto, 1998),

they can be classified according to their type of backups. Notation: empty circles rep-

resent states, dark circles represent actions, and rectangles represent terminal states.

kind, but these choices can be made later when the methods areused rather than when

they are designed (Sutton and Barto, 1998).

One of the challenges in reinforcement learning is the trade-off between explo-

ration and exploitation. The agent has to performexploration in order to discover bet-

ter behaviours, but it also has to performexploitation of the already learnt behaviour

in order to obtain more reward. In this dilemma, a learning agent must try different

actions and progressively prefer those that seem to be the best. The basic methods for

action-selection in reinforcement learning areε-greedyandsoftmax(Sutton and Barto,

1998). In the former the agent performs exploitation with a fixed probability 1−ε, and

with probabilityε performs exploration:

π(s) =

{

argmaxaQ(s,a) if p(random)≤ 1− ε
random(a∈ A) otherwise.

(2.7)

Chapter 2. Reinforcement learning for spoken dialogue systems 16

In the latter method the agent performs exploration-exploitation according to a

probability distribution of cumulative rewardsQ(s,a):

P(a|s) =
eQ(s,a)/T

∑a′∈AeQ(s,a′)/T
. (2.8)

The parameterT represents the temperature used to decrease exploration over time.

One of the simplest and most popular reinforcement learningalgorithms isQ-

Learning, see algorithm 1 (Watkins, 1989). It computes Q-values according to

Q(s,a)←Q(s,a)+α
[

r + γmax
a′

Q(s′,a′)−Q(s,a)

]

. (2.9)

Q-Learning updates values for sample state-action pairs(s,a), where the execution

of actiona in states yields states′ and rewardr, γ is a discount rate in the range[0,1],

andα is a learning rate parameter that decays from 1 to 0; for example: αt = 1/(1+vt),

wherevt = visitst(s,a) is the number of times that (s,a) has been visited until stept.

Jaakkola et al. (1994) proved that if the learning agent has afinite state-action space,

and if it tries every action infinitely often in every state, and if α is decayed according

to

lim
T→∞

T

∑
t=1

αt = ∞ and lim
T→∞

T

∑
t=1

α2
t < ∞, (2.10)

then it converges to the optimal action-value functionQ∗ with probability 1.

A similar algorithm to Q-Learning calledSARSA (State-Action-Reward-State-

Action) computes the cumulative reward but without taking into account the optimal

action in the next states′, and updates its values according to

Q(s,a)←Q(s,a)+α
[

r + γQ(s′,a′)−Q(s,a)
]

. (2.11)

These two algorithms differ in the way they approach the trade-off exploration and ex-

ploitation. The Q-Learning algorithm uses anoff-policyapproach because it performs

learning based on two policies: a behaviour policy for exploration, and an estimation

policy for exploitation. In contrast, the SARSA algorithm uses a single policy for both

exploration and exploitation. The advantage of the former approach is that whilst the

estimation policy behaves greedily, the behaviour policy samples all possible actions.

This approach has received more attention for hierarchicallearning (see chapter 3).

The reinforcement learning algorithms Q-Learning and SARSA have been ex-

tended in many different ways. For instance, they can incorporate eligibility traces

to update all action-values per time step according to theireligibility1, which may

result in more efficient learning (Singh and Sutton, 1996; Sutton and Barto, 1998).
1An eligibility tracee(s) is a value assigned for visiting states, which gradually decays over time.

Based on such eligibility traces, good or bad rewards in the future assign credit accordingly.

Chapter 2. Reinforcement learning for spoken dialogue systems 17

Algorithm 1 The Q-Learning algorithm

1: function Q-LEARNING(statesS, actionsA, transitionsT, rewardsR, discountγ)

2: Initialize Q(s,a) arbitrarily, and initializeα to 1

3: repeat(for each episode):

4: Initialize s

5: repeat(for each step of episode):

6: Choosea from susing policy derived fromQ (e.g.ε-greedy)

7: Take actiona

8: Observer from R

9: Observes′ from T

10: Decayα (e.g.α = 1/(1+visits(s,a))

11: Q(s,a)←Q(s,a)+α [r + γmaxa′Q(s′,a′)−Q(s,a)]

12: s← s′

13: until s is terminal

14: until convergence

15: return Q(s,a)

16: end function

Note: For simplification purposes, the learning algorithmsdescribed in the rest of this thesis

declare a more compact set of parameters and omit the update of the learning rate parameterα.

2.3 Approaches for dialogue optimization

Several approaches have been proposed for optimizing spoken dialogue strategies us-

ing reinforcement learning. This section describes the strengths and weaknesses of

four approaches, where each one provides a novel optimization process.

2.3.1 Dialogue as a Markov decision process

Levin and Pieraccini (1997) proposed learning the behaviour of spoken dialogue strate-

gies using the Markov Decision Process (MDP) formalism. A dialogue-based MDP is

characterized by a finite set of dialogue statesS, a finite set of actionsA corresponding

to dialogue acts, a state transition functionT(s,a,s′) = P(s′|s,a), a reward function

R(s,a,s′), and a dialogue strategya = π(s) mapping states to actions. The state tran-

sition function employs theMarkov property, which specifies that the dialogue state at

time t +1 depends only on the dialogue state and action at timet, rather than the full

Chapter 2. Reinforcement learning for spoken dialogue systems 18

history of state and actions, expressed as

P(st+1|st ,at, rt ,st−1,at−1, ..., r1,s0,a0) = P(st+1|st ,at). (2.12)

A dialogue-based MDP is episodic because human-machine dialogues have a fi-

nite number of interactions, and differs from the standard formulation as follows: (i)

probabilistic state transitionsP(s′|s,a) must generate dialogues that make sense to hu-

mans, alternatively, any state transition can be allowed onsimulated environments; and

(ii) the learnt dialogue policyπ∗(s) must perform action-selection with reasonable be-

haviour. Most of the previous work in the field has focused on the MDP model, and a

list of representative investigations is shown in Table 2.1. It can be observed that most

of them have focused on dialogue policies with few slots (semantic concepts), learnt

in simulated environments, and few of them have been evaluated with real users.

Three main problems affect the practical application of theMDP model for dia-

logue strategy learning: the curse of dimensionality, partial observability, and learning

from real interactions. In the first, the state space growth is exponential in the num-

ber of state variables (e.g. state representations with{10,20,30,40,50} binary state

variables yield{103,106,109,1012,1015} unique states, respectively). In the second,

the dialogue agent operates under uncertainty (the most obvious source is automatic

speech recognition errors, but not the only source). In the third, reinforcement learn-

ing methods require many dialogues to find optimal policies.These problems offer

motives for proposing alternative optimization approaches.

2.3.2 Dialogue as a partially observable MDP

Roy et al. (2000) proposed employing the Partially Observable Markov Decision Pro-

cess (POMDP) model for robust spoken dialogue behaviour, which is a generalisation

of the MDP model, but handles the uncertainty perceived fromthe environment. It is

defined as a 6-tuple<S,A,Ω,T,O,R> characterized as follows: (1)S is a set of states,

(2) A is a set of actions, (3)Ω = {o1,o2, ...,on} is a set of observations or perceptions

from the environment (e.g. keywords from the user utterances), (4)T(s,a,s′) is a tran-

sition function for transitioning to the next states′ given the current states and action

a with probability P(s′|s,a), (5) O(s,a,o) is the observation function that the agent

will perceive observationo from selecting actiona in stateswith probabilityP(o|s,a),

and (6)R(s,a,s′) is the reward function that specifies the reward given to the agent for

choosing actiona when the environment makes a transition froms to s′.

Chapter 2. Reinforcement learning for spoken dialogue systems 19

Table 2.1: A summary of previous research on MDP-based dialogue strategy learning.

Author(s) Slots States Actions Learning Real User Training

Algorithm Testing Dialogues

(Levin et al., 1998,

2000)

5 111 12 MC1 No Simulated

(Singh et al., 1999) 5 32 9 VI No Simulated

(Young, 2000) 2 36 5 VI, MC1 No Simulated

(Litman et al., 2000;

Singh et al., 2002)

3 42 2 VI Yes Real

(Goddeau and Pineau,

2000)

n 3n 5 DP No Simulated

(Walker, 2000) 3 18 17 Q-Learning Yes Real

(Pietquin and Renals,

2002)

7 37 24 MC1 No Simulated

(Scheffler and Young,

2002)

4 1229 6 Q(λ) No Simulated

(Denecke et al., 2004) 4 972 5 FVI, FA Yes Real

(Henderson et al.,

2005; Lemon et al.,

2006a)

4 1087 70 SARSA(λ), No Real

LFA Yes Simulated

(Frampton and

Lemon, 2005, 2006,

2008)

4 1539 6 SARSA(λ) No Simulated

4 784 7 SARSA(λ) No Simulated

3 ? ? SARSA(λ) Yes Simulated

(English and Heeman,

2005)

4 25 5 MC2 No Simulated

(Schatzmann et al.,

2005b)

4 81 256 Q-Learning No Simulated

(Pietquin and Dutoit,

2006; Pietquin, 2007)

7 2187 25 Q(λ) No Simulated

5 32768 6 Q(λ) No Simulated

(Cuayáhuitl et al.,

2006a)

20 4127 26 Q-Learning No Simulated

(Prommer et al., 2006) 3 16384 8 Watkins(λ) No Simulated

Abbreviations: MC1 = Monte Carlo with exploratory starts; MC2 = On-policy Monte Carlo;

DP = Dynamic programming; VI = Value iteration; FVI = Fitted VI; FA = Function approxi-

mation; LFA = Linear function approximation.

Chapter 2. Reinforcement learning for spoken dialogue systems 20

Because environment states are partially known, the solution for a POMDP is a

function mapping belief states to actions (Kaelbling et al., 1998). A belief stateb(s) is

a probability distribution overS. Thus, a POMDP can be seen as an MDP over a belief

space, where the observable states are replaced by belief states. When the agent takes

actiona and receives observationo, its belief on the next states′ is updated as:

b(s′) =
O(s′,a,o)∑s∈ST(s,a,s′)b(s)

p(o|a,b)
. (2.13)

The dynamics in a POMDP can be summarized in the following way: the agent

executes actiona = π∗(b) from the current belief stateb, receives observationo and

rewardr, computes the next belief stateb′ using equation 2.13 (this is calledbelief

monitoring), and repeats the process until the end of the conversation.

Three main problems affect the practical application of POMDPs to spoken dia-

logue: the curse of dimensionality, the curse of history, and learning from real inter-

actions. The first and the last problems were described in theprevious approach. The

curse of history refers to the number of distinct possible action-observation histories

with the planning horizon (Pineau et al., 2006; Spaan and Vlassis, 2005). Pineau et al.

(2001) optimized a hierarchy of POMDPs with a bottom-up approach, but still only

suitable for small state-action spaces. Most previous research has focused on keeping

belief monitoring tractable by using some sort of compression of the belief state (Roy

et al., 2000; Zhang et al., 2001; Williams, 2006, 2007b,c; Atrash and Pineau, 2006;

Young et al., 2007; Williams, 2007d; Thomson et al., 2008; Henderson and Lemon,

2008).

2.3.3 Dialogue control using function approximation

Most of the currently available reinforcement learning algorithms approximate the

state-value function or action-value function using a look-up table. Although they

work well for small state spaces, they quickly become intractable due to the curse of

dimensionality problem. A solution for dealing with large state spaces is to use func-

tion approximation, which replaces the table with a function representation such as a

linear function, decision tree, neural network, or kernel-based method, among others.

Such a representation is an approximation because the true value function might not

be represented in the chosen form. For example, in the weighted linear function

Ûθ(s) = θ1 f1(s)+θ2 f2(s)+ ...+θn fn(s) (2.14)

Chapter 2. Reinforcement learning for spoken dialogue systems 21

with set of featuresfi ∈ F and parametersθ = {θ1, ...θn}, a reinforcement learning

agent can learn values for the parametersθ, where the utility functionÛθ approximates

to the true utility function (Russell and Norvig, 2003).

Function approximation approaches represent value functions of very large state

spaces in a practical way, but their main benefit is that they allow the learning agent to

generalise from visited states to unseen states. This is possible because the updating

of θi values also updates the value function, which then affects all states. But it also

may lead to an unstable function approximation (Gordon, 2000). A Q-Learning agent

can update the learning parameters using the following update rule between successive

states, wherêQ approximates the utility function̂U of equation 2.14:

θi = θi +α[r + γmax
a′

Q̂θ(s
′,a′)− Q̂θ(s,a)]

∂Q̂θ(s,a)

∂θi
. (2.15)

Previous investigations have employed function approximation to learn dialogue

policies efficiently from small data sets. Denecke et al. (2004) proposed to employ

two state-action spaces: abstract and concrete. The formerincludes all the state-action

pairs and the latter includes only the most frequently visited. They performed learning

on the concrete state-action space and generalise the learnt values to the abstract space.

Henderson et al. (2005) proposed a hybrid approach for very-large state spaces, where

reinforcement learning is used to optimize a measure of dialogue reward and super-

vised learning is used to restrict the learnt policy to the portion of existing data. In

addition, Rieser and Lemon (2007) applied an approach basedon hierarchical reactive

planning, SARSA, and linear function approximation (Shapiro and Langley, 2002).

These investigations did not take into account uncertaintyin the conversation, and the

convergence to an approximated optimal solution is more difficult to guarantee.

2.3.4 Dialogue control using evolutionary reinforcement l earning

Evolutionary Algorithms (EAs) are used for stochastic search problems inspired by

the theory of evolution and natural selection. They operatein policy space rather than

value-function space (Moriarty et al., 1999). The goal in this approach is to search

for a policy or solution that is progressively refined{π,π′,π′′, ...,π∗} until finding the

optimal policyπ∗. Policies are encoded into structures called ‘chromosomes’. In table-

based policy representations they consist of condition-action rules, where each condi-

tion is a predicate that represents a set of states. A fitness function or performance

measure is used for ranking potential solutions. EAs operate on an initial population

Chapter 2. Reinforcement learning for spoken dialogue systems 22

of chromosomes and iterate as follows: (1) evaluate the fitness of chromosomes, (2)

select parent chromosomes stochastically according to their fitness, (3) evolve parent

chromosomes, and (4) replace the old population with the evolved parents. This pro-

cedure of finding the best solution is also referred to as ‘survival of the fittest’.

Previous work in dialogue strategy optimization has applied the eXtended Clas-

sifier System (XCS) model (Toney et al., 2006b,a; Toney, 2007), a generalisation of

the Learning Classifier System (LCS) model. In this model, condition-action rules are

represented with strings based on the symbols{0,1,#}: e.g. the condition string 1#1

encapsulates the states 101 and 111. This model belongs to a class of evolutionary

reinforcement learning methods, where a genetic algorithmis used to evolve and eval-

uate a population of rules, and a reinforcement learning algorithm is used to assign

rewards to the rules. The XCS learning algorithm computes cumulative rewards in a

similar way to Q-Learning. This approach was investigated on a flight booking spo-

ken dialogue system with 109 unique state-actions. In general, this approach does not

properly address partial observability. It mitigates the curse of dimensionality problem

by using a more compact representation with regions of state-actions, but less optimal

solutions may be found than tabular value functions. This approach can also be com-

bined with function approximation approaches to solve larger problems (Whiteson and

Stone, 2006).

2.3.5 Learning with real and simulated dialogues

Dialogue strategy learning has been examined using two different conversational envi-

ronments: simulated and real. Each environment has its own strengths and weaknesses.

In both cases learning has been performed offline, and not during the course of the di-

alogue with real users. Similarly, dialogue strategy testing has been examined with

both environments, and the simulated ones have been preferred due to the extensive

resources required by the real environments.

On the one hand, since Levin et al. (2000) coined the term ‘dialogue as an opti-

mization problem’, they observed that a large number of dialogues would be required

for such a purpose. This motivated them to employsimulated dialogues. They pro-

posed to use supervised learning for training a probabilistic model of user behaviour,

and to use reinforcement learning for optimizing the dialogue strategy. The strength of

this approach is that dialogue simulators quickly generatea large number of dialogues.

The main benefit of this approach is in the practical application because it can gen-

Chapter 2. Reinforcement learning for spoken dialogue systems 23

erate infinite amounts of dialogues. Its drawback is that simulated behaviour may be

different from the real behaviour. Nonetheless, this approach has been widely used in

most of the previous work in the field (Levin et al., 2000; Young, 2000; Goddeau and

Pineau, 2000; Scheffler and Young, 2002; Lemon et al., 2006a;Frampton and Lemon,

2005, 2006; English and Heeman, 2005; Schatzmann et al., 2005b; Pietquin and Dutoit,

2006; Williams, 2006; Pietquin, 2007; Cuayáhuitl et al., 2006a; Prommer et al., 2006;

Toney, 2007; Rieser and Lemon, 2007; Young et al., 2007; Thomson et al., 2008),

among others. This approach was extended by Goddeau and Pineau (2000); Pietquin

and Renals (2002) in order to learn dialogue policies in the presence of speech recog-

nition errors. In addition, Schatzmann et al. (2005b) foundthat the quality of the learnt

dialogue strategies is strongly dependent on the simulateduser model, where good user

models help to find better policies than poor user models. This suggests that dialogue

strategy learning should employ realistic simulated user behaviour.

On the other hand, learning dialogue strategies usingreal dialoguesis very appeal-

ing because it employs the dynamics from real conversational environments. Related

work using real dialogues has adopted an offline learning approach, where researchers

collect exploratory dialogue data from a real system and then use it to learn dialogue

behaviours (Singh et al., 1999; Walker, 2000; Singh et al., 2002; Denecke et al., 2004).

Litman et al. (2000) proposed the following methodology foroptimizing dialogue

strategies on small state-action spaces: (a) design an appropriate reward function, state

representation, and hand-coded state-action space – mapping states to reasonable ac-

tions; (b) build an initial state-based training system anddeploy it to collect exploratory

data; (c) use the collected data to build an empirical MDP; (d) compute the optimal

dialogue policy; and (e) redeploy the system using the learnt state-action mapping.

Although this methodology was applied successfully, it might not be very practical be-

cause larger state-action spaces are usually needed, and because the currently available

methods for dialogue strategy learning usually require a large number of dialogues.

Walker (2000) extended the previous methodology by estimating the reward func-

tion (instead of handcrafting it) using the PARADISE framework (Walker et al., 1997),

based on the metrics shown in Table 2.2 and a data set of exploratory dialogues. The

performance function is estimated with a multivariate linear regression: it employs user

satisfaction as the dependent variable; and task success, dialogue quality and dialogue

efficiency as independent variables. The performance for any dialogue is defined by

Per f ormance= (α∗N(κ))−
n

∑
i=1

wi ∗N(ci), (2.16)

Chapter 2. Reinforcement learning for spoken dialogue systems 24

Table 2.2: Evaluation metrics for spoken dialogues (Walker, 2000).

Group Metrics

Dialogue efficiency Elapsed time, system turns, user turns

Dialogue quality Mean recognition score, time-outs, rejections, helps,

cancels, barge-ins

Task success Task success as per survey

User satisfaction The sum of TTS performance, ASR performance, task easy,

interaction pace, user expertise, system response,

expected behaviour, comparable interface, future use

whereα is a weight on task success (κ), ci are the cost functions of efficiency and

qualitative metrics weighted bywi , andN is a normalization function. The estimated

performance function can be tested using cross-validationon training and test data

sets. If both data sets are statistically indistinguishable, then it can be assumed that the

performance function will generalize to unseen dialogues.

In summary, real dialogues can be used if the state-action space is small enough to

be sufficiently explored, or if the reinforcement learning algorithms are very efficient

using dialogues that make sense to real users. In contrast, simulated dialogues can be

used if the state-action space cannot be sufficiently explored by real users. But, they

should be as realistic as possible in order to optimize good quality dialogue strategies.

2.3.6 Evaluation of learnt dialogue policies with real user s

Previous work in evaluating learnt dialogue policies with real users has reported results

based on average reward and the metrics shown in Table 2.2. Such evaluations used

different types of baseline behaviours. Firstly, compact state spaces with reasonable

actions were used to generate exploratory dialogues (Litman et al., 2000; Walker, 2000;

Denecke et al., 2004). Secondly, hand-coded dialogue strategies were used to specify

deterministic behaviour (Lemon et al., 2006b; Toney, 2007;Frampton and Lemon,

2008). Thirdly, alternative models for dialogue control such as Rieser and Lemon

(2008) used policies based on decision trees to evaluate MDP-based policies, and Gasic

et al. (2008) used MDP-based policies to evaluate POMDP-based policies.

In general, learnt dialogue policies usually outperform the given baseline behaviour.

However, most of the evaluations do not demonstrate how goodthe baselines are, with

Chapter 2. Reinforcement learning for spoken dialogue systems 25

some exceptions (Singh et al., 2002). A learnt dialogue strategy could easily out-

perform a poor baseline, but may find difficulties in outperforming better baselines.

Baseline dialogue strategies should be measured to find if the learnt policies are better

than state-of-the-art behaviours. Establishing standardised baselines would contribute

towards better benchmarks, but they remain to be established.

Figure 2.4: Conversational interaction between a simulated user modeland a spoken

dialogue system(machine), adapted from Eckert et al. (1997).

2.4 Approaches for dialogue simulation

The simulation of human-machine task-oriented dialogues involves generating artifi-

cial dialogues between a spoken dialogue system and a simulated user (see Figure 2.4).

The communication of both conversants can be achieved at different levels of granu-

larity such as speech signals, words, and dialogue acts. Theartificial data can be used

to (re) train the machine’s components. For example, words can be used to train lan-

guage models, and dialogue acts can be used to train dialoguemodels. The latter

have been widely adopted for reinforcement learning of dialogue strategies because

conversations at the dialogue act level are useful for improving dialogue behaviours.

Chapter 2. Reinforcement learning for spoken dialogue systems 26

Generally speaking,the problem addressed in user simulation is to predict the next

realistic user response given a current approximate user dialogue state. This is not

a trivial task due to the fact that the user dialogue state space may be large. A user

dialogue state can be represented with information such as the last machine dialogue

act, the slot-values of all slots, the status of all slots, and so forth. Table 2.3 shows

a summary of user simulation approaches2. They differ in two main aspects: (1) the

way in which they represent the dialogue state, and (2) the way in which they choose

user responses. The rest of this section categorises them into four broad approaches:

rule-based, probabilistic, probabilistic-goal-directed, and deterministic-probabilistic.

Table 2.3: Previous works on user simulation approaches for slot filling applications.

Author(s) Approach Communication Data

Level Driven

(Eckert et al., 1997) Bigram Dialogue act Partially

(Levin et al., 2000) Constrained bigram Dialogue act Partially

(Scheffler, 2002) Goal directed model Dialogue act Partially

(López-Cózar et al., 2003) Rule-based Words, speech Hand-crafted

(Chung, 2004) Rule-based Words, speech Hand-crafted

(Pietquin, 2004) Goal directed model, BNs Dialogue act Hand-crafted

(Filisko and Seneff, 2005) Rule-based Words Hand-crafted

(Filisko and Seneff, 2006) Rule-based Dialogue act Yes

(Georgila et al., 2005a, 2006)(Advanced) N-grams, LFC Dialogue act Yes

(Cuayáhuitl et al., 2005) Hidden Markov models Dialogue act Yes

(Rieser and Lemon, 2006a) Cluster-based model Dialogue act Yes

(Schatzmann et al., 2007a) Agenda Dialogue act Hand-crafted

(Schatzmann et al., 2007c) Hidden agenda Dialogue act Yes

Abbreviations: BNs = Bayesian networks, LFC = Linear feature combination.

2.4.1 Rule-based simulated user models

The behaviour of this approach is based on a set of rules that dictate how to act. Like

any other simulated user model, their behaviour can be inferred from data, or specified

in a heuristic way according to the system developer’s experience. The former has the

2See Schatzmann et al. (2006) for a more detailed review on user simulation for dialogue systems.

Chapter 2. Reinforcement learning for spoken dialogue systems 27

advantage that more realistic behaviour can be generated, but its disadvantage is the

cost of collecting and annotating the data (Filisko and Seneff, 2006). The latter has the

advantage that it can be developed and modified without requiring annotated corpora,

but its disadvantage is that the simulated behaviour may be significantly different from

the real one. Previous work has employed heuristic behaviours to generate user re-

sponses at the speech and word levels of granularity (López-Cózar et al., 2003, 2008;

Chung, 2004; Filisko and Seneff, 2005). They have been used to find problematic

interactions, and to test the performance of spoken dialogue systems.

2.4.2 Probabilistic simulated user models

The behaviour of this approach is driven by conditional probability distributions for

user dialogue act selection, and can also be hand-crafted orestimated from data. Eckert

et al. (1997) proposed generating user responses based on a bigram modelP(ut|st),

whereut is the user dialogue act at timet, andst is the last system’s dialogue act. This

model has been used in a number of investigations (Levin et al., 2000; Schatzmann

et al., 2005a; Cuayáhuitl et al., 2006a; Hurtado et al., 2007; Williams, 2007a). Georgila

et al. (2005a, 2006) extended the bigram model with n-grams varying from 2-grams

to 5-grams. Georgila et al. (2006) also proposed simulations based on linear feature

combination, mapping a vector of real-valued featuresf (s) for the user dialogue state

s to user actionsa with probabilityP(a|s). Cuayáhuitl et al. (2005) employed input-

output HMMs (one per dialogue goal) to predict user dialogueacts with probability

P(ut|qt ,st), and system dialogue acts with probabilityP(st |qt), whereqt are states in

the HMMs. Rieser and Lemon (2006a) generated user responsesdriven by clusters

that group together feature vectors based on their similarity.

These models are appealing because they can explore vast combinations of user

responses using dynamics estimated from real dialogues. Their weakness is that they

may generate incoherent behaviour – due to the smoothing of probability distributions

to allow unseen user responses, or simply not applying enough constraints to responses.

2.4.3 Probabilistic-goal-directed simulated user models

The behaviour of this approach is based on consistent user responses following auser

goal, aiming to mitigate the inconsistencies observed from purely random behaviour.

Scheffler and Young (2000, 2001) proposed user dialogue behaviour based on a prob-

abilistic finite state machine and a predefined user goalg, the latter being a data struc-

Chapter 2. Reinforcement learning for spoken dialogue systems 28

ture of slot-value pairs for the current dialogue. Pietquin(2004) combined the bigram

model with a user goal to generate responses with probability P(ut|st ,g), and extended

this combined model with Bayesian networks (Pietquin and Dutoit, 2006). Schatz-

mann et al. (2007a) represented user dialogue states with anagenda and user goal, and

generated responses from a prioritised stack of user dialogue acts. Schatzmann et al.

(2007c) extended the agenda model with hidden user dialoguestates, and trained this

model from real data. In general, a user goal can be viewed as some sort ofknowledge

basefor the simulated user model, where the more information it incorporates, the

more helpful it is to generate more consistent user responses.

2.4.4 Deterministic-probabilistic simulated user models

The behaviour of this approach is a combination of the previous models because the

user behaviour may be driven by rules, may incorporate probabilistic behaviour, and

user responses can be constrained with a user goal or knowledge base. This combi-

nation aims to bring together the benefits of the approaches above. Consequently, the

action selection mechanism for this approach can be fully hand-crafted (Toney, 2007;

Cuayáhuitl et al., 2006b), fully-learnt from data, or a combination of both (Scheffler

and Young, 2001; Scheffler, 2002; Torres et al., 2008). Whilst the former behaviour is

suitable when dialogue data does not exist, the latter two behaviours are more suitable

when dialogue data does exist for (re) training the simulated user model.

2.4.5 Evaluation of simulated dialogues

The evaluation of simulated user models has the purpose of assessing their quality in

order to use the best models for dialogue strategy learning or testing. The overall goal is

to find simulated user models that can help to build more sophisticated spoken dialogue

behaviours. Previous work has proposed several evaluationmetrics for simulations

based on dialogue acts. They are summarized in Table 2.4, andcan be grouped into

the following approaches: dialogue similarity and system performance.

The dialogue similarity approach is based on the following assumption: given a

set of metrics, a set of simulated dialogues, and a set of realdialogues – the realism

of simulated dialogues increases as their scores approach those obtained by real ones.

Most previously proposed evaluation metrics fall within this approach. Although there

is no concrete definition for dialogue realism, researchersin the field agree that re-

alistic simulated user behaviour must exhibit the propertyof human-like behaviour.

Chapter 2. Reinforcement learning for spoken dialogue systems 29

Table 2.4: Evaluation metrics for human-machine dialogue simulation.

Author(s) Proposed metric

(Eckert et al., 1997) Dialogue length, task success

(Schatzmann et al., 2005a)Precision-recall, statistical metrics

(Schatzmann et al., 2005b)Policy similarity

(Georgila et al., 2005a) Perplexity

(Cuayáhuitl et al., 2005) The Kulback-Leibler divergence

(Georgila et al., 2006) Expected accuracy/precision/recall

(Rieser and Lemon, 2006a)Pragmatic error rate

(Williams, 2007a) The Cramér-Von Mises divergence

This property has been evaluated in different ways. Some investigations have used

dialogue length and success metrics(such as average number of system turns, average

number of dialogue acts, or binary task success per task) to give a rough indication of

agreement between a set of real dialogues and a set of simulated ones (Eckert et al.,

1997; Scheffler and Young, 2000, 2001; Scheffler, 2002; Schatzmann et al., 2005a;

Filisko and Seneff, 2005, 2006; Cuayáhuitl et al., 2005). Other investigations have

usedprecision-recall and policy similarity metricsto quantify how closely simulated

dialogue acts resemble real ones (Schatzmann et al., 2005a,b; Georgila et al., 2005a;

Cuayáhuitl et al., 2005; Rieser and Lemon, 2006a). Although these metrics evaluate

how well a model can predict training and test data, they penalize highly simulated

dialogues that do not occur in the real data. Other investigations have usedproba-

bilistic metricsto quantify the probabilistic similarity of simulated and real dialogues.

Georgila et al. (2005a) proposed perplexity to evaluate howwell a model predicts se-

quences of elements in a test data-set. Their assumption is that the lower perplexity the

better. Cuayáhuitl et al. (2005) proposed the Kulback-Leibler divergence (distance)

with discrete probability distributions of system/user dialogue acts. This metric as-

sumes that the lower the divergence the better. In general, the metrics above are useful

for giving a rough indication of the similarity between simulated and real dialogues.

Their main weaknesses are that they are not suitable for properly penalizing unseen be-

haviour, and that they cannot distinguish if a given sequence of machine-user dialogue

acts is realistic or not.

The system performanceapproach ranks simulated user models viewed as pre-

dictors of the performance of a dialogue system. Here, motivation derives from the

Chapter 2. Reinforcement learning for spoken dialogue systems 30

fact that simulated user models should improve machine dialogue behaviours rather

than generating human-like conversations. Williams (2007a) proposed computing the

normalized Cramér-Von Mises divergence between real dialogue scores and simulated

dialogue scores, where the scoring function is similar to a dialogue reward function.

The assumption here is that as the predictive accuracy of thesimulated user model

increases, its divergence decreases: the lower the divergence, the better the simulated

user model. Although this is a promising approach for evaluating user simulators, it

is limited by the fact that it requires real dialogue data, which may not exist at early

stages of system development. This limitation also appliesto the metrics above that

assume an existing dialogue data set.

2.5 Open questions in dialogue strategy optimization

To date, important advances have been made in the field of dialogue strategy optimiza-

tion; however, the research questions described below currently remain open. This is

by no means a complete list of research gaps, but it gives someidea of current prob-

lems to be tackled. Further investigations can take them into account in order to build

spoken dialogue systems that learn their behaviour in an effective and practical way. In

particular, this thesis addresses the first two questions and the others are left as future

work.

(i) How to learn dialogue policies on large state-action spaces. Most of the avail-

able dialogue optimization methods use tabular or functionapproximation rein-

forcement learners with a flat setting. The former works wellon small/medium

size search spaces. The latter has been shown to be feasible on very large ones

but with limited convergence guarantees. It remains to be investigated if the

tabular approach can be scalable; a potential direction to follow is hierarchical

approaches.

(ii) How to incorporate prior knowledge into optimized dialoguebehaviour. Pre-

viously proposed optimization approaches perform learning on constrained and

unconstrained search spaces. However, there is a lack of a principled approach

for adding constraints to dialogue behaviours before and after learning. This

limits the practical application of reinforcement learning dialogue systems in

real environments. Thus, effective methods for learning and updating behaviours

where required remain to be investigated.

Chapter 2. Reinforcement learning for spoken dialogue systems 31

(iii) How to learn scalable and robust dialogue strategies.Previous work in the field

has been divided into learning dialogue strategies under certainty, and planning

under uncertainty. Due to the fact that both research efforts aim to contribute

towards adaptive and robust spoken dialogue behaviours, a thorough integration

of efforts still remains to be explored.

(iv) How to learn dialogue strategies for complex behaviours.Most reinforcement

learning dialogue agents so far have optimized confirmation, initiative, and database

queries. But other dimensions require further investigation to endow dialogue

systems with smarter behaviours; for example: learning to give help, learning

to ground, learning to clarify, learning to negotiate, learning to present infor-

mation, learning to recover from errors. Furthermore, the integration of a wide

range of optimized behaviours into a single unified framework also remains to

be explored.

(v) How to simulate conversational environments for dialogue strategy learning.Al-

though important advances have been made in human-machine dialogue simu-

lation, it is still not very clear how realistic spoken dialogue behaviour can be

simulated. Consequently, there is no agreement on how to evaluate the effective-

ness of models for simulating dialogue behaviour. The limitations mentioned

in the previous section suggest that simulation methods andevaluation metrics

need further investigation. Their strengths and weaknesses could be assessed so

as to propose more effective and practical alternatives.

(vi) How to learn dialogue strategies online with real users.A main limitation of

the dialogue strategy optimization approaches proposed sofar is that learning

is very slow. This issue has motivated researchers to perform learning in an

offline fashion: once dialogue strategies have been optimized they are put into

operation with frozen optimization. This means that spokendialogue systems

with optimized policies employ static behaviours. An alternative approach is

to employ dynamic behaviours – dialogue strategies that canbe dynamically

improved over time. This would require some sort of lifelonglearning approach,

where very efficient and effective learning methods would bevaluable.

All these research questions aim to contribute to the development of spoken dia-

logue systems with more sophisticated dialogue behaviours. A learning method solv-

ing the problems described above is still a major challenge in this field. As a conclu-

Chapter 2. Reinforcement learning for spoken dialogue systems 32

sion, due to the fact that hierarchical reinforcement learning approaches have received

very little attention, this thesis will now narrow down its scope to investigate such

approaches for spoken dialogue systems.

2.6 Summary

This literature review chapter described previous work in the field of reinforcement

learning for spoken dialogue systems. After a brief introduction to reinforcement learn-

ing, four approaches for dialogue strategy learning were described based on Markov

Decision Processes (MDPs), Partially Observable MDPs (POMDPs), function approx-

imation, and evolutionary reinforcement learning. In addition, this chapter surveyed

approaches for simulating the users’ dialogue behaviour. It also discussed current prac-

tices for evaluating learnt dialogue behaviours and simulated dialogues. Finally, some

current research gaps in the field were described. In this literature review it was found

that dialogue strategy learning on large search spaces is a critical issue that plays an

important role in the development of large-scale spoken dialogue behaviours.

Chapter 3

Hierarchical reinforcement learning: a

perspective on spoken dialogue

This chapter reviews the literature of hierarchical reinforcement learning – using a

number of worked examples – from the perspective of the design of spoken dialogue

strategies. Section 3.2 reviews two of the most used methodsfor hierarchical reinforce-

ment learning, and comments on some recent extensions. Section 3.3 gives an intro-

duction to the Semi-Markov decision process formalism for hierarchical reinforcement

learning. Section 3.4 summarizes the current state in the field. Section 3.5 discusses

the strengths and weaknesses of such methods for their potential application to large-

scale spoken dialogue systems. Finally, the last section summarizes this chapter.

3.1 Introduction

A critical problem in flat reinforcement learning is scalability since it operates with a

single policy that behaves by executing only primitive actions. The size of state spaces

grows exponentially with the number of state variables incorporated into the environ-

ment state – the ‘curse of dimensionality’. As a result, reinforcement learning agents

find solutions only very slowly.Temporal abstraction addresses these problems by

incorporating hierarchical structures into reinforcement learning agents. This is attrac-

tive for dialogue systems for several reasons. First, humandecision-making activity

occurs in sequential courses of action, where decisions do not happen at each step, but

rather in temporally extended activities following their own policies until termination

(Barto and Mahadevan, 2003). Second, hierarchical decision makers can solve more

complex problems than flat ones (Dietterich, 2000a). Third,task-oriented dialogues

33

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 34

have shown evidence of following hierarchical structures (Grosz and Sidner, 1986;

Litman and Allen, 1987; Clark, 1996). This chapter reviews the literature of hierarchi-

cal reinforcement learning, including the perspective of dialogue strategy learning.

3.1.1 An illustrative decision-making problem

Consider that you have the task of designing a spoken dialogue strategy for a flight

booking system. In such a system the user can say things such as ‘a flight from London

to Prague for the twenty second of October in the morning travelling with KLM’ –

alternatively, the user may provide the information acrossseveral shorter utterances.

A dialogue strategy is a mapping from dialogue states to actions and specifies the sys-

tem’s way of behaving. The dialogue state (used to describe the current situation in

the conversation) is defined by a vector of state variables asillustrated in Figure 3.1.

This decision-making problem has 281250 states (∏Xi∈X |Xi|). A sample dialogue us-

ing this state space is shown in Table 3.1. The mapping from states to actions can

be done either manually, or using flat reinforcement learning methods as described in

chapter 2, or using hierarchical reinforcement learning methods as described in the rest

of this thesis. The benefits of reinforcement learning include automatic design and op-

timal behaviour according to a performance measure, while hierarchical methods aim

to have a more practical application for systems with large state-action spaces.

Figure 3.1: Dialogue state for the flight booking spoken dialogue strategy. Each vari-

able Xi with domain values D0 has five possible values, variable X7 has six possible

values, and variable X8 has 3 possible values, resulting in56×6×3 = 281250states.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 35

Table 3.1: Sample human-machine dialogue in the flight booking domain,where the

dialogue state is formed by the state variables shown in Fig.3.1, and a set of actions

is available per state. At this point action-selection is arbitrary (before learning).

Agent Dialogue State Action Sample Utterance

SYS 0,0,0,0,0,0,0,1 req Tell me your flight information.

USR A flight from Edinburgh to Paris.

SYS 3,2,0,0,0,0,0,1 acc

3,2,0,0,0,0,2,1 mic+req OK, a flight from Edinburgh to Rome,

when do you want to travel?

USR I said ‘to Paris’.

SYS 4,3,0,0,0,0,2,1 sic+req OK, a flight to Paris,

when do you want to fly?

USR December first, flying with British Airways.

SYS 4,4,1,0,2,0,2,1 apo+req I’m sorry, when do you want to travel?

USR On the first of December.

SYS 4,4,3,0,2,0,2,1 acc

4,4,3,0,2,0,3,1 mic+req Travelling on the first of December with

British Airways, at what time do you prefer

your flight?

USR In the morning.

SYS 4,4,4,1,4,0,3,1 apo+req Sorry, at what time do you prefer to fly?

USR In the morning.

SYS 4,4,4,3,4,0,3,1 sec Did you say in the morning?

USR Yes please.

SYS 4,4,4,4,4,0,5,1 dbq+sta Please wait while I retrieve information ...

USR

SYS 4,4,4,4,4,0,5,2 pre+ofr All right, flights from Edinburgh to Paris on

the first of December...[present information]

Which choice do you prefer?

USR The second one please.

SYS 4,4,4,4,4,2,5,2 sec Did you say choice two?

USR That’s right.

SYS 4,4,4,4,4,4,5,2 [terminal state]

Notes: This example is used for illustration purposes and shows basic behaviour of more com-

plex interactions. Abbreviations: req=request, acc=accept w/high confidence, mic=multiple

implicit confirmation, sic=single implicit confirmation, apo=apology, sec=single explicit con-

firmation, dbq=database query, sta=status of dialogue, pre=present info, ofr=offer choices.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 36

3.1.2 Temporal abstraction for dialogue strategy learning

A learning agent using flat decision-making is limited to primitive actions such as

those shown in Table 3.1. In contrast, an agent using temporal abstraction can choose

both primitive and composite actions, which are temporallyextended actions corre-

sponding to sub-dialogues. For example, the last two dialogue turns can be seen as the

sub-dialogue ‘presentFlightInfo’ that presents information and fill/confirm the terminal

slot. In general, hierarchical reinforcement learning agents embrace properties such as

abstraction, modularity and reusability that are lacked byflat reinforcement learners.

Abstraction can be defined as the act of removing detail from a concept or ob-

ject. Abstraction can be divided into temporal abstractionand state abstraction; the

latter is addressed in the next subsection.Temporal abstractionrefers to temporally

extended courses of action, where details of complex actions are ignored and treated

as composite activities such as the ‘presentFlightInfo’ action. They can help to explore

the search space more quickly. Examples of procedural abstraction include macros,

subroutines, abstract actions, composite actions, subpolicies, options, behaviours and

subtasks. Such abstractions can be arranged into nested actions, forming a hierarchy

of actions at different levels of granularity.

Modularity refers to a divide-and-conquer approach, where a learning problem

is decomposed into sub-problems, and the subsolutions are merged into an overall

solution. For example, the flight booking dialogue strategycan be decomposed into

the sub-behaviours ‘getMandatorySlots’, ‘getOptionalSlots’ and ‘presentFlightInfo’,

where they could be subsequently decomposed, and so on. The modular behaviours

make internal decisions, independent of external information; Dayan and Hinton (1992)

refer to this as ‘information and reward hiding’. Modularity is also an important prop-

erty for enhancing the maintainability and testing of learnt dialogue behaviours.

Reusability occurs when sub-behaviours are shared by multiple parent behaviours.

A key idea is that behaviours do not need to learn everything ab initio (i.e. from

the beggining); instead, they can be based on previously learnt ones, and possibly

reused by other ones. For example, the dialogue sub-behaviour ‘presentFlightInfo’

could be reused by other spoken dialogue systems. When behaviours are reused in a

new problem, the learning speed is accelerated (Dietterich, 2000a).

These properties are crucial for learning the behaviour of large-scale spoken dia-

logue systems, where the dialogue state may be described using a large set of state

variables and/or the dialogue system may have support for a large number of actions.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 37

3.1.3 State abstraction for dialogue strategy learning

The role of state abstraction is to compress the state, assuming that the learning agent

does not need to know all the knowledge in every state to take the best actions. The

importance of state abstraction is to find solutions on a morecompact state representa-

tion (also referred to as ‘abstract state space’) that focuses on relevant parts of the state

and ignore irrelevant ones, e.g. the dialogue states used toget flight information can

ignore the state space for presenting information. State abstraction is a key concept in

hierarchical reinforcement learning in order to overcome the problem of the curse of

dimensionality. Dietterich (2000a) proposed the following types of state abstraction:

1. Irrelevant variables: a state variable is irrelevant for primitive or composite ac-

tion a if it does not affect the cumulative reward of the remaining variables, e.g.

the composite actions ‘getMandatorySlots’ and ‘getOptionalSlots’ can ignore

the variables of the composite action ‘presentFlightInfo’. In addition, lower-

level composite actions have fewer relevant variables thanhigher-level actions.

2. Funnel abstractions: an action is described as a funnel if it causes a large set of

states to change into a small set of next states. In this way, the domain value of a

state variable is irrelevant for composite actiona if it does not affect the cumula-

tive reward of the remaining domain values. For example: when the composite

action ‘getMandatorySlots’ is executed, the domain valuesfor unfilled and con-

firmed slots are relevant to the parent, but the remaining values (e.g. the status of

such slots, filled with different recognition confidence levels) could be ignored.

3. Structural constraints: if a composite action terminates in states or if the ter-

mination of a child composite action involves the termination of its parent, then

there is no need to store values for that state. For example: the composite action

‘getMandatorySlots’ can ignore values at terminal states.

The first type of abstraction has a wider application in HRL algorithms, and the

latter types require the decomposition of the value function to guaranteesafe abstrac-

tion. State abstraction is safe if the learnt policy in the abstract space is also optimal

in the original state space. Previous work has applied stateabstraction to small-scale

problems (Dietterich, 2000a; Andre and Russell, 2002; Uther, 2002; Jong and Stone,

2005; Marthi et al., 2006; Jonsson, 2008), and it remains to be investigated in problems

with large sets of state variables. Alternatively, abstractions may be provided by the

system developer (Marthi, 2006), but there are no guarantees for safe abstractions.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 38

3.2 Hierarchical reinforcement learning approaches

The incorporation of hierarchical structures into reinforcement learning agents was

also motivated by hierarchical planners such as HTN (Hierarchical Task Network),

which use a plan library with high-level activities decomposed into lower-level ones

(Sacerdoti, 1975; Currie and Tate, 1991). The strenghts of hierarchical reinforcement

learning methods in comparison to flat methods are that they find solutions faster and

can solve more complex problems. The reinforcement learning methods described in

this section are based on the Semi-Markov Decision Process (SMDP) model, a gen-

eralisation of the MDP model. An SMDP is a mathematical modelfor sequential

decision-making in temporally extended courses of action,and provides the fundamen-

tal theory for hierarchical reinforcement learning agents. SMDPs allow actions to take

a variable amount of time to complete, resulting in state transitions with large steps,

see Figure 3.2. This allows the agent to explore the search space more efficiently.

State trajectory
of an MDP

State trajectory
of an SMDP

time

st
at

e
s

Figure 3.2: Illustration of state trajectories in MDPs and SMDPs.

Work on hierarchical reinforcement learning can be broadlyclassified into agents

that learncontext-dependent policiesand those that learncontext-independent poli-

cies. This section reviews approaches for context-dependent policies such as HAMs,

and context-independent policies such as MAXQ. It also discusses their strengths and

limitations, and briefly comments on recent extensions.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 39

A main weakness of hierarchical reinforcement learning algorithms is that they

only produce sub-optimal solutions. The loss in optimalitymay be due to the follow-

ing reasons: (1) in a composite action only a subset of primitive actions is allowed; (2)

a composite action depends on the execution of child behaviours; (3) unsafe state ab-

stractions; and (4) the prior knowledge included in the policy’s behaviour. The SMDP-

based hierarchical reinforcement learning algorithms described in the rest of this sec-

tion may suffer from some of these sub-optimalities, and canbe classified according

to their type of policy: context-dependent or context-independent1.

• An optimal context-dependent policyachieves the highest cumulative reward

among all policies consistent with the given hierarchy. Here, temporally ex-

tended behaviours execute actions that may be locally sub-optimal but that are

optimal for the other behaviours. The HAMs method learns this kind of policies.

• An optimalcontext-independent policyachieves the highest cumulative reward

for the given composite action, but suffers from an additional source of sub-

optimality, locally optimal policies. Here, temporally extended behaviours ex-

ecute actions that are locally optimal but that may be sub-optimal for the other

behaviours. The MAXQ method learns this kind of policy.

Dietterich (2000a) points out that there is a trade-off between both types of policy.

On the one hand, context-independent policies facilitate state abstraction and policy

reuse, but they are only locally optimal. On the other hand, context-dependent policies

allow stronger optimality, but they are weaker for state abstraction and policy reuse.

3.2.1 Hierarchical abstract machines

A Hierarchical Abstract Machine (HAM) is a partial program that constrains the ac-

tions that a reinforcement learning agent can take in each state (Parr and Russell,

1997; Parr, 1998). HAMs are similar to non-deterministic finite state machines (FSMs)

whose transitions may invoke lower-level machines, each machine specifying a sub-

dialogue. Figure 3.3 provides a graphical illustration of reinforcement learning with

HAMs. In contrast to standard reinforcement learning, herethe environment is mod-

elled by an induced SMDP, where the HAM tells the SMDP the available set of actions

per state. The learning agent has to optimize decision-making of low and high-level

actions taking into account both the environment states and the machine state ¯s.

1In machine learning jargon, optimal context-dependent policies are known as ‘hierarchical optimal
policies’, and optimal context-independent policies as ‘recursively optimal policies’.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 40

Figure 3.3: Architecture of the agent-environment interaction for HAM-based rein-

forcement learning, where a HAM tells the agent the available actions per state.

A key idea is that the system developer specifies a partial policy and leaves the un-

specified part to the reinforcement learning agent. Such prior expert knowledge guides

the learning agent through a smaller search space to find solutions much faster than us-

ing blind search, because it focuses learning on the parts that were left unspecified. In

the flight booking dialogue strategy, one may think of actions that are easy to specify,

such as asking for information when slot values are unknown,and also think of actions

less easy to specify, such as confirming or reasking for slotspreviously filled.

A HAM is defined by three elements: (1) a finite set of machine states; (2) an

initial state or a start function determining the initial machine state; and (3) a transition

function to determine the next state using either deterministic or stochastic transitions.

The types of machine state are:

• start: execute the current machine (e.g. ‘root’),

• action: execute an action (e.g. ‘request departure city),

• call: execute another machine (e.g. ‘presentFlightInfo’),

• choice: select the next machine state, and

• stop: halt execution and return control.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 41

HAMs are appealing for specifying the dialogue behaviour ofconversational sys-

tems because they can be used for fully-deterministic behaviour, fully-learnt behaviour,

or a combination of both. HAMs control the dialogue in a modular way, where each

machine in the hierarchy specifies a sub-dialogue. Whilst the root and non-terminal

machines execute actions at different levels of granularity (i.e. they may call other ma-

chines), the terminal children machines only execute primitive actions (i.e. they do not

invoke other machines). The dynamics in a HAM are as follows:when a lower-level

machine is called, control is transferred to the start state, where machine states are vis-

ited until reaching a stop state, which returns control to the caller, and then determines

the next machine state, and so on until reaching the stop state of the root machine.

Figure 3.4 shows a sample HAM that partially specifies the dialogue behaviour for

the flight booking system. It uses a root machine that invokesthree lower-level ma-

chines: ‘getMandatorySlots’, ‘getOptionalSlot’ and ‘presentFlightInfo’. An assump-

tion in HAM-based controllers is that the stochastic behaviour is not easy to specify and

hence requires optimization – so they can be seen as learningvalues for the stochastic

transitions and will prefer the actions with higher value. This HAM focuses on opti-

mizing a confirmation strategy, where stochastic action-selection is used in the root and

the children machines. Alternatively, only deterministicaction-selection may be used

in the parts that do not require to be included in the optimization. The rest of this sub-

section explains how a HAM-based reinforcement learner optimizes action-selection

in choice states ¯si .

For any MDPM and any HAMH, there exists aninduced SMDP M′ = H ◦M.

The solution defines an optimal policy that maximizes the expected total reward by a

reinforcement learning agent executingH in M. The construction ofM′ is as follows:

(i) The state set is the cross-product of the choice states ofH and the environment

states ofM. Notice that not all pairs of environment-machine state (si ,s̄i) will be

possible, and therefore the learning task becomes easier. An ad hoc algorithm

reduce(H,M) can be used to remove inappropriate pairs and states with a single

action because they do not require optimization.

(ii) The action set is derived from the stochastic actions inH. Such actions corre-

spond to either action states (primitive actions) or call states (composite actions).

The induced state-action space for the flight booking dialogue strategy is shown

in Table 3.2, which involves both composite and primitive actions. This table

omits deterministic actions because they have only one available action per state.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 42

Figure 3.4: Hierarchical Abstract Machine (HAM) for the flight booking dialogue

system. The decision-making points are in machine choice states with deterministic

or stochastic choices. Abbreviations: req=request, acc=accept w/high confidence,

mic=multiple implicit confirmation, sic=single implicit confirmation, apo=apology,

mec=multiple explicit confirmation, sec=single explicit confirmation, dbq=database

query, sta=status of dialogue, pre=present information, ofr=offer choices.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 43

Table 3.2: Induced state-action space resulting from the cross product of the environ-

ment states of Figure 3.1 and choice states of the HAM shown inFigure 3.4. The rest

of the state-action pairs are omitted because they have one available action per state.

Induced State Induced Action Set

(s, s̄=choice1) getMandatorySlots, getOptionalSlot, presentFlightInfo, dbq+sta

(s, s̄=choice3) sec, apo+req, acc

(s, s̄=choice4) mec, apo+req, acc

(s, s̄=choice7) sec, apo+req

(s, s̄=choice9) sec, apo+ofr

Note: An induced state is also referred to as ‘environment-machine state’.

(iii) The state transition function corresponds to executing in parallel the transition

function of the MDP and the transition function of the HAM.

(iv) The reward function is defined asR′([s, s̄],a) = R(s,a) if a is an action state,

otherwise the reward for non-action states in the HAM is zero. In addition,

for each transition from statest to statest+τ the learning agent computes the

cumulative discounted rewardr = rt+1+ γrt+2+ γ2rt+3+ ...+ γτ−t−1rt+τ.

In general, the cross product of HAM and MDP described above results in a Semi-

Markov Decision Process (SMDP) because actions take a variable amount of time

to complete their execution. A sample dialogue using environment and machine states

(s, s̄) is shown in Table 3.3, this is equivalent to the one shown in Table 3.1. They differ

in the kind of actions they take: whilst a HAM-based dialogueagent takes primitive

and composite actions, the former dialogue strategy only takes primitive ones.

The HAMQ-Learning algorithm can be used to learn a HAM-basedpolicy (Parr,

1998). This algorithm uses an extended Q-tableQ([s, s̄],a) indexed by an environment

states, machine state ¯s, and actiona, see algorithm 2. A sample call for our case study

corresponds toHSMQ([0,0,0,0,0,0,0,1], root). HAMQ-Learning converges under

similar conditions as Q-Learning (Watkins and Dayan, 1992). A similar algorithm

called ‘SMDP Q-Learning’ uses only environment states (Bradtke and Duff, 1994),

and has been applied to theoptions2 framework (Sutton et al., 1999; Precup, 2000).

2The Options approach changes the notion of actionsa∈ A in an MDP for optionso∈ O, where an
option can lastτ time steps (Sutton et al., 1999; Precup, 2000). An option is defined as a 3-tupleo =
<I ,π,β>, characterized by an initiation set of statesI ⊆ S, a policyπ : S×A→ [0,1], and a termination
conditionβ : S→ [0,1] that specifies the probability for transitioning to a terminal state.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 44

Table 3.3: Sample HAM-based dialogue in the flight booking domain usinginduced

dialogue states (s, s̄). The induced states shown in Table 3.2 have stochastic choices

(require optimization) and the remaining ones perform deterministic action-selection.

Agent Dialogue State Action Sample Utterance

SYS 0,0,0,0,0,0,0,1,choice1getMandatorySlots

0,0,0,0,0,0,0,1,choice2req Tell me your flight information.

USR A flight from Edinburgh to Paris.

SYS 3,2,0,0,0,0,0,1,choice4acc

SYS 3,2,0,0,0,0,2,1,choice2mic+req OK, a flight from Edinburgh to Rome,

when do you want to travel?

USR I said ‘to Paris.’

SYS 4,3,0,0,0,0,2,1,choice2sic+req OK, a flight to Paris,

when do you want to fly?

USR December first, flying with British Airways.

SYS 4,4,1,0,2,0,2,1,choice4apo+req I’m sorry, when do you want to travel?

USR On the first of December.

SYS 4,4,3,0,2,0,2,1,choice4acc

SYS 4,4,3,0,2,0,3,1,choice2mic+req Travelling on the first of December with

British Airways, at what time do you prefer

your flight?

USR In the morning.

SYS 4,4,4,1,4,0,3,1,choice3apo+req Sorry, at what time do you prefer to fly?

USR In the morning.

SYS 4,4,4,3,4,0,3,1,choice3sec Did you say in the morning?

USR Yes please.

SYS 4,4,4,4,4,0,5,1,choice1dbq+sta Please wait while I retrieve information ...

USR

SYS 4,4,4,4,4,0,5,2,choice1presentFlightInfo

4,4,4,4,4,0,5,2,choice8pre+ofr All right, flights from Edinburgh to Paris on

the first of December...[present info.]

Which choice do you prefer?

USR The second one please.

SYS 4,4,4,4,4,2,5,2,choice9sec Did you say choice two?

USR That’s right.

SYS 4,4,4,4,4,4,5,2,null [terminal state]

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 45

The HAMs approach does not overcome the curse of dimensionality problem, it

is only mitigated by reducing the available actions per state. Its practical application

is limited to decision-making problems with few state variables, and it needs to be

extended with other ideas for scaling to larger problems. Nonetheless, it has the ad-

vantage of merging hand-coded and learnt behaviours into a single framework.

Algorithm 2 The HAMQ-Learning algorithm

1: function HAMQ(states, state ¯s) return totalReward

2: T̄← state transition function of the machine corresponding to call state ¯s (e.g. root)

3: s̄← start, totalReward← 0, discount← 1

4: while s̄ is not a stop statedo

5: if s̄ is an action statethen

6: Execute actiona (corresponding to ¯s)

7: Observe one-step rewardr

8: else if s̄ is a call statethen

9: r ← HAMQ(s, a), total reward received whilst actiona← s̄ executed

10: else if s̄ is a choice statethen

11: Choose action state ¯s← π(s, s̄) according to an exploration policy

12: continue

13: else

14: Observe next machine statēs′ from T̄ (e.g. a choice, null or stop state)

15: s̄← s̄′

16: continue

17: end if

18: totalReward← totalReward+discount× r

19: discount← discount× γ

20: Observe resulting environment states′

21: Observe resulting machine state from̄T

22: Q([s, s̄],a)← (1−α)Q([s, s̄],a)+ α
[

r +discount×maxa′([s′, s̄′],a′)
]

23: s← s′

24: s̄← s̄′

25: end while

26: end function

Recent advances in HAM-based hierarchical reinforcement learning are as follows:

Andre and Russell (2000) extended HAMs to support parameterized subroutines, tem-

porary interrupts, aborts, and memory variables. Andre andRussell (2002) applysafe

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 46

state abstraction to partial hierarchical programs, written in a language called ALisp.

Finally, Marthi et al. (2005) investigated agents that control several effectors simulta-

neously, and suggested multithreaded partial programs forsuch a purpose.

3.2.2 MAXQ

In the MAXQ method the system developer specifies a hierarchyof subtasks and the

reinforcement learning agent specifies their behaviour. Two versions can be identi-

fied in this method. The first decomposes a given Markov Decision Process (MDP)

into a hierarchy of Semi-Markov Decision Processes (SMDPs). The second version

extends the first by decomposing the value function recursively and by ignoring parts

of the state space, resulting in faster learning. In addition, the latter version includes

approaches for tackling the sub-optimalities caused by theimposed hierarchy.

3.2.2.1 Hierarchical problem decomposition

In contrast to the HAM-based reinforcement learning methodthat learns a single pol-

icy, the MAXQ method learns multiple policies. In MAXQ, a given Markov Decision

Process (MDP) is decomposed into a hierarchy of sub-problems (also referred to as

hierarchy of subtasks) provided by a system developer (Dietterich, 2000b). In the

context of spoken dialogue systems a subtask corresponds toa sub-dialogue, i.e. each

sub-dialogue is controlled by a separate policy. A sample hierarchy of sub-dialogues

for the flight booking dialogue strategy is shown in Figure 3.5. When a parent subtask

invokes a child subtask, control is transferred to the child; when it terminates its execu-

tion, control is returned to the parent subtask. In this method solving the hierarchical

decision making problem means finding an optimal policy for the root subtask.

Figure 3.5: Top-down hierarchy of subtasks for the flight booking system. A parent

subtask can invoke child subtasks, when they terminate, control is returned to the caller.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 47

The hierarchical decomposition allows to findcontext-independent policies, and

has the following advantages: (1) policies learnt in child subtasks can be reused by

parent subtasks, (2) value functions learnt in subtasks canbe shared so that learning

in other subtasks is accelerated, and (3) value functions can be represented in a more

compressed way by applying state-action abstraction, which ignores irrelevant parts of

their corresponding state-action space.

In this method a given MDPM is decomposed into a set of subtasks{M0,M1, ...,Mn}.

Each subtaskMi defines a Semi-Markov Decision Process (SMDP) characterized by

a set of states, a set of actions, a state transition function, and reward function. The

action set includes either primitive actions lasting a single time step, or composite ac-

tions corresponding to subtasks that last for multiple timesteps. For example, Table 3.4

shows the actions available per dialogue subtask in the hierarchy of subtasks shown in

Figure 3.5. Note that each dialogue subtask uses its own set of actions.

Table 3.4: Action spaces in the hierarchy of dialogue subtasks for the flight booking

system, where the root subtask uses both composite and primitive actions and the child

subtasks use only primitive actions. See Table 3.1 for a description of primitive actions.

SubtaskID Subtask Actions available

M0 root getMandatorySlots, getOptionalSlot,

presentFlightInfo, dbq+sta

M1 getMandatorySlots req, apo+req, sic+req, mic+req, sec, mec, acc

M2 getOptionalSlot req, apo+req, sec

M3 presentFlightInfo pre+ofr, apo+ofr, sec

A sample hierarchical dialogue using the subtasks above is shown in Table 3.5.

Although the dialogue states use the same information in each subtask, they can ignore

some parts of the state space in order to find the solution on a more compact search

space than the original one. This property is referred to as ‘state abstraction’ (see sec-

tion 3.1.3). The solution for the hierarchy of SMDPs is a hierarchical policy containing

one locally optimal policy per subtask in the problemπ∗ = {π∗0, ...,π
∗
n}.

To learn such a hierarchy of policies, Dietterich (2000b) proposed the Hierarchical

Semi-Markov Q-Learning algorithm (also referred to as HSMQ-Learning), where the

optimal policy performs action-selection according toπ∗(i,s) = argmaxaQ∗(i,s,a).

This algorithm updates Q-values as shown in algorithm 3 – line 14, where value

Q(i,s,a) denotes the cumulative reward for executing actiona in states of subtask

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 48

Table 3.5: Sample hierarchical dialogue in the flight booking domain. Figure 3.1

describes the dialogue state, and Table 3.4 shows the actions available per subtask.

Agent Subtask Dialogue State Action Sample Utterance

SYS M0 0,0,0,0,0,0,0,1 getMandatorySlots

SYS M1 0,0,0,0,0,0,0,1 req Tell me your flight information.

USR A flight from Edinburgh to Paris.

SYS M1 3,2,0,0,0,0,0,1 acc

SYS M1 3,2,0,0,0,0,2,1 mic+req OK, a flight from Edinburgh to Rome,

when do you want to travel?

USR I said ‘to Paris.’

SYS M1 4,3,0,0,0,0,2,1 sic+req OK, a flight to Paris,

when do you want to fly?

USR December 1st, flying with British Airways

SYS M1 4,4,1,0,2,0,2,1 apo+req I’m sorry, when do you want to travel?

USR On the first of December.

SYS M1 4,4,3,0,2,0,2,1 acc

SYS 4,4,3,0,2,0,3,1 mic+req Travelling on the first of December with

British Airways, at what time do you

prefer your flight?

USR In the morning.

SYS M1 4,4,4,1,4,0,3,1 apo+req Sorry, at what time do you prefer to fly?

USR In the morning.

SYS M1 4,4,4,3,4,0,3,1 sec Did you say in the morning?

USR Yes please.

SYS M1 4,4,4,4,4,0,5,1 [terminal state of subtaskM1]

SYS M0 4,4,4,4,4,0,5,1 dbq+sta Please wait while I retrieve information...

USR

SYS M3 4,4,4,4,4,0,5,2 presentFlightInfo

M3 4,4,4,4,4,0,5,2 pre+ofr All right, flights from Edinburgh to Paris

on the first of...[present information]

Which choice do you prefer?

USR The second one please.

SYS M3 4,4,4,4,4,2,5,2 sec Did you say choice two?

USR That’s right.

SYS M3 4,4,4,4,4,4,5,2 [terminal state of subtaskM3]

SYS M0 4,4,4,4,4,4,5,2 [terminal state of root subtask]

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 49

i (executed using a stack mechanism). The execution of actiona lastingτ time steps

receives the cumulative discounted rewardr = rt+1+ γrt+2+ γ2rt+3+ ...+ γτ−t−1rt+τ.

The dynamics of subtasks are as follows: when a subtask terminates, it is popped off

the stack, and control is transferred to the next available subtask in the stack, and so

on until popping off the root subtask. A subtask terminates when it reaches one of

its terminal states. This algorithm is executed until the Q-values of the root subtask

stabilize.

Algorithm 3 The HSMQ-Learning algorithm

1: function HSMQ(states, subtaski) return totalReward

2: totalReward← 0, discount← 1

3: while subtaski is not terminateddo

4: Choose actiona from sderived fromQ(i,s) (e.g.ε-greedy)

5: Execute actiona

6: if a is primitive then

7: Observe one-step rewardr

8: else ifa is compositethen

9: r ← HSMQ(s,a), which invokes subtaska

and returns the total reward received whilea executed

10: end if

11: totalReward← totalReward+discount× r

12: discount← discount× γ

13: Observe resulting states′

14: Q(i,s,a)← (1−α)Q(i,s,a)+ α [r +discount×maxa′ Q(i,s′,a′)]

15: s← s′

16: end while

17: end function

The HSMQ-Learning algorithm converges tooptimal context-independent poli-

cies if the learning rate parameterα is decayed according to equation 2.10, and if

the exploration policies satisfy the following properties: (1) each action is executed

infinitely often in every state that is visited infinitely often, and (2) in the limit, the

policy is greedy with respect to the Q-value function. This is due to the fact that parent

subtasks rely on the behaviour of their children to learn their own optimal behaviour.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 50

3.2.2.2 Decomposition of the value function

Decomposing the value function means splitting the value ofstates or state-action pairs

into multiple values. A key benefit of this decomposition is that it allows parts of the

state space to be ignored, and a more compact representationof learnt values to be

stored.

The MAXQ value function decomposition splits value functions in a recursive way

into two additive values: (1) the value for executing a childaction, which may be a

primitive action or subtask; and (2) the value after executing such child action until

its parent terminates (Dietterich, 2000a). The former are referred to asprojected value

functions V(i,s) and specify the cumulative reward of executing subtaski in states.

The latter are referred to ascompletion functions C(i,s,a) and specify the cumulative

reward after executing actiona in states until completing subtaski. A sample MAXQ

decomposition for the value function in the flight booking domain is illustrated in

Figure 3.6. Note that the value ofV(getMandatorySlots,s)can be computed by adding

its projected and completion value functions and hence doesnot require to be stored.

For example, a value for the root subtask in states is computed as

V(root,s) =V(req,s)+C(getMandatorySlots,s, req)+C(root,s,getMandatorySlots).

(3.1)

Figure 3.6: Example of MAXQ value function decomposition for the flight booking

dialogue strategy, where the values of state-action pairs are decomposed hierarchically

into two values. The left tree uses natural language and the right one uses formal

notation. The sequence of rewards ri is given for executing primitive actions.

In general, the MAXQ value function decomposition has the form

Vπ(a0,s) = Vπ(am,s)+Cπ(am−1,s,am)+ ...+Cπ(a1,s,a2)+Cπ(a0,s,a1), (3.2)

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 51

Algorithm 4 The MAXQ-0 Learning algorithm

1: function MAXQ-0(MaxNode i, States)

2: if i is a primitive actionthen

3: Execute actioni, receiver, and observe next states′

4: V(i,s) = (1−α(i))V(i,s)+ α(i)r

5: return 1

6: else// i is a subtask

7: let count= 0

8: while subtaski is not terminateddo

9: Choose actiona according to exploration policyπx(i,s)

10: let N=MAXQ-0(a,s) (recursive call)

11: observe next states′

12: C(i,s,a) = (1−α)C(i,s,a)+ α(i) · γNV(i,s′)

13: count= count+N

14: s= s′

15: end while

16: return count

17: end if

18: end function

19: //Main program

20: initialize V(i,s) andC(i,s, j) arbitrarily

21: MAXQ-0(root node 0, starting states0)

wherea0,a1, ...,am is the path of subtasks chosen by the hierarchical policyπ going

from the root subtaska0 to the primitive actionam.

The MAXQ-0 algorithm can be used to learn locally optimal policies based on this

value function decomposition (see algorithm 4), where the valueV(i,s′) in line 12 is

computed according to

V(i,s) =

{

maxa(V(a,s)+C(i,s,a)) if i is composite

V(i,s) if i is primitive.
(3.3)

A similar algorithm called MAXQ-Q allows the use of arbitrary pseudo-rewards,

which are used to specify how desirable each terminal state is for the given subtask. A

pseudo-reward function – specified by the system developer –typically assigns pseudo-

rewards of 0 to non-terminal states and goal terminal states, and negative pseudo-

rewards to non-goal terminal states, see (Dietterich, 2000a) for more details.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 52

In summary, the MAXQ method divides an MDP into a hierarchy ofSMDPs.

It learns a hierarchy of context-independent policies using two types of value func-

tions: non-decomposedusing the HSMQ-learning algorithm, anddecomposedusing

the MAXQ-0 or MAXQ-Q algorithms. The policies allow safe state abstraction, but

decomposed-based ones use more compact representations. In addition, this method

executes policies in a hierarchical or non-hierarchical way, the latter mitigates the sub-

optimalities derived from the imposed hierarchy. The non-hierarchical form of exe-

cution requires extra learning by using a mechanism similarto policy iteration (Diet-

terich, 2000a).

The MAXQ method has been extended to multi-agent and continuous-time hierar-

chical reinforcement learning, and shown to be feasible in complex scheduling tasks

(Makar and Mahadevan, 2001; Ghavamzadeh and Mahadevan, 2001). In addition,

Hengst (2003) proposed a bottom-up approach for discovering hierarchies of subtasks

by incrementally finding subspace regions collapsed into abstract states, where each

subregion corresponds to a different SMDP.

3.3 Semi-Markov Decision Processes

The dynamics of hierarchical reinforcement learning methods can be represented with

the Semi-Markov Decision Process (SMDP) formalism, which allows us to model tem-

porally extended actions. The SMDP model was originally formulated as a 5-tuple

<S,A,T,R,F> characterized as follows:S is a finite set of states in the environment,

A is a finite set of actions,T(s,a,s′) is a transition function to the next states′ given the

current states and actiona with probabilityP(s′|s,a), R(s′|a,s) is the reward function

that specifies the reward given to the agent for choosing actiona when the environment

makes a transition froms to s′, andF(τ|s,a) is a function giving the transition duration

probability that actiona in stateswill terminate inτ time units. In SMDPs the duration

can take either real or integer values, which correspond to continuous-time SMDPs and

discrete-time SMDPs (Putterman, 1994; Mahadevan et al., 1997; Parr, 1998).

Dietterich (2000a) reduced the formulation above for the discrete-time SMDP model

to a 4-tuple<S,A,T,R>, which extends the transition and reward functions with the

random variableτ representing the number of time steps it takes to execute an action

a in states. Following Dietterich’s formulation of an SMDP, it needs only to consider

actions with integer-value durations. In this way, the transition and reward functions

are extended asP(s′,τ|s,a) andR(s′,τ|s,a), respectively. The latter specifies the cu-

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 53

mulative discounted reward while executinga. In spoken dialogue, the state transitions

can be seen as executing a sub-dialogueat (compounded by a sequence of lower-level

actions) starting ins= st and completing its execution in states′= st+τ (see Figure 3.7).

Figure 3.7: Dynamics in a Semi-Markov decision process, where state transitions and

rewards depend on the amount of time taken by actions to complete their execution.

The Bellman equations forV∗ andQ∗ for a discrete-time SMDP are rewritten as

V∗(s) = max
a

[

∑
s′,τ

P(s′,τ|s,a)[R(s′,τ|s,a)+ γτV∗(s′)]

]

, (3.4)

and

Q∗(s,a) = ∑
s′,τ

P(s′,τ|s,a)[R(s′,τ|s,a)+ γτ max
a′

Q∗(s′,a′)]. (3.5)

The solution to a Semi-Markov decision process is a policyπ mapping states to

actions. An optimal policy is defined similarly to the MDP model, whereπ is optimal if

and only if∀sπ(s)∈ argmaxaQπ(s,a). It can be learnt either by dynamic programming

algorithms applied to SMDPs (Howard, 1971; Putterman, 1994) or by hierarchical

reinforcement learning methods such as those described in this thesis.

3.4 Current state of hierarchical reinforcement learning

Briefly, the current state of Hierarchical Reinforcement Learning (HRL) is as follows:

• Partial observability: Most HRL approaches assume fully observable states.

However, it is well known that many reinforcement learning agents have to

model hidden states due to their noisy perceptions of the world. In this context

only a few investigations have been reported (Theocarous, 2002; Hansen and

Zhou, 2003; Theocarous et al., 2004; Pineau, 2004; Foka and Trahanias, 2007),

meaning that the fully observable setting has been developed more extensively.

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 54

• Hierarchy discovery: Some investigations have attempted to build a hierarchy

of temporally extended courses of action (McGovern, 2002; Stolle and Precup,

2002; Hengst, 2003), but they have been applied only to small-scale systems.

• Dynamic abstraction:Most HRL approaches use fixed state abstractions. It is

known that the relevant state variables for a given behaviour depend on the ac-

tivity being executed (Jonsson and Barto, 2000). Therefore, dynamic abstraction

in HRL approaches would be very valuable, and awaits exploration.

• Knowledge representation: Most previously proposed HRL methods employ a

vector of numeric state variables to represent the current situation of the world,

and also employ actions without complex descriptions. Whilst this form of

knowledge representation may be sufficient for slot filling spoken dialogue sys-

tems, other forms of knowledge representation may be required for more com-

plex human-machine interactions such as negotiation or collaborative dialogues.

For this reason some machine learning researchers have turned their attention

to the emerging field known as ‘Relational Reinforcement learning’ (RRL) that

combines reinforcement learning with inductive logic programming (Dzeroski

et al., 2001; Tadepalli et al., 2004); a related hybrid hierarchical approach was

proposed by (Ryan, 2002). But hierarchical RRL approaches are less mature

than those with simpler representations.

• Large-scale applications: In tabular HRL, Makar and Mahadevan (2001) em-

ployed the MAXQ approach to a state space consisting of 230 states, applied

to automated guided vehicles scheduling. The options approach with tile-coding

function approximation has been applied to very large statespaces in the RoboCup

Soccer domain (Stone et al., 2005). In addition, the HAMs approach with state

abstraction and linear function approximation has been applied to the Stratagus

computer game consisting of 2500 states and 2200 actions (Marthi, 2006). This

suggests that tabular HRL can be applied to medium or large search spaces, but

that HRL with function approximation is the way to address very large ones.

3.5 Discussion

Potentially, any of the currently available hierarchical reinforcement learning methods

can be applied to spoken dialogue systems. However, some approaches may be better

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 55

suited than others for their development, optimization andmaintenance. To identify

their strengths and weaknesses the following issues are addressed: (1) learning under

uncertainty, (2) learning on large search spaces, (3) learning with prior expert knowl-

edge, (4) efficient learning, (5) state abstraction, and (6)optimality.

Firstly, an important requirement of spoken dialogue systems is to learn adaptive

behaviour under noisy perceptions such as the speech recognition and understanding

modules. However, hierarchical methods that learn with partially-observable states

are yet not as developed as those that learn with fully-observable ones. Furthermore,

Mahadevan et al. (2004) points out that there is less uncertainty at higher levels of

the hierarchy. An example in context is as follows: a dialogue system is more sure

of which dialogue goal it is in, rather than exactly what has been said in the current

user utterance. In addition, tabular HRL under the SMDP model has not been applied

before to spoken dialogue. As was noted in the previous section, it can be applied to

problems with medium or reasonably large search spaces. These arguments make it

worth investigating the SMDP model, which learns hierarchical dialogue behaviours

under certainty.

Secondly, whilst any of the SMDP-based approaches can support very large search

spaces using function approximation, the MAXQ framework isthe only tabular ap-

proach that can overcome the curse of dimensionality problem. This is possible by de-

composing the target MDP into a hierarchy of SMDPs and by applying state abstrac-

tion in each subtask. Therefore, from all tabular approaches the MAXQ framework

is the most appealing for learning spoken dialogue strategies with large state-action

spaces. The hierarchical decomposition may not only yield faster optimizations, but

perhaps also facilitates their maintenance and reusability.

Thirdly, another potentially relevant requirement for specifying the behaviour of

spoken dialogue systems is to allow some hand-crafted behaviour rather than purely

learnt. From the approaches above, HAMs is the only approachthat provides a prin-

cipled framework to incorporate prior expert knowledge into reinforcement learning

systems. This is particularly important in order to combinehand-coded dialogue be-

haviours with optimized ones.

Fourthly, an additional requirement of spoken dialogue systems is to support very

fast learning methods in order to learn behaviours from a small set of human-machine

conversations. All approaches above require a large numberof interactions to find op-

timal policies. Nevertheless, the HAMs approach provides the fastest learning frame-

work because it applies learning only where necessary, at choice states in the HAM,

Chapter 3. Hierarchical reinforcement learning: a perspective on spoken dialogue 56

supplying the SMDP with a reduced action set per state.

Fifthly, the state abstraction methods investigated so farhave been applied to decision-

making problems with few state variables. Currently, it is not clear how to perform au-

tomatic safe state abstraction for dialogue states represented with several tens of state

variables resulting in (very) large state spaces. As a first step such state abstractions

can be provided by the system developer and tested experimentally in comparison with

a baseline system. However, future research should take this issue into account in order

to reduce potential sub-optimalities derived from manual abstractions.

Lastly, whilst the HAMs approach aims for hierarchical optimality, the MAXQ

approach aims for locally optimal solutions. Although the latter is a weaker form

of optimality, that is the price for overcoming the curse of dimensionality. A main

assumption in this thesis is as follows:if the solution is near-optimal and generates

dialogues that make sense to humans, then such loss in optimality may be affordable.

Based on these strengths and weaknesses, the scope of this thesis is narrowed down

to hierarchical reinforcement learning under certainty based on the SMDP model.

Though the current state-of-the-art in HRL presents significant advances, the scope of

this research is narrowed down further to investigate tabular hierarchical approaches to

spoken dialogue. From the available HRL approaches, it is hypothesized that HAMs

and MAXQ have a high potential application for optimizing large-scale spoken dia-

logue strategies. This hypothesis is tested experimentally in the chapters that follow.

3.6 Summary

This literature review chapter presented an introduction to fully-observable hierarchi-

cal reinforcement learning approaches, and used a number ofworked examples for

such a purpose. It focused on the Semi-Markov Decision Process (SMDP) model,

used for sequential decision-making at temporally extended courses of action, which

surprisingly has not been applied to spoken dialogue before. It described two of the

most influential hierarchical reinforcement learning methods in the field: HAMs and

MAXQ, including recent advances. In addition, this chapterhighlighted the current

state-of-the-art of hierarchical reinforcement learning. Finally, the HAMs and MAXQ

methods were identified as promising for optimizing spoken dialogue strategies for

larger-scale systems than those so far attempted.

Chapter 4

A heuristic simulation environment for

learning dialogue strategies

This chapter describes a dialogue simulation environment that does not require train-

ing data and can be used by reinforcement learning agents to optimize or test spoken

dialogue strategies. Section 4.2 overviews the simulationenvironment at the dialogue

act level of communication. Section 4.3 describes each component in the simulation

environment (user behaviour, speech recognizer, database) and includes a baseline of

machine behaviour. Section 4.4 describes two experimentaldialogue systems in the

flight booking and travel planning domains. Section 4.5 proposes metrics for evaluat-

ing user and machine behaviour, and compares to current literature on user simulations

(Schatzmann et al., 2005a). Section 4.6 discusses the strengths and weaknesses of the

proposed environment. Finally, section 4.7 gives a summaryand draws conclusions.

4.1 Introduction

Human-machine dialogue simulation consists of artificial conversations generated be-

tween a spoken dialogue manager and a simulated conversational environment (which

includes automated speech and language processing modules, and a simulated user). If

a dialogue manager follows a given dialogue strategy, then different strategies can be

tested in the simulated conversational environment in order to find better ones (Eckert

et al., 1997), and the dialogue strategy can be optimized automatically (Levin and Pier-

accini, 1997). For such purposes, the speech and word levelscan be ignored: it can be

assumed that conversations based on dialogue acts – incorporating a noise model – are

sufficient to enable optimal dialogue strategies to be learnt (Young, 2000).

57

Chapter 4. A heuristic simulation environment for learning dialogue strategies 58

Previous investigations in dialogue strategy optimization use two types of learn-

ing environments: corpus-based and simulation-based. Theformer might be preferred

because they display the actual dynamics of real conversations (Walker, 2000; Litman

et al., 2000; Roy et al., 2000; Singh et al., 2002). However, their application has been

limited to small-scale systems due to the fact that a large number of dialogues is re-

quired to find an optimal dialogue strategy. In contrast, simulation-based environments

are more practical for generating a large amount of different dialogues without the need

for real users (Eckert et al., 1997; Levin et al., 2000; Scheffler and Young, 2000; Lin

and Lee, 2001; Pietquin, 2004; Chung, 2004; Filisko and Seneff, 2005; Cuayáhuitl

et al., 2005; Georgila et al., 2005a, 2006; Pietquin, 2006; Rieser and Lemon, 2006a;

Cuayáhuitl et al., 2006b; Hurtado et al., 2007; Toney, 2007; Schatzmann et al., 2005b,

2007a,c; López-Cózar et al., 2008). The drawback of simulation-based approaches

is that they may not generate realistic dialogues. Nevertheless, they can help to find

errors in dialogue strategies, and initially to optimize the dialogue strategy.

Currently available simulated user models are mostly data-driven approaches, which

need a significant amount of annotated training dialogue data (Eckert et al., 1997;

Scheffler and Young, 2000; Pietquin, 2004; Georgila et al., 2005a, 2006; Cuayáhuitl

et al., 2005; Hurtado et al., 2007; Schatzmann et al., 2007a,c). Although statistical

models are very appealing for dialogue simulation, they have a number of drawbacks

including the requirement for costly annotated dialogue data, the difficulty of acquir-

ing sufficient training data, and the fact that the resultingsmoothed probability dis-

tributions may yield incoherent user behaviour (generatedby choosing stochastically

from the whole set of user dialogue acts in each dialogue state). Furthermore, there

is a lack of agreement about the evaluation of user simulations. Previously proposed

evaluation metrics are based on properties for measuring the statistical similarity be-

tween simulated and real user behaviour (Schatzmann et al.,2005a; Georgila et al.,

2005a, 2006; Cuayáhuitl et al., 2005; Rieser and Lemon, 2006a), or for evaluating user

models viewed as predictors of system performance (Williams, 2007a). The following

facts suggest that richer metrics for evaluating user simulations are needed: (a) cur-

rent metrics only report a rough indication of dialogue realism, and (b) they cannot

distinguish if a given sequence of machine-user dialogue acts is realistic or not.

This chapter presents a simulation framework for generating and evaluating human-

machine conversations based on a heuristic approach. The proposed environment gen-

erates coherent and distorted conversations, useful for testing and/or learning dialogue

strategies for mixed-initiative multi-goal spoken dialogue systems.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 59

4.2 A heuristic dialogue simulation environment

A simulation environment of human-machine conversations involves modelling the

dynamics of everything that is outside the dialogue manager. This chapter proposes

an approach for information-seeking dialogue systems thatdoes not require data for

training the models in the simulation environment. This approach uses heuristics to

simulate the dynamics of task-oriented conversations based on dialogue acts, and uses

three simulation models which are shown in the bottom of Figure 4.1. The first simula-

tion model (on the right of the figure) generates coherent user responses, i.e. responses

that make sense to humans. Here it was assumed that real usersbehave in a coherent

fashion, based on user dialogue acts that are consistent according to a user Knowledge

Base (KB) that keeps the history of the conversation. This isa strong assumption and

its validity is addressed later. The second model distorts coherent user dialogue acts

due to imperfect speech recognition and understanding. Finally, the third model mim-

ics the database queries and results. The distorted user responses and database results

update the machine’s KB so that the dialogue strategy can choose actions accordingly.

Figure 4.1: The agent-environment interaction for simulating human-machine conver-

sations, useful for learning or testing dialogue strategies for spoken dialogue systems.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 60

Figure 4.1 shows the agent-environment interaction for human-machine dialogue

simulation (detailed in the next section). The interactionis as follows: the machine is

in a given dialogue statesm
t , and takes dialogue actam

t by following dialogue strategy

π(sm
t). A distorted machine dialogue act ˜am

t (machine response1) is fed into the user’s

KB to observe the user dialogue statesu
t , from which an actionau

t is taken (user re-

sponse). This user response is distorted with ASR errors into ãu
t , and is fed into the

machine’s KB. The machine action may require interaction with simulated database

behaviour by sending queries and retrieving database results dt . Then the next ma-

chine statesm
t+1 is observed from the machine’s current KB. Once the machine is in a

new state, it takes another dialogue act, and so on until the end of the conversation.

4.3 Human-machine dialogue modelling

A human-machine dialogue can be modelled by the perceptionsand actions of both

conversants. Figure 4.2 shows the dynamics of communication at the dialogue act

level. The conversants use two sources of knowledge at different levels of granularity:

knowledge-rich stateskt (also referred to as “knowledge base”) to represent all possi-

ble perceptions about the conversation, andknowledge-compact statesst to represent

a compact version of the current dialogue state. The latter are used for action selection.

The basic elements in a conversation are given byspeech acts, which represent

intentions conveyed to the partner conversant (Austin, 1962; Searle, 1969). This re-

search refers to them asdialogue acts, and decomposes them intodialogue act types

anddialogue acts. The former represent types of intentions, e.g. “am
t = con f irm”.

The latter extend dialogue act types by taking context into account from conveyed

slot-value pairs, e.g. “am
t = con f irm(date= 01dec2007, time= morning)”.

For task-oriented conversations a small set of dialogue acttypes can be employed.

Table 4.1 shows the core dialogue act types that define the behaviour of human-machine

simulated dialogues. The user dialogue act types are a subset of the ones proposed by

Georgila et al. (2005b), and the set of machine dialogue act types are an extension of

the ones employed by Walker and Passonneau (2001). In addition, a single utterance

may convey composite dialogue acts, which are compounded bymultiple dialogue act

types with their corresponding slot-value pairs. Because the number of unique dia-

logue acts is usually large, in the proposed simulation framework both conversants

choose actions based on dialogue act types, given in contextto the partner conversant.

1The reason for distorting machine responses (fed to the user’s KB) was to model user confusions.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 61

Figure 4.2: Dynamics of human-machine communication at the dialogue act level (this

diagram does not follow the conventions of dynamic Bayesiannetworks). A conversant

in a knowledge-rich state kt , observes a knowledge-compact state st , and takes dia-

logue act at in order to feed it to its knowledge-rich state and convey it to its partner,

received distortedly as̃at . The current knowledge kt , action at and partner response

determine the next knowledge-rich state kt+1, and so on until the end of the dialogue.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 62

Table 4.1: Dialogue act types for task-oriented human-machine dialogues.

Agent ID Dialogue Act Type Sample Utterance

User

pro provide I want a flight from Edinburgh to London.

rep reprovide I said ‘a flight to London from Edinburgh.’

con confirm Yes, please.

sil silence [remain in silence]

Machine

req request And, what is your destination city?

apo apology I am sorry, I didn’t understand that.

sic single IC A flight to London.

mic multiple IC A flight from Edinburgh to London.

sec singleEC I think you said London, is that correct?

mec multiple EC I heard from Paris to London, is that right?

acc acceptslot [move to next ascending slot with lowest value]

dbq db query [performs a database query]

ofr offer Which option would you like?

sta status Please wait while I query the database.

pre present The cost of this flight is 120 pounds.

rel relax Try again with some different information.

ack acknowledgement All right, this flight has been booked.

ope opening Welcome to the travel planning system.

clo closing Thank you for calling, good bye.

Abbreviations: IC = Implicit Confirmation, EC = Explicit Confirmation.

4.3.1 Knowledge representation for conversational agents

The proposed dialogue simulator uses ontologies to represent the conversant’s knowl-

edge base. An ontology in its simplest form can be characterized as a data model with

the following tuples: instances of classes, classes in the domain, attributes of classes,

and relationships between classes creating a hierarchicalstructure that specifies how

objects relate to one another, resembling the object-oriented paradigm (Gruber, 1993;

Uschold and Gruninger, 1996; Staab and Studer, 2004). Tables B.1 and B.2 show the

classes to instantiate for creating the knowledge baseskm andku, where attributes have

either deterministic or stochastic values. This chapter avoids the issue of inference and

focuses on adding information with the instructionupdate(k,class.attribute, value)and

querying what is known with the instructionget(k,class.attribute).

Chapter 4. A heuristic simulation environment for learning dialogue strategies 63

4.3.2 Modelling conversational behaviour

The proposed dialogue simulation approach models the behaviour of both conversants.

Whilst the simulated environment can be used to learn dialogue strategies, the machine

behaviour can be used as a baseline to compare its performance against other dialogue

strategies. Algorithm 5 specifies the high-level steps for simulating a task-oriented

human-machine conversation. Briefly, the algorithm startsby initializing parameters

for the knowledge bases of both conversants. It employs three functions described

later: πm
t is the machine dialogue strategy,πu

t is the user dialogue strategy, andδ is

the distorter of machine/user dialogue acts. A conversant interacts with their partner

by: (a) observing the current knowledge-compact state, (b)selecting an appropriate

dialogue act type, (c) generating a dialogue act with the current dialogue act type in

context, (d) distorting the dialogue act to simulate misrecognitions or misunderstand-

ings, (e) updating its knowledge-rich state with the undistorted dialogue act, and (f)

updating the knowledge-rich state of its partner with the distorted dialogue act.

Algorithm 5 Simulator of Task-Oriented Human-Machine Conversations

1: function HUMAN MACHINEDIALOGUESIMULATOR ()

2: km
0 ← initialize machine knowledge-rich state

3: ku
0← initialize user knowledge-rich state

4: t← initialize time-step to 0

5: repeat

6: sm
t ← observe machine dialogue state fromkm

t

7: am
t ← choose machine dialogue act type followingπm(sm

t)

8: Generate machine dialogue act≡ dialogue act typeam
t in context

9: ãm
t ← get distorted dialogue act fromδ(am

t ,km
t)

10: Updatekm
t with am

t and updateku
t with ãm

t

11: su
t ← observe user dialogue state fromku

t

12: au
t ← choose user dialogue act type followingπu(su

t)

13: Generate user dialogue act≡ dialogue act typeau
t in context

14: ãu
t ← get distorted dialogue act fromδ(au

t ,k
u
t)

15: Updateku
t with au and updatekm with ãu

t

16: t← t +1

17: until one of the conversants terminates the conversation

18: end function

Chapter 4. A heuristic simulation environment for learning dialogue strategies 64

The process described previously, iterates until one of theconversants terminates

the dialogue atT time-steps. Enumerating all possible machine or user dialogue acts

usually results in large sets. Therefore, the approach taken in this chapter assumes

that the action selection of both conversants is based on dialogue act types rather than

dialogue acts2. This is beneficial because dialogue act types represent relatively small

sets. Based on this, the machine takes actions following dialogue strategyπm, and the

user takes actions following dialogue strategyπu defined by

πm(sm
t) =

ope if first time step

req if unknown slot in focus

sic+ req if unknown slot in focus and Single Slot to Confirm (SSC)

mic+ req if unknown slot in focus and Multiple Slots to Confirm (MSC)

apo+ req if slot in focus with low confidence level

sec if slot in focus with medium confidence level and SSC

mec if slot in focus with medium confidence level and MSC

acc if slot in focus with high confidence level

dbq+sta if null database result and confirmed non-terminal slots

pre+o f r if database result with few uninformed tuples

apo+o f r if terminal slot with low confidence level

o f r if unconfirmed terminal slot and db tuples presented before

ack if unacknowledged dialogue goal and confirmed terminal slot

rel if empty database result and confirmed non-terminal slots

clo otherwise
(4.1)

πu(su
t) =

pro if last machine action is a request or offer

con if last machine action is a correct explicit confirmation or incorrect

explicit confirmation (the latter only with some probability)

rep if last machine action is an apology or incorrect confirmation

sil otherwise
(4.2)

Once an action has been chosen, it takes context3 into account so that conversa-

tions can be generated at the dialogue act level. Although the strategyπu may not

include all possible realistic behaviours, it yields coherent behaviour, and its evalua-

tion is addressed later. Finally, the strategyπm is the one which we hypothesise will be

outperformed by the reinforcement learning agents as described in the next chapters.

2Table 4.2 shows an example using dialogue acts, dialogue acttypes would ignore slot-value pairs.
3Context is given by the dialogue state, which specifies the slot in focus, slots to fill or confirm, etc.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 65

4.3.3 Speech recognition error simulation

Due to the fact that current Automatic Speech Recognition (ASR) technology is far

from perfect, errors have to be modelled in the simulated environment. For such a

purpose, user dialogue acts were distorted according to

δ(at ,kt) =

{

at without distortions if p(random)≤ 1− p(error)

at with insertions/substitutions/deletions otherwise
(4.3)

where the amount of error for each conversant is retrieved from their knowledge

base as probabilityp(error) = get(kt, recognition.ker). As a fixed keyword error rate

was assumed due to the lack of training data, errors were sampled with a flat distri-

bution for each slot value (keyword) in the dialogue actat : that is, equal amounts of

insertions, substitutions and deletions. Once keywords had been distorted, they were

assigned the well known three-tiered confidence levels to indicate their recognition

confidence. For each keyword, a confidence level was sampled from one of the dis-

tributions shown in Figure 4.3. Confidence levels were used to analyze the effects of

different ASR confidence distributions. They were preferred because the true distri-

butions of confidence scores for correct and incorrect recognition were assumed to be

unknown.

Pessimistic Balanced Optimistic
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distributions for Sampling Confidence Levels

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e

Low Confidence Medium Confidence High Confidence

Figure 4.3: Discrete probability distributions for sampling three-tiered speech recog-

nition confidence levels assigned to keywords in distorted user dialogue acts̃au
t .

Chapter 4. A heuristic simulation environment for learning dialogue strategies 66

4.3.4 Database querying simulation

Using a real database for dialogue simulation is simply impractical due to the lengthy

time required to execute large amounts of queries. For such apurpose, a model to

simulate database queries is much more practical for fast simulations, which are due

to computations in main memory rather than in secondary memory. In this way, the

proposed simulation environment produced the database outcomes according to

d(sm
t) =

null if slots in the dialogue statesm
t are unfilled

none if non-terminal slots insm
t are confirmed andp(random)≤ 0.1

few if non-terminal slots insm
t are confirmed

many otherwise.
(4.4)

4.4 Experimental spoken dialogue systems

4.4.1 Case study: flight booking system

This is a 6-slot mixed-initiative spoken dialogue system inthe flight booking domain,

used as an example in the previous chapter. Its state representation is described in

Table B.3, which shows the state variables that represent the machine knowledge-

compact statessm
t ; see Table B.2 for more details of the state variables. For action

selection, Table B.4 shows the action set based on dialogue act types, which corre-

spond to dialogue acts when they take context into account. This dialogue system had

281250 states and 10 actions, resulting in 2.8 million state-actions (see equation 4.5).

If V is the set of state variables andA is the action set, then:

|S×A|=
(

∏
vi∈V
|vi|

)

×|A|. (4.5)

Using this state representation, action set, and simulatedbehaviours described in

the previous section, simulated conversations at the dialogue act level can be generated.

A sample simulated conversation is shown in Table 4.2, whichgives an example of co-

herent simulated user behaviour. In this sample dialogue, due to a machine misunder-

standing of ‘destination city’ in the second system turn, the simulated user reprovides

its value despite the fact that is being requested for a different slot. Between system

and user turns, dialogue acts are distorted as described in section 4.3. Arguably, this is

the kind of behaviour that is necessary to generate realistic dialogue simulations.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 67

Table 4.2: Sample dialogue in the flight booking system. Although simulations are only

based on dialogue acts, an equivalent wording is given for a better understanding. This

dialogue shows a sample speech recognition error after the first user utterance.

Agent Dialogue Act Wording

SYS req(depcity) Tell me your flight information.

USR pro(depcity=edinburgh, I would like a flight from Edinburgh to Paris.

descity=paris)

ASR [I would like a flight from Edinburgh to Rome]

SYS mic(depcity=edinburgh, OK, a flight from Edinburgh to Rome,

descity=rome)+req(date) when do you want to travel?

USR rep(descity=paris) I said ‘to Paris.’

SYS sic(descity=paris) OK, a flight to Paris,

+req(date) when do you want to fly?

USR pro(date=01dec, First of December, flying with British Airways.

airline=britishairways)

SYS apo(date)+req(date) I’m sorry, when do you want to travel?

USR pro(date=01dec) On the first of December.

SYS mic(date=01dec, airline= Travelling on the first of December with

british airways)+req(time) British Airways, at what time do you prefer

your flight?

USR pro(time=morning) In the morning.

SYS apo(time)+req(time) I’m sorry, at what time do you prefer your flight?

USR rep(time=morning) In the morning.

SYS sec(time=morning) Did you say in the morning?

USR con(time=yes) Yes please.

SYS dbq(dbquery)+sta(db) Please wait while I retrieve information ...

USR

SYS pre(dbresult)+ofr(flight) All right, flights from Edinburgh to Paris on

the first of December in the morning travelling

with British Airways: choice1, choice2, choice3.

Which choice do you prefer?

USR pro(flight=choice2) The second one please.

SYS sec(flight=choice2) Did you say choice two?

USR con(flight=yes) That’s right.

Note: more complex information presentation is consideredbeyond the scope of this work.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 68

4.4.2 Case study: travel planning system

This is a 26-slot multi-goal mixed-initiative spoken dialogue system in the travel plan-

ning domain, allowing users to book single flights, return flights, hotels and cars.

This system is similar to the CMU Communicator (Rudnicky et al., 1999), part of the

DARPA Communicator systems (Walker et al., 2001). It supports the following fea-

tures: hand-crafted or learnt dialogue strategies, multiple goals within a single dialogue

(see Table B.5), and implicit switching across flight dialogue goals. The action and

state spaces are described in Tables B.6 and B.7. This dialogue system had 4.5×1022

states and 15 actions, resulting in 6.7×1023 state-actions (see equation 4.5). Such a

state-action space (decomposed as in the next chapter), andsimulated behaviours of

the previous section, can be used to simulate conversationsat the dialogue act level. A

sample simulated dialogue is shown in Tables 4.3 and 4.4, which gives an example of

switching across dialogue goals. The scenario is as follows: the user aims to book a

return flight, but due to finding an empty database result, theuser is asked to try with

some different information (possibly switching from return flight to outbound flight

and back again), once the system returns where it was, it continues the dialogue.

4.5 Evaluating user and machine dialogue behaviour

The evaluation metrics described in this section have two purposes: (1) to investigate

if simulated user behaviour generates user responses that resemble human responses,

and (2) to investigate if the hand-crafted dialogue strategy described in this chapter

is a reasonable baseline to compare against other competingdialogue strategies. This

section describes metrics for such a purpose, but due to the fact that they require real

annotated dialogue data, their evaluation is reported in chapter 7.

4.5.1 Evaluation metrics for user behaviour

The evaluation of real and simulated user behaviour is carried out with three evalua-

tion metrics from two different perspectives. The first perspective evaluatesdialogue

similarity , whereprecision-recallquantifies the predicted user responses from a user

simulation model (strongly penalizes unseen responses (Schatzmann et al., 2005a)),

andprobabilistic dialogue similaritycomplements the previous metric by comparing

probability distributions of user dialogue acts based on the Kulback-Leibler divergence

(Cuayáhuitl et al., 2005). The second perspective evaluatesdialogue coherence, where

Chapter 4. A heuristic simulation environment for learning dialogue strategies 69

Table 4.3: Sample simulated dialogue in the travel planning system (part one).

Agent Dialogue Act Wording

SYS ope() Welcome to the travel planning dialogue system.

SYS req(depcity) Tell me your flight information.

USR pro(depcity=edinburgh, I would like a return flight from Edinburgh

descity=london, to London travelling with Air France.

airline=air france,

flight type=return)

SYS mic(depcity=edinburgh, A return flight from Edinburgh to London

descity=london,airline=lufthansa, travelling with Lufthansa.

flight type=return)+req(depdate) When would you like to fly?

USR rep(airline=airfrance, I want to travel with Air France on the

depdate=eighteenthnovember, eighteenth of November in the afternoon.

dep time=afternoon)

SYS mec(airline=airfrance Did you say on the eighteenth of November

depdate=eighteenthnovember, in the afternoon travelling with Air France?

dep time=afternoon)

USR con(depdate=yes) Yes

SYS req(retdate) When do you want to return?

USR pro(ret time=evening, In the evening of the twenty first of February.

ret date=twentyfirst february)

SYS mec(rettime=evening, Did you say on February twenty first

ret date=twentyfirst february) in the evening?

USR con(rettime=yes,retdate=yes) That’s correct.

SYS dbq(db)+sta(db) Let me retrieve your information.

SYS rel(returnflight) I’m sorry, I didn’t find any flights from ...

Please try again with some different information.

USR rep(airline=britishairways) Try flying with British Airways.

SYS sec(airline=britishairways) Did you say travelling with British Airways?

USR con(airline=yes) Yes I did.

SYS dbq(db)+sta(db) Let me retrieve your information.

SYS pre(db)+ofr(choice) I found 2 flights ... Which choice do you prefer?

USR pro(choice=choicetwo) Number two please

SYS sec(choice=choicetwo) Did you say choice two?

USR con(choice=yes) That’s correct.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 70

Table 4.4: Sample simulated dialogue in the travel planning system (part two).

Agent Dialogue Act Wording

SYS ack(returnflight) OK, I’ve added this flight to your itinerary.

SYS req(wanthotel) Do you want a hotel in London?

USR pro(wanthotel=yes) Yes please.

SYS req(location) Tell me your hotel information.

USR pro(location=downtown, I would like a cheap room in the city

price=cheap,brand=anybrand) centre with any hotel.

SYS mec(location=downtown, Did you say a cheap hotel in the city centre

price=cheap, with any hotel brand?

brand=anybrand)

USR con(location=yes, Yes I did

price=yes,brand=yes)

SYS dbq(db)+sta(db) Let me retrieve your information.

SYS pre(db)+ofr(choice) I found three cheap hotels ...

Which choice do you prefer?

USR pro(choice=choiceone) Choice one please

SYS sec(choice=choiceone) Did you say choice one?

USR con(hoice=yes) That’s right.

SYS ack(hotelbooking) OK, I’ve added this hotel to your itinerary.

SYS req(wantcar) Would you like a car in London?

USR pro(wantcar=yes) Yes please.

SYS req(cartype) What kind of car would you like?

USR pro(cartype=compactcar, I would like a compact car near the airport.

location=airport)

...

...

SYS req(summary) Do you want a summary of your trip?

USR pro(summary=yes) Yes please

SYS dbq(db)+sta(db) Let me retrieve your information.

SYS pre(db)+ofr(booktrip) All right, you have a flight leaving ...

Do you want to book this trip?

USR pro(booktrip=yes) Yes please.

SYS ack(summarizetrip) All right, your trip has been booked.

SYS clo() Thanks for calling the travel planning system.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 71

coherence error rateignores the seen or unseen user responses, instead, it classifies

them into coherent or incoherent responses.

To illustrate the similarity and coherence metrics consider the sub-dialogues below

with common system responses assumed from logged real data,but user responses may

be real (see an example in Table 4.5) or simulated (see examples in Tables 4.6 and 4.7).

The acronyms of dialogue act types are described in Table 4.1.

Table 4.5: Sample sub-dialogue with user responses assumed from logged real data.

Agent Dialogue Act Wording

SYS gre(), Welcome to the travel planning system.

req(depcity) Tell me your flight information.

USR pro(depcity=amsterdam, I would like a return flight leaving from

flight type=return) Amsterdam.

SYS sic(flight type=return),req(depcity) A return flight, where are you leaving from?

USR pro(depcity=amsterdam) Amsterdam

Table 4.6: Sample sub-dialogue with simulated coherent user responses.

Agent Dialogue Act Wording

SYS gre(), Welcome to the travel planning system.

req(depcity) Tell me your flight information.

USR pro(depcity=paris,deptime=morning, A return flight from Paris travelling in the

airline=air france,flighttype=return) morning with Air France

SYS sic(flight type=return),req(depcity) A return flight, where are you leaving from?

USR pro(depcity=amsterdam) Amsterdam

Table 4.7: Sample sub-dialogue with simulated random user responses.

Agent Dialogue Act Wording

SYS gre(), Welcome to the travel planning system.

req(depcity) Tell me your flight information.

USR con(destcity=yes) Yes

SYS sic(flight type=return),req(depcity) A return flight, where are you leaving from?

USR pro(descity=paris) To Paris

Chapter 4. A heuristic simulation environment for learning dialogue strategies 72

4.5.1.1 Precision-Recall

This measure is commonly used in the information retrieval field, and was suggested

by (Schatzmann et al., 2005a) to evaluate how well a user simulation model can predict

real user dialogue behaviour.Precisionspecifies the fraction of correctly predicted real

user responses from all simulated responses.Recallspecifies the fraction of correctly

predicted real user responses from all real responses. Theyare expressed as

Precision=
Number of correctly predicted user responses

Total number of simulated user responses
, (4.6)

and

Recall=
Number of correctly predicted user responses

Total number of real user responses
. (4.7)

These scores are interpreted as the higher the more realistic the user responses. An

average score of recall (R) and precision (P) calledF-measureis defined by

F =
2PR

(P+R)
. (4.8)

If we want to compute the F-measure score in dialogue data, the slot values can be

ignored to reduce data sparsity while preserving the conveyed information. (Schatz-

mann et al., 2005a) suggested to compute precision-recall by considering a user di-

alogue act as a sequence of actions, e.g. the dialogue act ‘pro(depcity,flight type)’

is equivalent to{pro(depcity), pro(flight type)}. Considering the given sample sub-

dialogues, the F-measure score for real vs simulated coherent responses isF = 0.75,

and the score for real vs simulated random responses isF = 0. Alternatively, the scores

can be computed in a more strict way by considering each user response as a single

user action instead of multiple ones. Precision-recall canbe recomputed as follows:

the scores for real vs simulated coherent responses areF = 0.5; and the score for real

vs simulated random responses isF = 0.

4.5.1.2 Probabilistic Dialogue Similarity

The purpose of this measure is to evaluate the probabilisticsimilarity between two sets

of dialogues. The similarity between real and simulated dialogues has been analyzed

using the Kulback-Leibler divergence (Cuayáhuitl et al.,2005), and here we propose

to apply it in a simpler way. First, compute two smoothed probability distributions of

machine-user dialogue acts, without slot values for reduced combinations:P for one

data set andQ for the other. For example:P represents a distribution of the set of

Chapter 4. A heuristic simulation environment for learning dialogue strategies 73

real dialogues andQ a distribution of the set of simulated ones. Then compute the

symmetric distance according to

D(P,Q) =
DKL(P ‖Q)+DKL(Q ‖ P)

2
, (4.9)

whereDKL is the Kulback-Leibler divergence (distance) betweenP andQ:

DKL(P ‖Q) = ∑
i

pi log2 (
pi

qi
). (4.10)

Tables 4.8 and 4.9 use the sample sub-dialogues of this subsection in order to show

the divergence between real and simulated coherent user responses, and between real

and simulated random user responses. The probability distributions of occurrenceP

andQ were smoothed by assigning a probability mass of 0.1 to unseen events, and

the method of preference can be used to address the issue of data sparsity. It can

be observed that the symmetric divergence between real and simulated random user

responses (2.536) is greater than between real and simulated coherent ones (0.759).

This reflects the intuitive perception that the more realistic the user responses, the

shorter the divergence.

Table 4.8: Dialogue similarity results for real vs simulated coherentsub-dialogues.

Dialogue Act Pairs (SYS:USR) P Q DKL(P||Q) DKL(Q||P)

gre(),req(depcity):pro(depcity,flight type) 0.45 0.45 0.000 0.000

sic(flight type)+req(depcity):pro(depcity) 0.45 0.10 0.976 -0.217

sic(flight type)+req(depcity):pro(depcity,

descity,deptime,airline) 0.10 0.45 -0.217 0.976

Divergence 0.759 0.759

Table 4.9: Dialogue similarity results for real vs simulated random sub-dialogues.

Dialogue Act Pairs (SYS:USR) P Q DKL(P||Q) DKL(Q||P)

gre(),req(depcity):pro(depcity,flight type) 0.45 0.05 1.426 -0.158

sic(flight type)+req(depcity):pro(depcity) 0.45 0.05 1.426 -0.158

gre(),req(depcity):con(descity) 0.05 0.45 -0.158 1.426

sic(flight type)+req(depcity):pro(descity) 0.05 0.45 -0.158 1.426

Divergence 2.536 2.536

Chapter 4. A heuristic simulation environment for learning dialogue strategies 74

It can be observed that this metric gives the same ordering onuser simulations than

the precision-recall metric. A validation of this orderingtaking into account a corpus

of real human-machine dialogues is reported on chapter 7.

4.5.1.3 Coherence Error Rate

An evaluation metric calledCoherence Error Rate (CER)is proposed due to the fact

that most previously used metrics penalize unseen user responses even when they may

be realistic. The key assumption in this metric is that givena user knowledge-baseku
t

and a set of dialogue coherence rules encoded into a function, we can evaluate – in

an approximated form – whether a user actionau
t is coherent or not. This metric rates

errors (in this context, incoherent dialogue acts) from a set of observed events (user

dialogue acts in the data), in terms of dialogue act types (see Table 4.1):

CER=
∑ incoherent(au

t ,k
u
t)

count(au
t)

×100, (4.11)

where the coherence of user dialogue acts is evaluated according to

incoherent(au
t ,k

u
t) =

0 if au
t ∈ {pro, rep}and unconfirmed slot in focus inku

t

0 if au
t ∈ {con} andam

t ∈ {sec,mec}

0 if au
t ∈ {pro, rep} andam

t ∈ {rel}

1 otherwise.
(4.12)

Equation 4.12 is suited for simple slot-filling applications, but for more complex

dialogues more rules have to be added. This metric takes intoaccount user dialogue

acts and decomposes them into dialogue acts with a single slot and without slot value,

e.g. pro(descity). This procedure incorporates the conveyed information, and as-

sumes that the slot values are always consistent given a usergoal at the beginning of

the conversation. In addition, this evaluation metric considers the user dialogue act

‘silence’ as incoherent, the explanation for this consideration is because whatever the

user said (e.g. mumbles or out-of-vocabulary words), it wasnot possible to extract a

user dialogue act contributing to the conversation.

Given the sample sub-dialogues of this subsection, Table 4.10 shows the results of

coherence for real, simulated coherent and simulated random user responses: 0%, 0%,

50%, respectively. Note that although simulated coherent user responses do not match

the real ones, they are not being penalized because they are user responses that make

sense according to the dialogue history.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 75

Table 4.10: Results of coherence for real and simulated user responses.

Data Set Dialogue Act Pairs (SYS:USR) incoherent(au
t ,k

u
t)

Real

gre(),req(depcity):pro(depcity) 0

gre(),req(depcity):pro(flight type) 0

sic(flight type),req(depcity):pro(depcity) 0

Simulated

gre(),req(depcity):pro(depcity) 0

gre(),req(depcity):pro(deptime) 0

gre(),req(depcity):pro(airline) 0

coherent gre(),req(depcity):pro(flight type) 0

sic(flight type),req(depcity):pro(depcity) 0

Simulated
gre(),req(depcity):con(destcity) 1

random sic(flight type),req(depcity):pro(descity) 0

4.5.2 A reasonable choice of baseline machine behaviour

The use of speech recognition confidence scores has forced spoken dialogue strategies

to handle tradeoffs among acceptance, confirmation and rejection eventsei , which can

be classified as correctEc = {ca,cc,cr} or incorrectE f = { f a, f c, f r}. Table 4.11

shows the categories of recognition events. A reasonable dialogue strategy would

choose actions maximizing correct acceptance/confirmation/rejection events, whilst

minimizing the incorrect ones. A simple metric to quantify these events is referred

to as anEvent Error Rate (EvER):

EvER=
count(ei ∈ E f)

count(ej ∈ {Ec,E f })
×100. (4.13)

Table 4.11: Speech recognition events in spoken dialogue systems.

Recognition Event Correct False (or incorrect)

Acceptance ca f a

Confirmation cc f c

Rejection cr f r

For such a purpose, consider that speech recognition hypotheses fall within three

equally distributed regions of confidence scores (assumingno training data): low con-

fidence, medium confidence, and high confidence. A sample dialogue annotated with

speech recognition events is shown in figure 4.12.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 76

Table 4.12: Sample dialogue in the flight booking domain annotated with speech

recognition events, showing an EvER score of33% (including 3 incorrect events

and six correct ones). Notation: ca=correct acceptance, cc=correct confirmation,

cr=correct rejection, fa=false acceptance, fc=false confirmation, fr=false rejection.

Agent Wording Speech Recognition Event

SYS Tell me your flight information.

USR I would like a flight from Edinburgh to Paris.

SYS OK, a flight from Edinburgh to Rome, ca(depcity), fa(descity)

when do you want to travel?

USR I said ‘to Paris.’

SYS OK, a flight to Paris, ca(descity)

when do you want to fly?

USR First of December, flying with British Airways.

SYS I’m sorry, when do you want to travel? fr(date)

USR On the first of December.

SYS Travelling on the first of December with ca(date),ca(airline)

British Airways, at what time do you prefer

your flight?

USR In the morning.

SYS I’m sorry, at what time do you prefer your flight?fr(time)

USR In the morning.

SYS Did you say in the morning? cc(time)

USR Yes please.

SYS Please wait while I retrieve information ...

USR

SYS All right, flights from Edinburgh to Paris on

the first of December in the morning travelling

with British Airways: choice1, choice2, choice3.

Which choice do you prefer?

USR The second one please.

SYS Did you say choice two? cc(flight)

USR That’s right.

Chapter 4. A heuristic simulation environment for learning dialogue strategies 77

In addition, consider the confirmation strategiesΠ of Table 4.13 for the three confi-

dence regions. Which confirmation strategy is a better baseline of machine behaviour?

For perfect speech recognizers it has to be ‘Strategy1’, because it leads to more effi-

cient conversations in terms of number of system turns; but this is unrealistic. Thus,

a more reasonable choice of dialogue strategy is the one obtaining the lowest EvER

score, and can be expressed as

Baseline Strategy= arg min
πi∈Π

EvER(πi). (4.14)

Table 4.13: Confirmation strategies for different recognition confidence score regions.

Notation: IC=implicit confirmations, EC=explicit confirmations, and AP=apologies.

Strategy Low Confidence Medium Confidence High Confidence

Strategy1 IC IC IC

Strategy2 EC IC IC

Strategy3 AP EC IC

Strategy4 AP EC EC

Strategy5 EC EC EC

Results for this baseline strategy taking into account a corpus of real human-

machine dialogues is reported on chapter 7 (page 156).

4.6 Discussion

In order to learn spoken dialogue strategies in a practical and effective way, a number

of issues must be addressed in the dialogue simulation environment. The following

issues highlight the strengths and weaknesses of the proposed simulation framework:

(a) training data, (b) coherent user behaviour, (c) speech recognition error simulation,

(d) complexity of user behaviour, and (e) evaluation of simulated behaviour.

Firstly, without training data, how can a dialogue environment be simulated? In

the field of spoken dialogue systems, the chicken-and-egg problem seems unavoidable:

data is required to build a system and the system is required to collect data (Zue and

Glass, 2000). Besides, even in the presence of collected dialogue data, it is expensive

and time-consuming to annotate for training a model that simulates the conversational

environment. One possible solution is to use a heuristic approach to model the dy-

namics of speech-based human-machine communication. Thisis the approach that is

Chapter 4. A heuristic simulation environment for learning dialogue strategies 78

taken in this chapter, and a major criticism is that it may nottruly reflect real conver-

sational behaviour. Nonetheless, its use is justified if it helps to find errors in dialogue

strategies, and/or if it helps learning agents to find dialogue strategies that outperform

hand-crafted machine behaviour. The latter is addressed inthe following chapters.

Secondly, do real users act with coherent dialogue behaviour? If we assume that

real users provide dialogue acts in a logically integrated and consistent way, then the

approach of coherent behaviour is approximating real behaviour. Previous studies sug-

gest that human dialogues maintain coherent behaviour if they interact in a joint ac-

tivity (Reichman, 1978; Grosz and Sidner, 1986; Clark, 1996) where speech acts are

the basis for understanding dialogue coherence (Austin, 1962; Searle, 1969). Based

on this assumption, user simulation following dialogue coherence is a reasonable ap-

proach to follow, but it has received little attention in thedialogue simulation field.

Therefore, it remains to be investigated if user simulationapproaches taking into ac-

count coherence-based behaviour can help to optimize good dialogue policies.

Thirdly, the speech recognition error modelling in the proposed conversational sim-

ulation environment may not be very realistic. This is to be expected because the pro-

posed approach does not assume any training data. However, the proposed simulation

approach can be enhanced with probability distributions oferrors estimated from real

annotated data as in Schatzmann et al. (2007b). Notice that the issue of real train-

ing data is crucial for the simulation of more realistic behaviour. Due to the fact that

collecting training data is costly and time consuming, a potential future research direc-

tion is to investigate methods that generalize simulated behaviours for spoken dialogue

systems in different domains.

Fourthly, another criticism in the proposed conversational simulation environment

is that simulated user behaviour was narrowed down to few dialogue acts (provide

information, re-provide information, confirm information, and silence). Whilst this

represents basic behaviour for interacting with information seeking dialogue systems,

richer dialogue behaviour must be taken into account such asasking questions.

Fifthly, how can simulated user behaviour be evaluated? Because there is a variety

of proposals on how to evaluate user simulations, this chapter proposed two metrics to

evaluate user behaviour based on dialogue coherence and similarity, and also suggested

to validate their results with the more established metric ‘Precision-Recall’. On the one

hand, dialogue coherence can be used to evaluate whether user actions are coherent

or not, based on knowledge about the conversation with a partner conversant. On the

other hand, it is complemented by dialogue similarity in order to determine how closely

Chapter 4. A heuristic simulation environment for learning dialogue strategies 79

simulated dialogues resemble real ones in terms of machine-user pairs of dialogue acts.

Finally, what is a reasonable baseline of machine dialogue behaviour? If a simu-

lated environment can help conversational agents to find optimal dialogue behaviours,

then they need a baseline for performance comparison. However, evaluating dialogue

behaviours is a difficult task despite the existence of well accepted metrics such as

task completion, average system turns per dialogue, and word error rate. Nevertheless,

the proposed simulation framework considered the following three-tiered confirma-

tion strategy as a baseline: rejection of keywords with low confidence scores, explicit

confirmation for medium confidence scores, and implicit confirmation for high confi-

dence scores. Such a strategy included in equation 4.1, was used as a baseline of learnt

dialogue behaviours described in the following chapters.

4.7 Summary

In this chapter a simple conversational simulation environment was proposed based on

the heuristics of the dynamics of human-machine communication at the dialogue act

level. This simulation environment does not require training data, generates coherent

and coherent-distorted user behaviour, and is straightforward to implement and modify.

The simulation environment encapsulates the following simulators: user behaviour,

speech recognition error modelling and database behaviour. Included is a baseline

of machine dialogue behaviour with which to compare the performance of learnt di-

alogue strategies. In addition, three simulation evaluation metrics under two differ-

ent perspectives were described:dialogue similarityusing ‘Precision-Recall’ and ‘the

Kulback-Leibler divergence’, anddialogue coherenceusing ‘Coherence Error Rate’.

These metrics require annotated real conversations at the dialogue act level. Whilst

Precision-Recall is part of the state of the art in the field, the other two metrics were

proposed for additional assessments of dialogue realism. The hypotheses of this chap-

ter are three-fold:

(1) the proposed simulation environment can help learning agents to find behaviours

with superior performance to hand-crafted ones,

(2) the proposed heuristic machine dialogue behaviour is a reasonable baseline, and

(3) the proposed simulation metrics can be used to evaluate dialogue realism.

Experimental results on real human-machine spoken dialogues to validate these hy-

potheses are reported in chapter 7.

Chapter 5

Hierarchical dialogue optimization: a

divide-and-conquer approach

This chapter describes a novel approach for scalable optimization of spoken dialogue

strategies using Semi-Markov decision processes and hierarchical reinforcement learn-

ing. Section 5.2 treats the optimization of machine dialogue behaviour as a Semi-

Markov Decision Process (SMDP), and explains how to apply SMDPs to spoken

dialogue management. Section 5.3 describes a learning algorithm for hierarchical

SMDPs. Sections 5.4 and 5.5 report experiments and results using a 6-slot mixed-

initiative flight booking dialogue system and a 26-slot multi-goal mixed-initiative travel

planning dialogue system. Section 5.6 discusses the strengths and weaknesses of the

proposed approach. The last section summarizes the chapterand draws conclusions.

5.1 Introduction

Previous investigations in the literature of spoken dialogue systems have formulated

the task of dialogue strategy design as a Markov Decision Process (MDP) (Levin and

Pieraccini, 1997; Levin et al., 2000) or as a Partially Observable MDP (POMDP) (Roy

et al., 2000; Young, 2002; Williams, 2006), where the goal isto infer the best action for

each state or belief state. The MDP and POMDP formalisms share a common problem

that affects their practical application –the curse of dimensionality. Consequently, only

small-scale systems can be optimized. This research addresses the problem of scalable

dialogue optimization with hierarchical structures, optimizing sub-dialogues instead

of full dialogues. Ahierarchical reinforcement learning agentis used to provide a

hierarchy of sub-solutions and behaves by executing composite and primitive actions.

80

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 81

5.1.1 Background on dialogue strategy learning

A human-machine dialogue can be defined as a finite sequence ofinformation units

conveyed between conversants, where the information can bedescribed at different

levels of communication such as speech signals, words, and dialogue acts. Figure 5.1

illustrates a model of human-machine communication. An interaction between both

conversants can be briefly described as follows: the machinereceives a distorted user

speech signal ˜xu
t from which it extracts a user dialogue act ˜au

t and enters it into its

knowledge base; then the machine updates its dialogue statesm
t with information ex-

tracted from its knowledge base; this dialogue state is received by the spoken dia-

logue manager in order to choose a machine dialogue actam
t , which is received by

the response generation module to generate the corresponding machine speech signal

conveyed to the user.

Figure 5.1: A pipeline model of speech-based human-machine communication, where

dialogue state smt is used by the dialogue manager to choose action am
t . For dialogue

strategy learning the speech signals and words can be omitted.

A conversation follows the sequence of interactions above in an iterative process

between both conversants until one of them terminates it. Assuming that the machine

receives the rewardrt+1 for executing actionat = am
t when the conversational envi-

ronment makes a transition from statest = sm
t to statest+1 = sm

t+1, a dialogue can be

expressed as

D = {s1,a1, r2,s2,a2, r3, ...,sT−1,aT−1, rT ,sT}, (5.1)

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 82

whereT is the final time step. Such sequences can be used by a reinforcement learning

agent to optimize the machine’s dialogue behaviour (Levin and Pieraccini, 1997; Levin

et al., 1998, 2000). Although human-machine conversationscan be used for optimizing

dialogue behaviour, a more common practice is to use simulations (see chapter 4).

A reinforcement learning dialogue agent aims to learn its behaviour from inter-

action with an environment, where situations are mapped to actions by maximizing a

long-term reward signal (see section 2.2 for an introduction to reinforcement learning).

Briefly, the standard reinforcement learning paradigm works by using the formalism of

Markov Decision Processes (MDPs) (Kaelbling et al., 1996; Sutton and Barto, 1998;

Bertsekas and Tsitsiklis, 1996; Boutilier et al., 1999). AnMDP is characterized by

a set of statesS, a set of actionsA, a state transition function, and a reward or per-

formance function that rewards the agent for each selected action. Solving the MDP

means finding a mapping from states to actions correspondingto

π∗(st) = argmax
at∈A

Q∗(st,at), (5.2)

where theQ function specifies the cumulative rewards for each state-action pair. An

alternative for sequential decision-making under uncertainty is the POMDP model. In

a POMDP the dialogue state is not known with certainty (as opposed to an MDP), and

solving it means finding a mapping from belief states to actions.

Spoken dialogue systems that learn to optimize their behaviour have largely been

investigated within the flat tabular reinforcement learning paradigm (Levin et al., 2000;

Walker, 2000; Young, 2000; Singh et al., 2002; Scheffler, 2002; Pietquin, 2004; Williams,

2006; Young et al., 2007). The scalability of this approach is limited because search

spaces grow exponentially according to the number of state variables taken into ac-

count (referred to as ‘the curse of dimensionality’). Even systems with simple state

representations may have large search spaces with quick growth towards intractabil-

ity. This problem has led to the use of function approximation (Denecke et al., 2004;

Henderson et al., 2005, 2008) in order to find solutions on reduced state-action spaces.

Evolutionary methods have also been been used to find optimaldialogue policies on

compact state-action spaces (Toney, 2007). All these investigations have been applied

to small-scale dialogue systems aiming for a single global solution. However, little

attention has been paid to finding solutions with the divide-and-conquer approach,

where hierarchical POMDPs with a bottom-up approach have been applied to small

state-action spaces (Pineau, 2004), and hierarchical reactive planning and learning has

been used for dialogue systems with few slots of information(Lemon et al., 2006b).

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 83

5.1.2 Related work on hierarchical reinforcement learning

Prior work in the literature of artificial intelligence has investigated divide-and-conquer

approaches to address the problem of reinforcement learning on large search spaces, re-

ferred to as Hierarchical Reinforcement Learning (HRL) (Watkins, 1989; Singh, 1992;

Kaelbling, 1993; Dayan and Hinton, 1992; Bradtke and Duff, 1994; Karlsson, 1997;

Parr, 1998; Sutton et al., 1999; Precup, 2000; Dietterich, 2000a; Ryan, 2002; Andre,

2003; Hengst, 2003; Mahadevan et al., 2004; Marthi, 2006; Ghavamzadeh and Ma-

hadevan, 2007; Jonsson, 2008). The fundamental theory behind HRL is based on

Semi-Markov Decision Processes (SMDPs) (Barto and Mahadevan, 2003), see chap-

ter 3 for an introduction. HRL is attractive due to the following benefits: (a) improved

exploration, because exploration can take multi-time steps by using low-level and high-

level actions; (b) reduced computational demands, becausebreaking a problem into

sub-problems helps to avoid irrelevant features of the flat environment state; and (c)

knowledge transfer, because components of solutions learnt on previous problems can

be reused in new problems. However, the price to pay for such benefits is that HRL

methods may learn sub-optimal solutions. Nevertheless, HRL methods learn the best

policies according to the constraints specified in the hierarchy (Dietterich, 2000a).

Related work on SMDPs and HRL can be broadly classified into two approaches:

those that learn on a single SMDP and those that learn on multiple SMDPs. Methods

learning on a single SMDP have focused on high-level and low-level actions to ac-

celerate learning (Bradtke and Duff, 1994; Parr and Russell, 1997; Sutton et al., 1999;

Andre and Russell, 2000). Although this approach can mitigate the curse of dimension-

ality problem, it is limited because the environment is represented by flat states rather

than hierarchical states. Therefore, learning using a single SMDP lacks scalability and

reusability. In contrast, learning on multiple SMDPs can employ hierarchical states,

actions and rewards. Using hierarchical SMDPs facilitatesstate abstraction, meaning

that smaller solutions can be found faster, with reduced computational demands, and

with opportunities for policy reuse (Dayan and Hinton, 1992; Dietterich, 2000a).

This chapter investigates how to create hierarchical dialogue controllers for large

MDPs. For such a purpose, it proposes to decompose a large MDPinto a hierarchy of

Semi-Markov Decision Processes (SMDPs), and to find the policy for each SMDP with

hierarchical reinforcement learning. This approach has not been applied before to dia-

logue strategy learning, and it will be shown that the proposed approach is promising

for efficiently optimizing the dialogue behaviour of large state-action spaces.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 84

5.2 Dialogue as a Semi-Markov Decision Process

This thesis treats spoken dialogue control as a discrete Semi-Markov Decision Process

(SMDP) in order to address the problem of scalable dialogue optimization. A discrete-

time SMDPM = <S,A,T,R> is characterized by a set of statesS; a set of actionsA; a

transition functionT that specifies the next states′ given the current statesand actiona

with probabilityP(s′,τ|s,a); and a reward functionR(s′,τ|s,a) that specifies the reward

given to the agent for choosing actiona when the environment makes a transition from

states to states′. The random variableτ denotes the number of time-steps taken to

execute actiona in states. This formulation, based on (Dietterich, 2000a) differs from

the original formulation of SMDPs (Howard, 1971; Putterman, 1994), see section 3.3

for more details. The SMDP model allows temporal abstraction, where actions take

a variable amount of time to complete their execution. In this model two types of

actions can be distinguished: (a) single-step actions roughly corresponding to dialogue

acts, and (b) multi-step actions corresponding to sub-dialogues. Figure 5.2 illustrates

a conceptual dialogue at runtime with dialogue statesst , actionsat and rewardsrt .

Whilst the full dialogue and child dialogue execute primitive and composite actions,

the grandchildren dialogues execute only primitive actions. Note that the execution of

primitive actions yields single rewards and the execution of composite actions lasting

τ time steps yields cumulative discounted rewards given at timet + τ.

Figure 5.2: Conceptual hierarchical dialogue at runtime with states st , actions at (last-

ing τ time steps) and rewards rt+τ. Actions at can be either primitive or composite, the

former yield single rewards and the latter yield cumulativediscounted rewards.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 85

5.2.1 Dialogue control using hierarchical SMDPs

This research treats each composite dialogue action as a separate SMDP as described

in (Cuayáhuitl et al., 2007). In this way an MDP can be decomposed into multiple

SMDPs hierarchically organized intoL levels andN models per level, denoted asM =

{Mi
j}, where j ∈ {0, ...,N−1} and i ∈ {0, ...,L−1}. Thus, any given SMDP in the

hierarchy is denoted asMi
j = <Si

j ,A
i
j ,T

i
j ,R

i
j>, see Figure 5.3 for an illustration.

Figure 5.3: Hierarchy of SMDPs Mij , where i denotes a level and j the model per level.

The goal in an SMDP is to find an optimal policyπ∗, that maximizes the reward of

each visited state. The optimal value functionV∗(s) specifies the expected cumulative

reward of statesunderπ∗. Similarly, the optimal action-value functionQ∗(s,a) speci-

fies the expected cumulative reward for executing actiona in s and then followingπ∗.
The Bellman equations forV∗ andQ∗ of subtaskMi

j can be expressed as

V∗ij (s) = max
a

[

∑
s′,τ

Pi
j(s
′,τ|s,a)[Ri

j(s
′,τ|s,a)+ γτV∗ij (s′)]

]

, (5.3)

Q∗ij (s,a) = ∑
s′,τ

Pi
j(s
′,τ|s,a)[Ri

j(s
′,τ|s,a)+ γτ max

a′
Q∗ij (s′,a′)], (5.4)

where the discount rate 0≤ γ≤ 1 makes future rewards less valuable than immediate

rewards as it approaches 0. Finally, the optimal policy for each subtask is defined by

π∗ij (s) = argmax
a∈Ai

j

Q∗ij (s,a). (5.5)

These policies can be found by dynamic programming or reinforcement learning algo-

rithms for SMDPs, the latter are preferred (see sub-section2.2.2).

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 86

5.2.2 Decomposing a spoken dialogue manager into subtasks

Due to the fact that the process of automatically breaking anMDP into sub-problems

is challenging, a heuristic approach is proposed to divide adialogue-based MDP into

a hierarchy of dialogue-based SMDPs, and to perform state abstraction in each SMDP.

The heuristic decomposition described here aims to be a guideline for specifying the

hierarchy of subtasks in hierarchical dialogue optimization.

5.2.2.1 Hierarchical subtask decomposition

A dialogue task is decomposed into a root subtaskM0
0 and set of meta-dialogue goals

M1 = {M1
0, ...,M

1
W−1}. Each meta-dialogue goal is decomposed into a set of dialogue

goalsM2 = {M2
0, ...,M

2
X−1}. Then, each dialogue goal is decomposed into a set of

slot filling strategiesM3 = {M3
0, ...,M

3
Y−1} such as for the initial slot, mandatory slots,

optional slots, and terminal slot. Finally, the last stage decomposes every slot filling

strategy into a set of initiative strategiesM4 = {M4
1, ...,M

4
Z−1} such as system-initiative

and mixed-initiative. Therefore, each dialogue subtask inthe hierarchy is represented

with an SMDP, and the hierarchy can be denoted byM = {Mi
j}. The global decompo-

sition can have a maximum number of subtasks|M |= 1+W+WX+WXY+WXYZ.

Finding the best hierarchy for a given conversational agentis beyond the scope of this

thesis (though see (Hengst, 2003) for an approach in hierarchy discovery).

5.2.2.2 State abstraction

The decomposition above only specifies a hierarchy of dialogue subtasks, but it does

not specify how to represent states with a more compact representation. This is impor-

tant because the states in each subtask may have a large number of state variables, and

some of them may be irrelevant for decision-making (this is also referred to as ‘state

abstraction’). In this thesis state abstractions are specified by the system developer.

Previous work has proposed methods for automatic state abstraction, but it has been

investigated for tasks with few state variables (Dietterich, 2000a; Andre and Russell,

2002; Uther, 2002; Jong and Stone, 2005; Marthi et al., 2006;Jonsson, 2008).

A bottom-up procedure was used for state abstraction in eachdialogue subtask:

(1) by removing irrelevant state variables such as the variables only relevant for other

subtasks; and (2) by clustering state variables from child subtasks, e.g. a set of slots in a

semantic frame can be described with a single variable in theparent subtask. Figure 5.4

shows this procedure aiming to represent the dialogue statemore compactly.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 87

Figure 5.4: Conceptual example of heuristic dialogue state abstraction showing: (a)

a dialogue state with the full set of state variables, (b) a hierarchical dialogue state

ignoring irrelevant state variables per subtask, and (c) a more compact representation

of the hierarchical dialogue state based on clustered statevariables describing the

status of child dialogue subtasks.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 88

It can be noted that the subtasks at the bottom of the hierarchy use a smaller number

of state variables for decision-making, and parent subtasks use a larger number of state

variables because they have to take into account their children’s knowledge to make

decisions. However, the knowledge of the child subtasks canbe represented more

compactly in a parent subtask, which can be considered as knowledge at higher levels

of granularity. Consequently, the subtask at the top of the hierarchy uses a compressed

knowledge of the world by ignoring details only relevant fordecision-making at lower

levels in the hierarchy. For example: the meta-dialogue goal in Figure 5.4(c) ignores

most of the information used for slot filling in the semantic frames.

5.2.3 Execution of dialogue subtasks

So far it has been said that a spoken dialogue manager can be defined by a hierarchy

of dialogue subtasksM = {Mi
j}, and that each subtask can apply state abstraction to

compress the state space. The indexesi and j only identify a subtask in a unique way

in the hierarchy, they do not specify the execution sequenceof subtasks because that

is learnt by the reinforcement learning agent. The execution of dialogue subtasks uses

a stack and operates as follows: the dialogue starts with theroot subtaskM0
0 in the

stack; when a child subtaskM1
j is selected, it is pushed into the stack and control is

transferred to the child subtask which is executed until reaching a terminal state – this

may involve a recursive execution of other subtasks that mayreach the bottom of the

hierarchy; then the current subtask is popped off the stack and control is transferred

back to the parent subtask at the next states′ ∈ Si
j ; and so on until the execution of the

root subtask is completed, which empties the stack and terminates the dialogue.

5.2.4 Termination of dialogue subtasks

Typically, dialogue subtasks terminate when a goal has beenreached; however, they

may require atemporal termination. A spoken dialogue system might allow the user

to go backwards or forwards in the conversation, i.e. move todifferent subtasks in

the hierarchy. This requires a temporal termination of the current subtask, a move to

another one, and a return to continue. The temporal termination may require to update

the state variables of the current subtask and the clusteredstate variables at upper

levels in the hierarchy, so that each subtask can choose actions accordingly. When a

subtask terminates its execution, it is popped off the stackof dialogue subtasks. To

allow a dialogue agent to abandon a sub-dialogue, the binarystate variable ‘END’

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 89

can be added in a given subtask so that it can terminate in a deterministic way when

END= 1. This allows early subtask termination in the required dialogue subtasks.

5.2.5 State transitions in SMDP-based dialogue optimizati on

Due to the fact that dialogue coherence is crucial for real-world spoken dialogue sys-

tems, two different kinds of states were employed in the SMDPs: (a) knowledge-rich

stateskt and (b) knowledge-compact statesst . Whilst the former include all possible

information about the conversation, the latter include only a subset of it. Knowledge-

rich states do not enumerate the vast combinations, they store only the current state of

the world. These states hold attribute-values representedin an ontology-based struc-

ture. In contrast, knowledge-compact states – used to choose actions – enumerate a

compact number of combinations. This implies non-deterministic state transitions in

the SMDPs at the knowledge-rich level, which is due to stochastic user simulation and

ASR error modelling (see chapter 4 for more details about thesimulated dialogue en-

vironment). Figure 5.5 shows the dynamics in a dialogue-based SMDP. In addition,

Figure 5.6 shows an illustrative example at runtime of knowledge-rich and knowledge-

compact states for dialogue-based SMDPs.

Figure 5.5: An SMDP for spoken dialogue control. Notation: bottom circles represent

knowledge-rich states, upper circles represent knowledge-compact states, rectangles

represent actions, and diamonds represent rewards. The dynamics indicate that di-

alogue states st are observed from knowledge states kt , and actions at can be either

primitive (executed within the same SMDP) or composite (invoke a child SMDP).

C
hapter

5.
H

ierarchicaldialogue
optim

ization:
a

divide-and-conquer
approach

90

Figure 5.6: Example in the flight booking domain of knowledge-rich states kt and knowledge-compact states st for dialogue-based SMDPs

– note that only the latter states are used for decision-making. Whilst (a) and (b) show the data structures for both states, (c) and (d) show

those structures at runtime corresponding to the first four machine actions of the dialogue shown in page 35.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 91

5.3 Reinforcement learning for hierarchical SMDPs

The agent-environment interaction for dialogue control using hierarchical SMDPs is

illustrated in Figure 5.7. Whilst the environment is modelled with a hierarchy of dia-

logue SMDPs, the learning agent takes actiona∈Ai
j in states∈Si

j by using a hierarchy

of policies executed with a top-down mechanism. Note that decision-making on each

SMDP uses its corresponding policy, e.g. the behaviour in the root dialogue subtaskM0
0

follows policy π0
0(s). This section describes an algorithm that simultaneously learns

a hierarchy of SMDP-based action-value functionsQ∗ij (s,a). The approach described

in this chapter differs from the MAXQ framework as follows: (1) the state abstraction

per subtask is specified by the system developer, (2) it does not use pseudo-rewards,

(3) the state transition function is based on knowledge-compact states derived from

knowledge-rich states that store detailed information of the environment, and (4) the

policy is executed only in a hierarchical way rather than (non) hierarchical.

Figure 5.7: Architecture of the agent-environment interaction for SMDP-based hierar-

chical reinforcement learning using a hierarchy of dialogue subtasks Mij . The subtasks

are executed in a top-down hierarchical way using the well-known stack mechanism.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 92

Several methods have been investigated for learning a hierarchy of SMDPs such as

Hierarchical Semi-Markov Q-Learning (HSMQ-Learning) (Dietterich, 2000b), where

the action-value functionQ∗ij of equation 5.4 is approximated according to

Qi
j(st,at)← (1−α)Qi

j(st,at)+α
[

r + γτ max
a′

Qi
j(st+τ,a

′)

]

. (5.6)

The summation over allτ time steps as appears in equation 5.4 is reflected here by using

cumulative rewardsr = rt+1 + γrt+2 + γ2rt+3 + ...+ γτ−t−1rt+τ received for executing

actionsat , and by raisingγ to the powerτ. Algorithm 6 shows the procedural form of

HSMQ-Learning adapted for handling knowledge-rich and knowledge-compact states.

Briefly, this learning algorithm receives dialogue subtaskMi
j and knowledge basek

used to initialize states, performs similarly to Q-Learning for primitive actions, but

for composite actions it invokes recursively with a child subtask. When the subtask is

completed withτ time steps it returns a cumulative rewardr at timet + τ, and continues

its execution until finding a terminal state for the root subtaskM0
0. This algorithm is it-

erated until convergence occurs to optimal context-independent policies (see page 50).

Algorithm 6 HSMQ-Learning with knowledge-rich and knowledge-compactstates

1: function HSMQ(KnowledgeBasek, subtaskMi
j) return totalReward

2: s← knowledge-compact state inSi
j initialized from knowledge-rich statek

3: totalReward← 0, discount← 1

4: while s is not a terminal statedo

5: Choose actiona from susing policy derived fromQi
j (e.g.ε-greedy)

6: Execute actiona and update knowledge-rich statek

7: if a is primitive then

8: Observe one-step rewardr

9: else ifa is compositethen

10: r ← HSMQ(k,a), which invokes subtaska

and returns the total reward received whilea executed

11: end if

12: totalReward← totalReward+discount× r

13: discount← discount× γ

14: Observe resulting states′

15: Qi
j(s,a)← (1−α)Qi

j(s,a)+ α
[

r +discount×maxa′ Qi
j(s
′,a′)

]

16: s← s′

17: end while

18: end function

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 93

5.4 Experimental setup

The aim of the experiments in this chapter was to investigatethe potential application

of the proposed approach to spoken dialogue systems with large state-action spaces.

For such a purpose two rounds of experiments were performed.The first round of

experiments compared flat versus hierarchical reinforcement learning when flat tabular

learning is still feasible, and employed a 6-slot mixed-initiative dialogue system in the

flight booking domain described in section 4.4.1. The secondround of experiments

were performed on a task where flat tabular reinforcement learning was no longer

feasible, and employed a 26-slot mixed-initiative dialogue system in the travel planning

domain described in section 4.4.2.

5.4.1 The flight booking case study

For flat reinforcement learning the state space representation has 8 non-binary state

variables and 10 primitive actions. A description of the dialogue state variables is

shown in page 34, and the action set is described in page 172. The reward function

focused on efficient conversations (i.e. the shorter the dialogue the better), and is

defined by the following rewards given to the agent for choosing actiona when the

environment makes a transition from states to states′:

r(s,a,s′) =

0 for successful (sub)dialogue

-10 for presenting many/none items of information

-1 otherwise.

(5.7)

The execution of primitive actions applied the following consideration: illegal ac-

tions had no effect in the simulated dialogues and only wasted time, e.g. request an

already filled slot, request an already confirmed slot, etc.

For hierarchical learning, the state-action space representation has 4 subtasks (one

parent and three children); 11 non-binary state variables;10 primitive actions and 3

composite actions. The latter correspond to the child subtasks. Figure 5.8 illustrates

the subtask hierarchy and Table 5.1 shows the state variables and actions per subtask.

It can be noted that the child subtasks are applying state abstraction by ignoring irrel-

evant variables. The root subtask is also applying state abstraction by using clustered

state variables as follows: variableMAN represents the status of subtaskM1
0, variable

OPT represents the status of subtaskM1
1, and variableTER represents the status of

subtaskM1
2. In this way, the root subtask is using a much more compact version of the

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 94

Figure 5.8: A subtask hierarchy for the 6-slot flight booking spoken dialogue system,

where each dialogue subtask is represented as a separate SMDP. The corresponding

state variables and actions for each subtask Mi
j can be found in Table 5.1.

Table 5.1: State variables and actions of the subtask hierarchy in the flight booking

spoken dialogue system (see Tables B.3 and B.4 for their corresponding description).

Subtask State Variables Actions (composite actions are Mij)

01 M0
0 MAN,OPT,TER,DBT M1

0,M1
1,M1

2,dbq+sta

02 M1
0 SIF,C00,C01,C02,C03req,apo+req,sic+req,mic+req,sec,mec,acc

03 M1
1 C04 req,apo+req,sec

04 M1
2 C05 pre+ofr,apo+ofr,sec

Note: the state variables{MAN, OPT, TER} represent clustered state variables from child

subtasks and their domain values are as follows:{0=unfilled subtask, 1=filled subtasks, 2=con-

firmed subtask}.

dialogue state for decision-making. In addition, althougha hierarchical reward func-

tion can be used for hierarchical dialogue optimization (i.e. a different reward function

per subtask), these experiments used the same as in flat learning, used in each subtask.

The learning setup used Q-Learning for flat reinforcement learning (Watkins, 1989;

Sutton and Barto, 1998) and HSMQ-Learning for hierarchicalreinforcement learning

(described in the previous section). The learning parameters used by the algorithms

were the same for both learning approaches. The learning rate parameterα decays

from 1 to 0 according to

α =
100

(100+ τ)
, (5.8)

whereτ represents elapsed time-steps in the current subtask. EachsubtaskMi
j had its

own learning rate. The discount factorγ = 1 makes future rewards equally as valuable

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 95

as immediate rewards, as in (Singh et al., 2002). The action selection strategy used

ε-Greedy withε = 0.01, and initial Q-values of 0. This choice of parameters satisfies

the requirements for convergence to optimal (context-independent) policies.

5.4.2 The travel planning case study

This case study used a 26-slot mixed-initiative spoken dialogue system in the travel

planning domain (see section 4.4.1 for a detailed description of this system), and is

a larger-scale version of the previous case study. However,the experimental setup

for flat tabular reinforcement learning is absent. This is due to the fact that using a

single MDP for this task becomes impractical, the state space becomes too large to

store (∼ 1023 state-action pairs) and this makes the task intractable (due to memory

limitations). In contrast, dialogue optimization for the travel planning spoken dia-

logue system becomes tractable within a hierarchical setting. This was possible by

decomposing state variables and actions into a hierarchy of21 subtasks including four

levels of granularity. This hierarchy employed 43 non-binary state variables, 15 prim-

itive actions and 20 composite actions. The latter correspond to the child subtasks.

Figure 5.9 illustrates the subtask hierarchy and Table 5.2 presents the state variables

and actions per dialogue subtask. The state abstraction used two sets of clustered

state variables:{INI,MAN,OPT,TER} to describe the status of semantic frames, and

{G00,G01,G02,G03,G04,G05} to describe the status of dialogue goals. The reward

function also focused on efficient conversations (i.e. the shorter the dialogue the bet-

ter), and is defined by the following rewards given to the agent for choosing actiona

when the environment makes a transition from states to states′:

r(s,a,s′) =

0 for successful (sub)dialogue

-10 for an already collected subtaskMi
j

-10 for collecting subtaskMi
i beforeMi

i−1

-10 for presenting many/none items of information

-10 for multiple greetings or closings

-1 otherwise

(5.9)

The learning setup used the same parameters as in the previous case study.

The travel planning system allowed the user to go backwards in the dialogue and

return to continue. The following is a sample scenario of early subtask termination.

First, assume the user has filled and confirmed slots for a return flight (visiting subtasks

M3
0, M3

1, M3
3), so the current focus of the dialogue is in the terminal slotof return

C
hapter

5.
H

ierarchicaldialogue
optim

ization:
a

divide-and-conquer
approach

96

Figure 5.9: A subtask hierarchy for the 26-slot travel planning spoken dialogue system, where each dialogue subtask is representedas a

separate SMDP. The corresponding state variables and actions for each subtask Mij can be found in Table 5.2.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 97

Table 5.2: State variables and actions of the subtask hierarchy in the travel planning

spoken dialogue system (see Tables B.5, B.6, and B.7 for their corresponding descrip-

tion).

Subtask State Variables Actions (composite actions are Mij)

M0
0 GIF,SAL,G00,G03,G04,G05M1

0,M2
2,M2

3,M2
4,gre,clo

M1
0 GIF,G01,G02 M2

0,M2
1

M2
0 DBT,END,MAN,OPT,TER M3

0,M3
1,M3

2,dbq+sta,rel

M2
1 DBT,END,MAN,TER M3

3,M3
4,dbq+sta,rel

M2
2 DBT,END,INI,MAN,TER M3

5,M3
6,M3

7,dbq+sta,rel

M2
3 DBT,END,INI,MAN, M3

8,M3
9,M3

A,M3
B,

OPT,TER dbq+sta,rel

M2
4 DBT,END,MAN,TER M3

C,M3
D,dbq+sta,rel

M3
0 SIF,C00,C01,C02,C03,C04, req,apo+req,sic+req,mic+req,

C05 sec,mec,acc

M3
1 C6 req,apo+req,sec

M3
2 ACK,END,PRE,C07 apo+ofr,sec,pre+ofr,ofr,ack

M3
3 SIF,C15,C16 req,apo+req,sic+req,mic+req,

sec,mec,acc

M3
4 ACK,END,PRE,C17 apo+ofr,sec,pre+ofr,ofr,ack

M3
5 C18 req,apo+req,sec

M3
6 SIF,C19,C20,C21 req,apo+req,sic+req,mic+req,

sec,mec,acc

M3
7 ACK,END,PRE,C22 apo+ofr,sec,pre+ofr,ofr,ack

M3
8 C23 req,apo+req,sec

M3
9 SIF,C24,C25,C26,C27,C28 req,apo+req,sic+req,mic+req,

sec,mec,acc

M3
A C29 req,apo+req,sec

M3
B ACK,END,PRE,C30 apo+ofr,sec,pre+ofr,ofr,ack

M3
C C31 req,apo+req,sec

M3
D ACK,END,PRE,C32 apo+ofr,sec,pre+ofr,ofr,ack

Notes: (1) the sets of state variables{INI, MAN, OPT, TER} and{G00, G01, G02, G03, G04,

G05} represent clustered state variables from child subtasks and their domain values are as

follows: {0=unfilled subtask, 1=filled subtasks, 2=confirmed subtask}. (2) the domain values

of the state variable{END} are as follows: ={0=execution on the current subtask, 1=terminate

the current subtask}.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 98

flight (subtaskM3
4), but it turns out that the agent did not find flights with the provided

information (subtaskM3
4 terminates), and then the agent invites the user to change some

information. Second, the user reprovides information suchas airline or departure date

(go to subtaskM3
0 according to the stack of subtasks). Third, the agent searches flights

again when it returns to subtaskM2
1, and offers the flight information in subtaskM3

4.

Notice that when the user provides or reprovides information, the state variables at

different subtasks in the hierarchy may require to be updated, so that each subtask can

choose actions accordingly.

5.5 Experimental results

This section reports experimental results on dialogue strategy learning for the two case

studies described in the previous section. Both case studies used the simulated conver-

sational environment and baseline machine dialogue behaviour described in chapter 4.

5.5.1 The flight booking dialogue system

Experimental results show that the hierarchical state-action space obtained a dramatic

reduction of 99.36% in comparison with a flat state-action space. Table 5.3 shows the

number of state-actions for both flat (2.8 million) and hierarchical (17.8K) approaches.

Table 5.3: Size of state-action spaces for the flight booking dialogue system.

Approach States Actions |S×A|

Flat 281250 10 2812500

Hierarchical 2591 variable per subtask 17854

Figure 5.10 shows the learning curves of the dialogue policies, averaged over 10

training runs of 105 episodes (or dialogues). The three plots illustrate different distri-

butions of ASR confidence levels. The first thing to notice is that hierarchical learning

learnt faster than flat learning by roughly four orders of magnitude. The second thing

to notice is that the hand-crafted strategy performed almost as well as the learnt poli-

cies for only one situation, but in general it was outperformed by the learnt policies.

This illustrates the benefits of using dialogue optimization where more efficient con-

versations can be achieved by using (near) optimal dialoguestrategies. The fact that

the quality of the learnt policies are dependent on the simulation parameters suggests

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 99

that the simulation environment must reflect as much as possible the behaviour of the

real environment, otherwise the learnt dialogue policies will no longer be optimal. The

last thing to notice is that flat learning eventually performed slightly better than hier-

archical learning. An evaluation on the last 104 episodes (dialogues) reports that flat

learning achieved slightly more efficient conversations, on average 0.3 system turns

fewer than hierarchical learning (significant atp < 0.01 for all confidence level distri-

butions derived from t-tests). This is presumably because in the hierarchical setting the

optional slot (‘airline’) cannot be confirmed together withthe mandatory slots. Nev-

ertheless, for practical purposes this loss in optimality may be well worth the gains in

terms of scalability to larger decision-making problems.

5.5.2 The travel planning dialogue system

Experimental results show that the hierarchical state-action space also obtained a dra-

matic reduction of more than 99.99% in comparison with a flat state-action space. Ta-

ble 5.4 shows the state-actions for both flat (1023) and hierarchical (800K) approaches.

Table 5.4: Size of state-action spaces for the travel planning dialogue system.

Approach States Actions Subtasks |S×A|

Flat 4.5×1022 15 1 6.7×1023

Hierarchical 117081 variable per subtask 21 803627

Figure 5.11 shows the learning curves of the dialogue policies, averaged over 10

training runs of 105 episodes (or dialogues). The three plots also illustrate different

amounts of ASR confidence levels. In a similar way to the flightbooking system, it

can be observed that the hand-crafted strategy performed aswell as the learnt policies

only in the situation wherep(high) = 1/2 (top plot of Figure 5.11), but in general it

was outperformed by the hierarchical learnt dialogue policies. It can also be noted that

the learnt behaviour required at least four orders of magnitude (i.e. more than 10000

dialogues) to outperform the hand-crafted behaviour. Because the learning speed of

the given experimental setting is slow, other experimentalsettings or methods can be

used to accelerate learning (this is addressed later in thissection and in chapter 6).

A manual inspection of test dialogues showed that the learntdialogue strategies

generated coherent conversations. But the learnt policiessometimes exhibited dia-

logues with infinite loops, i.e. actiona in statesyielded the next states′ = scyclically.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 100

10
2

10
3

10
4

10
5

10

20

30

40

50

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/4, p(medium)=1/4, p(high)=1/2

Flat learning
Hierarchical learning
Hand−crafted behaviour

10
2

10
3

10
4

10
5

10

20

30

40

50

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/3, p(medium)=1/3, p(high)=1/3

Flat learning
Hierarchical learning
Hand−crafted behaviour

10
2

10
3

10
4

10
5

10

20

30

40

50

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/2, p(medium)=1/4, p(high)=1/4

Flat learning
Hierarchical learning
Hand−crafted behaviour

Figure 5.10: Learning curves of dialogue policies in the 6-slot flight booking spoken

dialogue system. The best learnt policy outperformed the hand-crafted behaviour by

0.2, 1.3, and 3.7 system turns on average in all cases (from top to bottom).

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 101

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/4, p(medium)=1/4, p(high)=1/2

Hierarchical learning
Hand−crafted behaviour

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/3, p(medium)=1/3, p(high)=1/3

Hierarchical learning
Hand−crafted behaviour

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/2, p(medium)=1/4, p(high)=1/4

Hierarchical learning
Hand−crafted behaviour

Figure 5.11: Learning curves of dialogue policies in the 26-slot travel planning system

using the reward function defined by equation 5.9. In the last104 dialogues the hi-

erarchical policy averaged−0.2, 4.2, and13.4 fewer system turns than hand-crafted

behaviour for the different distributions of confidence levels (from top to bottom).

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 102

This was possible if the learnt policy inferred invalid actions which had no effect in

the conversation and did not change the dialogue state. As a consequence, the learnt

policy executed the same action in the same state in an infinite way. For example: the

learnt policy performed apologies regardless of the confidence level and therefore apol-

ogized infinitely often. This phenomenon was not visible during learning due to the

explorative behaviour, where policies eventually act randomly and can always reach

a goal state. In contrast, testing only involves exploitation and made infinite loops

visible. Our first attempt to avoid infinite dialogues consisted in extending the reward

function with an additional negative reward assigned to state transitions with potential

infinite loops. This reward function is expressed by modifying equation 5.9 by adding

a condition which gives a reward of -10 when executing actiona and remaining in the

same states′ = s:

r(s,a,s′) =

0 for successful (sub)dialogue

-10 for an already collected subtaskMi
j

-10 for collecting subtaskMi
i beforeMi

i−1

-10 for presenting many/none items of information

-10 for multiple greetings or closings

-10 for executing actiona and remaining in states′ = s

-1 otherwise

(5.10)

Figure 5.12 shows the learning curves of the dialogue policies using the reward

function defined by equation 5.10. These learning curves were also averaged over

10 training runs of 105 episodes. It can be observed that hierarchical learnt dialogue

behaviour outperformed hand-crafted behaviour for the three different distributions of

confidence levels. It can also be noted that hierarchical learnt dialogue behaviour using

the additional negative reward outperformed hand-crafteddialogue behaviour faster

than the learning curves reported in Figure 5.11: (1) for optimistic confidence levels

(top plot) the learnt policies significantly outperformed hand-crafted behaviour shortly

after about 10000 dialogues, (2) for equal distributions the learnt policies outperformed

hand-crafted behaviour by nearly 10000 dialogues, and (3) for pessimistic confidence

levels (bottom plot) the learnt policies outperformed hand-crafted behaviour by nearly

1000 dialogues.

An evaluation of the last 104 dialogues reports that the hierarchical policy using

the additional negative reward helped to reduce the problemof dialogues with infi-

nite loops, but the learnt policies still exhibited infinitedialogues (a sample dialogue

is shown in page 149). In addition, it was observed that the hierarchical policy using

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 103

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/4, p(medium)=1/4, p(high)=1/2

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/3, p(medium)=1/3, p(high)=1/3

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/2, p(medium)=1/4, p(high)=1/4

Hierarchical learning
Hand−crafted behaviour

Hierarchical learning
Hand−crafted behaviour

Hierarchical learning
Hand−crafted behaviour

Figure 5.12: Learning curves of dialogue policies in the 26-slot travel planning system

using the reward function defined by equation 5.10. In the last 104 dialogues the

hierarchical policy averaged4.9, 9.2, and17.9 fewer system turns than hand-crafted

behaviour for the different distributions of confidence levels (from top to bottom).

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 104

the additional negative reward generated more efficient conversations (see Table 5.5).

This hierarchical policy outperformed the hand-crafted one by 4.9, 9.2, and 17.9 sys-

tem turns for each distribution of confidence levels, respectively. This raises the fol-

lowing question: How well would such learnt policies perform in a realistic spoken

dialogue environment? These results also suggest that other reward functions or mech-

anisms should be investigated for optimizing efficient and effective dialogue policies

for fully-learnt dialogue behaviour. The next sub-sectiondescribes another alterna-

tive for avoiding dialogues with infinite loops. Nonetheless, all these results suggest

that the proposed divide-and-conquer approach is a scalable way to address dialogue

optimization with large state-action spaces.

Table 5.5: Average system turns of policies in the last104 training dialogues, where

the third column used the reward function described by equation 5.9 and the fourth

column used the reward function described by equation 5.10.

Confidence Level Distribution Hand-crafted Learnt Learnt

(low, medium, high) Behaviour Behaviour1 Behaviour2

Distribution1(1/4,1/4,1/2) 53.9±0.9 54.1±3.42 49.0±2.7

Distribution2(1/3,1/3,1/3) 58.6±1.1 54.4±3.30 49.4±2.7

Distribution3(1/2,1/4,1/4) 68.4±1.4 55.0±3.49 50.5±3.0

5.5.3 Analysis of learnt behaviour without infinite loops

Another way to address the problem of infinite dialogues is toemploy stochastic action

selection in states with infinite loops, and deterministic action selection in states with-

out infinite loops, as suggested by (Ohta et al., 2003). Because learnt spoken dialogue

policies must exhibit coherent behaviour, this thesis suggests to back off from learnt

behaviour to hand-crafted behaviour when the execution of action a in states yields

next states′ = s, defined by

a =

{

π∗(s) if s<> s′

πdet(s) otherwise,
(5.11)

whereπ∗(s) is the learnt dialogue policy andπdet(s) is a hand-crafted deterministic

dialogue policy. Table 5.6 shows test results for hand-crafted and learnt behaviour,

where the latter used equation 5.10 and behaved according toequation 5.11, averaged

over 10 runs of 1000 dialogues.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 105

Table 5.6: Test results showing the average number of primitive actions per dialogue

for hand-crafted and learnt behaviour, the latter used equation 5.10 and behaved ac-

cording to equation 5.11. The average number of actions per dialogue (in bold) within

each ASR confidence level distribution were compared with t-tests and showed statis-

tical significance at p< 0.01.

Conf. Levels (1/4,1/4,1/2) (1/3,1/3,1/3) (1/2,1/4,1/4)

Action Hand-crafted Learnt Hand-crafted Learnt Hand-crafted Learnt

acc 3.61 5.46 2.82 5.89 2.85 5.38

ack 4.02 4.03 4.02 4.03 4.02 4.03

apo+ofr 1.18 0.04 1.80 0.06 3.47 0.10

apo+req 4.53 1.00 7.23 1.32 14.23 1.63

clo 1.00 1.00 1.00 1.00 1.00 1.00

dbq+sta 4.47 4.43 4.47 4.44 4.46 4.43

gre 1.00 1.00 1.00 1.00 1.00 1.00

mec 5.84 1.94 6.87 2.02 7.63 2.02

mic+req 2.35 2.96 1.92 2.95 1.99 2.91

ofr 0.27 0.02 0.26 0.10 0.26 0.17

pre+ofr 4.02 4.25 4.02 4.19 4.02 4.10

rel 0.47 0.13 0.48 0.04 0.46 0.04

req 10.63 9.28 11.52 9.02 11.66 9.55

sec 10.09 9.00 10.55 8.68 10.46 9.30

sic+req 3.15 3.26 2.73 3.53 2.71 2.84

Sum 56.63 47.80 60.68 48.28 70.24 48.50

From the table above, it can be observed that the learnt dialogue behaviour out-

performed the deterministic hand-coded one by 16%, 20% and 31% fewer system ac-

tions for each confidence level distribution, respectively. This reduction in the number

of system actions can be explained as follows: the learnt behaviour differs from the

hand-crafted one in the use of more acceptances (action ‘acc’), more multiple implicit

confirmations (action ‘mic’), fewer apologies (actions ‘apo+req’ and ‘apo+ofr’), and

fewer multiple explicit confirmations (action ‘mec’). In this way, the hierarchical rein-

forcement learning dialogue agents generated more efficient conversations.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 106

5.6 Discussion

In this chapter the following issues are addressed for optimizing spoken dialogue be-

haviours of real world systems: (1) importance of hierarchical dialogue strategy learn-

ing, (2) uncertainty in spoken dialogue, (3) state representation, (4) reward function,

(5) dialogues with infinite loops, and (6) learning from scratch.

First, the importance of hierarchical learning is to perform a more scalable global

optimization for the full dialogue session. This form of learning is also important to

optimize decision-making at different levels of granularity, where the design of the sub-

task sequence might not be easy to hand-craft. For instance,consider two subtasks that

collect mandatory slots for a particular dialogue goal, where one of them collects slots

with system-initiative and the other with mixed-initiative. Which dialogue subtask

should be chosen at a given point in a conversation? This scenario requires learning at

low and high levels in the hierarchy to result in a unified dialogue policy. For such a

purpose, a hierarchical learning agent can employ a parent subtask in order to learn to

decide when to invoke one or other of the subtasks. Moreover,the importance of hier-

archical learning increases according to the complexity and size of state-action space

of a given dialogue system. Experimental results showed that state abstraction helped

to compress the size of the state space in a dramatic way. Compressing the state-action

space per dialogue subtask produces faster learning, reduced computational demands,

and opportunity to reuse sub-solutions1. All these benefits occur at the cost of sub-

optimal solutions. For example, in the optimization of the flight booking system it was

shown that hierarchical learning generated slightly longer dialogues than flat learning.

This is still attractive for spoken dialogue systems assuming that exact optimality is not

absolutely essential, as long as learnt behaviours show to be better than deterministic

hand-crafted behaviours.

Second, a main criticism of this work is that the proposed optimization approach

is not focusing on uncertainty in the dialogue state. However, this work can be en-

hanced with influence diagrams (Horvitz and Paek, 2000) or beliefs over slot values

(Bohus and Rudnicky, 2005a, 2006). Alternatively, this work could be transferable to

POMDPs (Roy et al., 2000; Pineau et al., 2001; Williams, 2006; Young et al., 2007;

Thomson et al., 2008). In addition, a spoken dialogue manager can be viewed as two

related agents: one in charge of knowledge updates, and the other in charge of choosing

actions assuming accurate knowledge updates. This thesis focused on the latter.

1In this work subtask reuse was not explored and is left as future work.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 107

Third, related work on dialogue strategy learning emphasizes that the state space

must be kept as small as possible due to the large number of dialogues required to find

optimal solutions. At the same time, the state representation must include enough in-

formation for making good decisions (Levin et al., 2000; Walker, 2000; Litman et al.,

2000; Young, 2000). In this thesis heuristic state abstractions were used. Therefore,

another enhancement to this work is to find the best state variables for each dialogue

subtask in a more principled way using approaches such as feature selection (Paek and

Chickering, 2005; Frampton and Lemon, 2006; Rieser and Lemon, 2006b) or auto-

matic state abstraction (Dietterich, 2000a; Andre and Russell, 2002; Uther, 2002; Jong

and Stone, 2005; Marthi et al., 2006; Jonsson, 2008).

Fourth, similar to the previous point is the issue of definingthe reward function.

There are many ways to specify a reward function, measuring dialogue efficiency

(Young, 2000), user satisfaction (Walker, 2000), or a weighted combination of costs

(Levin et al., 2000). This thesis focused on optimizing dialogue efficiency, which has

been shown to be correlated with user satisfaction (Chu-Carroll and Nickerson, 2000;

Litman and Pan, 2002).

Fifth, using the proposed dialogue optimization approach,it was found that learnt

policies on full state-action spaces may include infinite loops. This phenomenon has

not received attention in previous investigations becausethey mostly hand-craft the

state and action spaces in order to find solutions on small search spaces. Although

the problem of infinite loops can be avoided using stochasticaction-selection as sug-

gested by (Ohta et al., 2003), this issue should be taken intoaccount when learning

dialogue policies using the whole action set per state. Thisresearch proposed to back

off from learnt behaviour to hand-crafted behaviour in order to guarantee coherent

action-selection (see sub-section 5.5.3).

Finally, another criticism of the proposed approach is thatit involves unnecessary

learning. If reinforcement learning agents learn from scratch, then they will explore

many invalid state-actions, resulting in slow learning. Previous work in dialogue op-

timization performs rule-based state-action space reduction before learning, and lacks

a principled approach for learning dialogue behaviour onlywhere necessary. The next

chapter addresses this issue.

Chapter 5. Hierarchical dialogue optimization: a divide-and-conquer approach 108

5.7 Conclusions

This chapter proposed learning multiple dialogue strategies using hierarchical rein-

forcement learning under the formalism of Semi-Markov decision processes, where

a hierarchy of policies is learnt instead of a single one. Itsapplication to simulated

spoken dialogue systems was investigated in the flight booking and travel planning

domains, and the proposed approach was compared with flat reinforcement learning.

This approach has not been applied before to dialogue and theresults are promising.

Experimental results confirmed those reported by researchers in reinforcement learn-

ing – hierarchical learning finds cheaper and faster solutions than flat learning with

near-optimal policies. The hierarchical search space of the 6-slot case study used only

0.64% of the size of the flat search space. Results showed that hierarchical learning

converged four orders of magnitude faster than flat reinforcement learning with a small

loss in optimality (on average 0.3 system turns). In addition, the hierarchical search

space of the 26-slot case study used fewer than 0.01% of the size of the flat search

space. Results also showed that the learnt policies outperformed a hand-crafted one

under three different situations of ASR confidence levels. Finally, our experiments re-

ported that the proposed approach may generate dialogue policies with infinite loops.

To that end, this chapter proposed backing off from learnt behaviour to a determinis-

tic one in dialogue states with potential infinite loops, generating finite and coherent

dialogues. All these results provide evidence to support the claim that the proposed ap-

proach can be successfully applied to spoken dialogue systems with large state-action

spaces.

Chapter 6

Hierarchical dialogue optimization: a

prior-knowledge approach

This chapter extends the approach in the previous chapter with constrained hierarchical

Semi-Markov Decision Processes (SMDPs). Section 6.2 proposes the idea of partially

specified dialogue strategies for optimizing constrained spoken dialogue controllers.

Section 6.3 proposes a reinforcement learning method to solve a hierarchy of SMDPs

constrained with prior expert knowledge. Section 6.4 reports experimental results with

two dialogue systems in the flight booking and travel planning domains. Section 6.5

explains how the proposed approach differs from similar approaches in the field. Sec-

tion 6.6 discusses the strengths and weaknesses of the proposed dialogue optimization

approach. Finally, the last section summarizes the chapterand draws conclusions.

6.1 Introduction

The standard Reinforcement Learning (RL) framework assumes learning ab initio,

without any prior knowledge of the dialogue task, limiting the scalability of RL agents

to complex and real-world problems. Additionally, the use of learning agents that per-

form trial-and-error exploration without any prior knowledge could even be harmful

or inappropriate in real environments. This makes more relevant therole of prior

knowledgein reinforcement learning agents, with the central aim of constraining the

search space. This offers the following benefits among others: (a) finding solutions

faster, (b) reducing computational demands, (c) incorporating expert knowledge, (d)

transfering knowledge across problems, and (e) scaling to larger problems. This is

possible by adding a mechanism for pruning away invalid state-actions in the learning

109

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 110

environment. However, its drawback is that sub-optimal solutions may be obtained.

Nonetheless, good policies can be learnt according to the constraints specified.

In Reinforcement Learning (RL) for spoken dialogue systemslittle attention has

been devoted to the incorporation of prior knowledge into the RL agents, and therefore

to proposing principled ways of reducing search spaces to manageable sizes. More-

over, the role of prior knowledge in dialogue optimization is not only to find cheaper

and faster solutions, but also to incorporate constraints due to system requirements

provided by system designers or customers (Paek, 2006; Paekand Pieraccini, 2008).

Previous work in the literature of RL for spoken dialogue systems employs ad hoc

rules to reduce the state-action space (Levin et al., 2000; Walker, 2000; Singh et al.,

2002; Schatzmann et al., 2005b). Previously I proposed a generic state-action reduc-

tion algorithm to optimize confirmation strategies with theaim of avoiding unnecessary

learning (Cuayáhuitl et al., 2006a). However, it turned out to be difficult to extend for

more complex and larger scale dialogue systems. This preliminary work suggested

that search space reduction before learning has the undesirable effect of requiring re-

learning for every minor update to the dialogue behaviour. Thus, finding methods that

facilitate the incorporation of prior expert knowledge into RL dialogue agents, and that

reduce the re-learning effect, is of importance for their practical application.

To date work in the literature of artificial intelligence andmachine learning has pro-

posed several methods for incorporating prior knowledge into learning agents. Nils-

son (1994); Benson and Nilsson (1996) employ ‘teleo-reactive’ agents with initially

designed and self-modifiable behaviour operating in dynamic and uncertain environ-

ments. Other prior work employs hierarchical deterministic and stochastic Finite State

Machines (FSMs) – referred to as ‘Hierarchical Abstract Machines (HAMs)’ – in or-

der to incorporate prior knowledge into RL agents (Parr and Russell, 1997; Andre and

Russell, 2000). FSMs are relatively simple to design, and are attractive because they

match the way in which the behaviour of dialogue systems is typically specified.

This chapter proposes an approach to equip RL dialogue agents with prior expert

knowledge. For such a purpose the HAMs of Parr and Russell (1997) are used to merge

hand-coded and learnt dialogue behaviours (also referred to aspartially specified di-

alogue strategies). Then HAM-based reinforcement learning is combined with the

approach described in chapter 5, resulting in ‘constrainedhierarchical Semi-Markov

Decision Processes (SMDPs)’, which employ a hierarchy of SMDPs incorporating

constraints. Experimental results indicate that the proposed combined approach is a

flexible and efficient way of optimizing the behaviour of large-scale dialogue systems.

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 111

6.2 Partially specified dialogue strategies

The idea of partially specified dialogue strategies for conversational agents serves two

important purposes. Firstly, to give freedom to the system developer in what to specify

manually and what to optimize; and secondly, to reduce search spaces due to the fact

that they grow exponentially using the standard RL framework. This idea was inspired

by the Hierarchical Abstract Machines (HAMs) of (Parr and Russell, 1997). In a HAM,

whilst the obvious actions (i.e. one reasonable action per state) are specified with

deterministic transitions, the non-obvious actions (i.e.several reasonable actions per

state) are specified with stochastic transitions. The latter is the behaviour to be learnt

by the reinforcement learning agent. This brings the best ofboth deterministic and

purely-learnt approaches for dialogue strategy optimization (Cuayáhuitl et al., 2006b).

As discussed in chapter 5, the idea of hierarchical dialogueoptimization consists of

finding a spoken dialogue controller that takes the best hierarchical actions (primitive

or composite) for each different situation in the conversation. This chapter refines

that idea withconstrained hierarchical dialogue optimization, where dialogue states

employ a reduced set of actions specified through HAMs. For such a purpose, the

following methodology is proposed.

(i) Design a Markov Decision Process (MDP) by choosing an appropriate represen-

tation of states, actions and reward function.

(ii) Decompose the MDP into a hierarchy of Semi-Markov decision processes (SMDPs).

(iii) Design a partially specified dialogue strategy using HAMs, where the obvious

behaviours, if any, are specified deterministically and theless obvious ones are

specified stochastically.

(iv) Generate an induced hierarchy of SMDPs, where the actions are given by the

HAMs, resulting in a more compact search space.

(v) Learn a hierarchy of dialogue policies using a simulatedenvironment. Alterna-

tively, learning could be performed on real conversations if data suffices.

(vi) Finally, test the quality of the learnt dialogue strategy.

The methodology described here is a variant of the one proposed by (Litman et al.,

2000; Singh et al., 2002), and the differences are twofold: (a) hierarchical instead of

flat dialogue optimization, and (b) a principled approach tospecify prior knowledge in

order to optimize constrained spoken dialogue controllers.

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 112

6.2.1 Dialogue control using constrained hierarchical SMD Ps

An important extension to the approach of the previous chapter is to constrain each

hierarchical SMDP with some prior expert knowledge, aimingto combine dialogue

behaviour specified by human designers and behaviour automatically inferred by rein-

forcement learning agents. To that end, this thesis suggests associating a Hierarchical

Abstract Machine (HAM) denoted asH i
j to SMDPMi

j in order to specify some prior

expert knowledge (see section 3.2.1 for an introduction to reinforcement learning with

HAMs). In this way, dialogue control can be seen as executingtwo decision-making

models in parallel: a HAM, and a hierarchy of SMDPs. Each HAM partially specifies

the behaviour of its corresponding subtask, and therefore constrains the actions that a

reinforcement learning agent can take in each state. Figure6.1 shows this form of dia-

logue control in which both models share decision-making. For such a purpose, a cross

product of models per subtask is used, referred to asinduced SMDP M
′i
j = H i

j ◦Mi
j , see

section 3.2.1 for details about the cross product. Briefly, the cross product operates as

follows: (1) the induced state space uses joint states(s, s̄), wheres is anenvironment

statein SMDPMi
j ands̄ is achoice statein HAM H i

j ; (2) a HAM tells its correspond-

ing SMDP the available actions at states; (3) the transition functions of both models

are executed in parallel; and (4) the SMDP’s reward functionrewards each chosen

primitive action. In this joint model the HAMs make decisions in states with a single

action, and the policies of the SMDPs make decisions in states with multiple actions.

Figure 6.1: Constrained hierarchical SMDPs are defined with induced SMDPs M
′i
j =

H i
j ◦Mi

j , where abstract machine Hij partially specifies the behaviour of subtask Mi
j .

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 113

This form of dialogue control is based on SMDP states and HAM choice state

s̄. Using a more compact notation for the joint dialogue statew = (s, s̄) as in (Marthi

et al., 2006), the Bellman equation for the action-value function of induced subtaskM
′i
j

can be expressed as

Q∗ij (w,a) = ∑
w′,τ

Pi
j(w
′,τ|w,a)

[

Ri
j(w
′,τ|w,a)+ γτ max

a′
Q∗ij (w′,a′)

]

. (6.1)

Optimal context-independent policies for the Q-value function above can be found by

the learning algorithm described in section 6.3, and can be defined by

π∗ij (w) = argmax
a∈Ai

j

Q∗ij (w,a). (6.2)

6.2.2 Decomposing a dialogue manager into subtasks

The decomposition of an MDP-based dialogue controller is carried out as in sec-

tion 5.2.2. In a similar way, the prior expert knowledge can be decomposed into a

Hierarchical Abstract Machine (HAM)H = {H i
j}. The cross product of HAMH i

j and

dialogue subtaskMi
j yields the induced subtaskM

′i
j = H i

j ◦Mi
j . But, if we want to reuse

HAMs (e.g. a HAM for filling-confirming mandatory slots may bereused in all sub-

tasks that collect mandatory slots) then they would have a more compact hierarchical

structure that can be denoted asHk
l , where|Hk

l | ≤ |H
i
j |. Thus, the cross product of

HAM Hk
l and subtaskMi

j yields the induced subtaskM
′i
j = Hk

l ◦Mi
j (see Figure 6.2).

6.2.3 Execution of dialogue subtasks

An induced dialogue subtaskM
′i
j is executed in a similar way as described in sec-

tion 5.2.3. Briefly, when a subtask is invoked, it is pushed into a stack of subtasks,

when it terminates its execution, it is popped off the stack,and the dialogue ends when

the stack is empty. In addition, the parallel execution of HAMs and SMDPs operates as

follows: when a subtask is invoked, the associated HAM takescontrol of the dialogue,

control is transferred to the SMDP when the HAM is in a choice state; once the SMDP

terminates the execution of the selected action it returns control to the HAM, and so

on until termination of the root induced subtask.

6.2.4 Termination of dialogue subtasks

An induced subtaskM
′i
j terminates its execution as follows: (a) when the SMDP

reaches a goal state, (b) when the SMDP makes an early termination (see section 5.2.4),

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 114

Figure 6.2: Example of induced dialogue subtasks M
′i
j = Hk

l ◦Mi
j , where Hk

l is an ab-

stract machine inH and Mi
j is a subtask inM . Note that the hierarchy of abstract

machines, Figure (a), and the hierarchy of dialogue subtasks, Figure (b), may be dif-

ferent because the abstract machines may be reused in the induced dialogue subtasks.

The hierarchy of (induced) dialogue subtasks is specified bythe system developer.

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 115

or (c) when the HAM reaches a stop state. This suggests that HAMs should incorporate

the termination conditions of their corresponding SMDPs. Thus, a HAM transitions to

a stop state if and only if its corresponding SMDP has reacheda terminal state.

6.2.5 State transitions in constrained hierarchical SMDPs

State transitions in constrained hierarchical SMDPs use three different types of states.

Firstly, knowledge-rich states kt include all possible information about the dialogue

and do not enumerate the vast combinations, they only keep the current state of the

world. Secondly,knowledge-compact states st include a subset of all information by

enumerating a compact number of combinations. Thirdly,machine states̄sn are states

from a partially specified policy (HAM). The difference between this and the previous

chapter is the inclusion of joint stateswt = (st , s̄n), which are used by the reinforcement

learning agent for decision-making. Figure 6.3 shows the dynamics of a constrained

dialogue SMDP. In addition, Figure 6.4 shows an illustrative example at runtime of this

form of dialogue control. Note that the indices of states (st , s̄n) are different because

knowledge-compact statesst are only observed in machine choice states.

Figure 6.3: A constrained SMDP for spoken dialogue control, where kt represent

knowledge-rich states, wt = (st , s̄n) represent joint states, rectangles represent actions

(provided by a HAM), and diamonds represent rewards. Knowledge-compact states

st , extracted from states kt , are only observed in machine choice statess̄n, so that a

restricted set of actions (primitive or composite) is to be available at dialogue state wt .

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 116

Figure 6.4: Runtime example of HAM-based dialogue control using the abstract ma-

chine ‘getMandatorySlots’ from page 42. The first column shows a sequence of ma-

chine states corresponding to the first four primitive actions of the dialogue shown on

page 44. The second and third columns show knowledge-rich states kt and knowledge-

compact states st that correspond to machine choice statess̄n. The fourth column

shows joint states wt = (st , s̄n) used for decision-making. The last column shows the

actions available in state wt . The same example without machine states is shown in

page 90.

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 117

6.3 Reinforcement learning for constrained hierarchi-

cal SMDPs

The agent-environment interaction for constrained hierarchical dialogue control is shown

in Figure 6.5. The environment is modelled with a hierarchy of induced SMDPs

M
′i
j = Hk

l ◦Mi
j , whereHk

l is an abstract machine in the hierarchy of abstract machines

H , andMi
j is an SMDP in the hierarchy of dialogue subtasksM . The purpose of the

abstract machine is to constrain the actions available per SMDP state. For such a pur-

pose, the HAM-based reinforcement learning agent takes action a∈ A
′i
j in joint state

w = (s∈ Mi
j , s̄∈ Hk

l) by using a hierarchy of policiesπi
j executed with a top-down

mechanism. Note that joint states only include machine choice states, the remaining

states are not taken into account by the reinforcement learning agent. For learning

the hierarchy of policies we extend the HSMQ-Learning algorithm from the previous

chapter with HAMQ-Learning (described in section 3.2.1). The algorithm described

here differs from the HAM framework by using a hierarchy of SMDPs instead of a sin-

gle SMDP. This algorithm simultaneously learns a hierarchyof action-value functions

Q′ij , where equation 6.1 is approximated according to

Q′ij (wt ,at)← (1−α)Q′ij (wt ,at)+α
[

r + γτ max
a′

Q′ij (wt+τ,a
′)

]

. (6.3)

In a similar way to the HSMQ-Learning algorithm described inthe previous chap-

ter, the summation over allτ time steps as appears in equation 6.1 is reflected here

by using cumulative rewardsr = rt+1 + γrt+2 + γ2rt+3 + ...+ γτ−t−1rt+τ received for

executing actionsat , and by raisingγ to the powerτ. The proposed learning algorithm

for the hierarchy of induced SMDPs is called HAM+HSMQ-Learning. The procedural

form of HAM+HSMQ-Learning is shown in algorithm 7. This reinforcement learning

algorithm receives dialogue subtaskM′ij and knowledge basek used to initialize state

w = (s, s̄). Then the abstract machine (corresponding to the current subtask) takes

control of the interaction except in choice states, where the learning agent receives the

control in order to choose actions; i.e. the abstract machine asks the learning agent how

to act in choice states. This learning algorithm performs similarly to Q-Learning for

primitive actions, but for composite actions it invokes recursively an induced subtask;

when the induced subtask is completed withτ time steps it returns a cumulative reward

r at timet + τ, and so on until it finds a stop state ¯s for the root induced dialogue sub-

taskM′00 . The HAM+HSMQ-Learning algorithm is iterated until convergence occurs

to optimal context-independent policies (see page 50).

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 118

Figure 6.5: Architecture of the agent-environment interaction for reinforcement learn-

ing using hierarchical induced SMDPs M
′i
j = Hk

l ◦Mi
j . The environment observes joint

dialogue states w= (s, s̄), where s is an environment state in SMDP Mi
j and s̄ is a

choice state in HAM Hkl . The reinforcement learning agent uses a hierarchy of policies

πi
j for decision-making, where i denotes a level and j the model per level.

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 119

Algorithm 7 The HAM+HSMQ-Learning algorithm

1: function HAM+HSMQ(KnowledgeBasek, subtaskM′ij) return totalReward

2: s← environment state inSi
j initialized from knowledge-rich statek

3: s̄← start state of the abstract machine for subtaskM′ij
4: w← (s, s̄)

5: totalReward← 0

6: discount← 1

7: while s̄ is not a stop statedo

8: if s̄ is an action statethen

9: Execute actiona (corresponding to ¯s) and update knowledge-rich statek

10: Observe one-step rewardr

11: else if s̄ is a call statethen

12: r ← HAM+HSMQ(k,a), which invokes subtaska (corresponding to ¯s)

and returns the total reward received whilsta executed

13: else if s̄ is a choice statethen

14: Chose actiona from w using policy derived fromQi
j (e.g.ε-greedy)

15: s̄← a

16: continue

17: else

18: Observe next machine statēs′ (e.g. a choice, null or stop state)

19: s̄← s̄′

20: continue

21: end if

22: totalReward← totalReward+discount× r

23: discount← discount× γ

24: Observe resulting joint statew′← (s′, s̄′)

25: Qi
j(w,a)← (1−α)Qi

j(w,a)+ α
[

r +discount×maxa′ Qi
j(w
′,a′)

]

26: s̄← s̄′

27: w← w′

28: end while

29: end function

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 120

6.4 Experiments and results

The experiments reported here aimed to investigate dialogue systems that learn to

behave from scratch against systems that learn to behave incorporating prior expert

knowledge. As in chapter 5, the flight booking and travel planning systems used the

simulated environment and baseline machine behaviour described in chapter 4.

6.4.1 Experimental setup

The experimental setup – in terms of state representations,actions, rewards and learn-

ing setup – was similar to that in section 5.4. The differencehere is that the dialogue

subtasksMi
j were extended with Hierarchical Abstract Machines (HAMs)H i

j , where

their cross product yields theinduced subtasks M
′i
j = H i

j ◦Mi
j . The learnt policies used

the algorithm HAM+HSMQ-Learning described in the previoussection. The hierar-

chy of induced subtasks for the 6-slot flight booking system is shown in Figure 6.6,

and used the same abstract machines described in chapter 3 (page 42). The hierarchy

of induced subtasks for the 26-slot travel planning system is shown in Figure 6.7, and

used the abstract machines described in Figures 6.8 and 6.9.These HAMs control the

machine’s dialogue behaviour in deterministic state transitions, but in stochastic state

transitions the hierarchical reinforcement learning agents optimized decision-making.

Note that whilst the flight booking system is not reusing abstract machines, the travel

planning system is reusing abstract machines in several induced subtasks.

Figure 6.6: A hierarchy of induced subtasks for the 6-slot flight bookingspoken dia-

logue system. The abstract machines are specified in page 42 of chapter 3 and the state

variables for each dialogue subtask Mi
j are specified in Table 5.1.

C
hapter

6.
H

ierarchicaldialogue
optim

ization:
a

prior-know
ledge

approach
121

Figure 6.7: A hierarchy of induced subtasks for the 26-slot travel planning spoken dialogue system. The abstract machines (denotedas Hk
l)

are specified in Figures 6.8 and 6.9, and the state variables for each dialogue subtask Mij are specified in Table 5.2.

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 122

Figure 6.8: Abstract machines for the travel planning spoken dialogue system (Part 1),

where state transitions can be stochastic or based on deterministic constraints Ci .

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 123

Figure 6.9: Abstract machines for the travel planning spoken dialogue system (Part 2),

where state transitions can be stochastic or based on deterministic constraints Ci .

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 124

6.4.2 Experimental results: flight booking case study

Experimental results show that the hierarchical state-action space with HAM obtained

a dramatic reduction of 99.80% in comparison with a flat state-action space. This rep-

resents an additional relative reduction of 67.28% to the hierarchical state-action space

without HAM. Table 6.1 shows the number of state-actions forboth flat (2.8 million)

and hierarchical (17.8K and 5.8K) approaches. It can be observed that the state-action

space reduction by the divide-and-conquer approach is muchmore significant than

the prior knowledge approach. But the additional benefit of the latter approach is to

perform learning on constrained dialogue behaviour.

Table 6.1: Size of state-action spaces for the flight booking dialogue system.

Approach States Actions Subtasks |S×A|

Flat 281250 10 1 2812500

Hierarchical without HAM 2591 variable per subtask 4 17854

Hierarchical with HAM 2591 HAM-based 4 5841

Figure 6.10 shows the learning curves of the dialogue policies for different ASR

confidence distributions, averaged over 10 training runs of105 dialogues. The first

thing to notice is that hierarchical learning with HAM learns faster than hierarchical

learning without HAM, roughly by four orders of magnitude. The second thing to no-

tice is that the HAM-based policy1 required very little learning compared with learning

from scratch. This can be explained by the fact that whilst the policy without HAM is

exploring incoherent behaviour (by using the whole action set), the HAM-based policy

is exploring more coherent behaviour. This is why the learning curve is flattened, but

it gradually finds more efficient behaviour. The last thing tonotice is that hand-crafted

machine behaviour performed almost as well as the HAM-basedpolicy for only one

situation of confidence levels (top plot), but in general it is outperformed.

These plots report that the learnt dialogue policies outperformed the hand-crafted

behaviour by 0.1, 1.2, and 3.4 system turns for the different distributions of confidence

levels, respectively (from top to bottom). These gains in dialogue efficiency highlight

the importance of validating these results with real conversations.

1The HAM-based policies used the following settings only in the first one hundred dialogues: (1)
frozen learning, and (2) Q-values initialized to ‘1’ for state-action pairs that matched the hand-crafted
behaviour. This setting was employed to observe the policy’s performance before learning.

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 125

10
2

10
3

10
4

10
5

10

20

30

40

50

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/4, p(medium)=1/4, p(high)=1/2

Flat learning
Hierarchical learning without HAM
Hierararchical learning with HAM
Hand−crafted behaviour

10
2

10
3

10
4

10
5

10

20

30

40

50

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/3, p(medium)=1/3, p(high)=1/3

Flat learning
Hierarchical learning without HAM
Hierararchical learning with HAM
Hand−crafted behaviour

10
2

10
3

10
4

10
5

10

20

30

40

50

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/2, p(medium)=1/4, p(high)=1/4

Flat learning
Hierarchical learning without HAM
Hierararchical learning with HAM
Hand−crafted behaviour

Figure 6.10: Learning curves of dialogue policies using flat and hierarchical reinforce-

ment learning (with and without prior knowledge) in the flight booking system.

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 126

6.4.3 Experimental results: travel planning case study

Experimental results show that the hierarchical state-action space with HAM obtained

a dramatic reduction of more than 99.99% in comparison to a flat state-action space.

This represents an additional relative reduction of 69.37% compared to the hierarchical

state-action space without HAM. Table 6.2 shows the number of state-actions for both

flat and hierarchical approaches. But, how can good dialoguepolicies be found by

throwing away more than 99.99% of state-actions?

Table 6.2: Size of state-action spaces for the travel planning dialogue system.

Approach States Actions Subtasks |S×A|

Flat 4.5×1022 15 1 6.7×1023

Hierarchical without HAM 117081 variable per subtask 21 803627

Hierarchical with HAM 116457 variable per subtask 21 246171

Figure 6.11 shows the learning curves of hierarchical dialogue policies for dif-

ferent amounts of ASR confidence levels, also averaged over 10 training runs of 105

dialogues. Results confirm the arguments made in the previous case study. First, hier-

archical learning with HAM found faster solutions than hierarchical learning without

HAM. Whilst the former form of learning required less than 1000 dialogues to outper-

form hand-crafted behaviour, the later required at least 10000 dialogues to outperform

hand-crafted behaviour. Second, HAM-based behaviour2 required very little learn-

ing compared with learning from scratch. Third, HAM-based behaviour outperformed

hand-crafted behaviour by 6.2, 10.6, and 19.9 system turns for the different distribu-

tions of confidence levels, respectively (from top to bottom). This result suggests that

the importance of machine dialogue optimization grows according to the size of the

conversational agent.

It can be noted that the HAM-based policy did better than the fully-learnt policy.

This is presumably due to the following reasons: (1) that thefully-learnt policy uses the

whole action set, and explores incoherent actions; and (2) that the fully-learnt policy

exhibited infinite loops during testing, meaning that during training it takes longer to

reach the goal states. Test results showed that the HAM-based policies also exhibited

dialogues with infinite loops, e.g. the policy eventually apologized infinitely often.

2In a similar way to the flight booking system, learning was frozen in the first one hundred dialogues
and the Q-values were initialized to ‘1’ for state-actions pairs that matched the hand-crafted behaviour.
This setting was employed to observe the policy’s performance before learning.

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 127

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/4, p(medium)=1/4, p(high)=1/2

Hierarchical learning without HAM
Hierararchical learning with HAM
Hand−crafted behaviour

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/3, p(medium)=1/3, p(high)=1/3

Hierarchical learning without HAM
Hierararchical learning with HAM
Hand−crafted behaviour

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/2, p(medium)=1/4, p(high)=1/4

Hierarchical learning without HAM
Hierararchical learning with HAM
Hand−crafted behaviour

Figure 6.11: Learning curves of dialogue policies in the 26-slot travel planning sys-

tem using the reward function defined by equation 5.9. In the last 104 dialogues the

HAM-based policy averaged6.2, 10.6, and19.9 fewer system turns than hand-crafted

behaviour for the different distributions of confidence levels (from top to bottom).

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 128

The issue of infinite dialogues motivated us to constrain further the HAM-based

policy of Figures 6.8 and 6.9, and to use the reward function defined by equation 5.10.

On the one hand, such a reward function penalized strongly anaction that did not

change the current dialogue state. On the other hand, the additional constraints in

the HAM consisted in prohibiting apologies in medium and high confidence levels,

which resulted in a more compact state-action space of 160871 state-actions. This

represents a relative reduction of∼ 80% state-actions compared to the hierarchical

state-action space without HAM. Figure 6.12 shows the learning curves for this more

compact HAM-based dialogue policy (with frozen learning inthe first 100 dialogues)

for different amounts of ASR confidence levels, averaged over 10 training runs of 105

dialogues.

An evaluation on the last 104 dialogues reports that the HAM-based policy with

further constraints solved the the problem of dialogues with infinite loops. This result

tells us that learning with prior knowledge provides a framework to specify constraints

on the solution. In addition, it was observed that the rewardfunction defined by equa-

tion 5.10 generated more efficient dialogues in the HAM-based policy (on average 1.5

system turns), also referred to as ‘semi-learnt behaviour’(see Table 6.3). The HAM-

based policy outperformed the hand-crafted one by 7.6, 12.1, and 21.4 system turns for

each distribution of confidence levels, respectively. These gains in dialogue efficiency

also highlight the importance of validating these results in a realistic environment. An

evaluation with real users of learnt dialogue policies derived from equation 5.10 and

balanced ASR confidence levels is reported in chapter 7.

All these results make the combined hierarchical learning approach more attractive

for application in real-world spoken dialogue systems, andthe learning efficiency of

this approach is attractive for optimizing dialogue behaviour in an online setting.

Table 6.3: Average system turns of policies in the last104 training dialogues, where

the third column used the reward function described by equation 5.9 and the fourth

column used the reward function described by equation 5.10.

Confidence Level Distribution Hand-crafted Semi-learnt Semi-learnt

(low, medium, high) Behaviour Behaviour1 Behaviour2

Distribution1(1/4,1/4,1/2) 53.8±0.9 47.6±0.7 46.2±0.7

Distribution2(1/3,1/3,1/3) 58.6±1.0 48.0±0.8 46.5±0.8

Distribution3(1/2,1/4,1/4) 68.3±1.4 48.5±0.9 46.9±0.8

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 129

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/4, p(medium)=1/4, p(high)=1/2

Hierarchical learning without HAM
Hierararchical learning with HAM
Hand−crafted behaviour

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/3, p(medium)=1/3, p(high)=1/3

Hierarchical learning without HAM
Hierararchical learning with HAM
Hand−crafted behaviour

10
2

10
3

10
4

10
5

50

100

150

200

A
ve

ra
ge

 S
ys

te
m

 T
ur

ns

Dialogues

ASR Confidence Levels: p(low)=1/2, p(medium)=1/4, p(high)=1/4

Hierarchical learning without HAM
Hierararchical learning with HAM
Hand−crafted behaviour

Figure 6.12: Learning curves of dialogue policies in the 26-slot travel planning system

using the reward function defined by equation 5.10. In the last 104 dialogues the

HAM-based policy averaged7.6, 12.1, and21.4 fewer system turns than hand-crafted

behaviour for the different distributions of confidence levels (from top to bottom).

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 130

6.4.4 Analysis of learnt behaviours with finite dialogues

This sub-section analyzes the performance of learnt policies without infinite loops.

Table 6.4 shows test results for hand-crafted and semi-learnt behaviour (using the more

compact HAM) also averaged over 10 test runs of 1000 dialogues. It can be noted

that the semi-learnt dialogue behaviour outperformed the hand-crafted one by 10%,

16% and 28% fewer system actions for each confidence level distribution, respectively.

This reduction of system actions can be briefly explained as follows: the semi-learnt

behaviour differs from the hand-crafted one in the use of more acceptances (action

‘acc’), more multiple implicit confirmations (action ‘mic’), fewer apologies (actions

‘apo+req’ and ‘apo+ofr’), and fewer multiple explicit confirmations (action ‘mec’).

Table 6.4: Test results showing the average number of primitive actions per dialogue

of semi-learnt policies with different amounts of ASR confidence levels (low, medium,

high). The number of actions per dialogue (in bold) within each ASR confidence level

distribution were compared with t-tests and showed statistical significance at p< 0.01.

Conf. Levels (1/4,1/4,1/2) (1/3,1/3,1/3) (1/2,1/4,1/4)

Action Hand-crafted Semi- Hand-crafted Semi- Hand-crafted Semi-

Learnt Learnt Learnt

acc 3.61 3.93 2.82 3.81 2.85 3.30

ack 4.02 4.03 4.02 4.03 4.02 4.02

apo+ofr 1.18 0.37 1.80 0.00 3.47 0.00

apo+req 4.53 0.59 7.23 0.67 14.23 0.94

clo 1.00 1.00 1.00 1.00 1.00 1.00

dbq+sta 4.47 4.47 4.47 4.47 4.46 4.47

gre 1.00 1.00 1.00 1.00 1.00 1.00

mec 5.84 4.32 6.87 4.32 7.63 4.13

mic+req 2.35 2.82 1.92 2.77 1.99 2.83

ofr 0.27 0.27 0.26 0.27 0.26 0.26

pre+ofr 4.02 4.03 4.02 4.03 4.02 4.02

rel 0.47 0.46 0.48 0.47 0.46 0.47

req 10.63 10.11 11.52 10.23 11.66 10.68

sec 10.09 10.24 10.55 10.37 10.46 11.00

sic+req 3.15 3.07 2.73 2.99 2.71 2.36

Sum 56.63 50.69 60.68 50.42 70.24 50.50

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 131

Note that the previous differences in dialogue efficiency are smaller than those re-

ported by fully-learnt behaviour without infinite loops (Table 5.6). This motivated us

to test again the same semi-learnt behaviour, but acting according to eq. 5.11. It was

found that doing this helped to generate more efficient conversations: the semi-learnt

behaviour outperformed the hand-crafted one by 16%, 22% and32% fewer system ac-

tions for each confidence level distribution, respectively(Table 6.5). These differences

in dialogue efficiency are more comparable to those obtainedby fully-learnt behaviour

(see section 5.5.3). These results suggest that fully- and semi-learnt behaviours can

perform comparably on finite dialogues, and that a combination of hand-crafted and

(semi) learnt policies may result in better performance than using them separately.

Table 6.5: Test results showing the average number of primitive actions per dialogue of

semi-learnt policies (acting according to eq. 5.11) with different amounts of ASR confi-

dence levels. The number of actions (in bold) within each confidence level distribution

were compared with t-tests and showed statistical significance at p< 0.01.

Conf. Levels (1/4,1/4,1/2) (1/3,1/3,1/3) (1/2,1/4,1/4)

Action Hand-crafted Semi- Hand-crafted Semi- Hand-crafted Semi-

Learnt Learnt Learnt

acc 3.61 3.97 2.82 3.89 2.85 3.79

ack 4.02 4.02 4.02 4.02 4.02 4.03

apo+ofr 1.18 0.30 1.80 0.06 3.47 0.10

apo+req 4.53 0.51 7.23 0.57 14.23 0.90

clo 1.00 1.00 1.00 1.00 1.00 1.00

dbq+sta 4.47 4.47 4.47 4.48 4.46 4.48

gre 1.00 1.00 1.00 1.00 1.00 1.00

mec 5.84 2.16 6.87 2.21 7.63 2.13

mic+req 2.35 2.82 1.92 2.80 1.99 2.88

ofr 0.27 0.25 0.26 0.25 0.26 0.25

pre+ofr 4.02 4.02 4.02 4.02 4.02 4.03

rel 0.47 0.44 0.48 0.45 0.46 0.45

req 10.63 9.73 11.52 9.82 11.66 9.93

sec 10.09 9.62 10.55 9.74 10.46 9.90

sic+req 3.15 3.03 2.73 2.96 2.71 2.77

Sum 56.63 47.36 60.68 47.27 70.24 47.63

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 132

6.5 Related work

Our approach for incorporating prior expert knowledge intoreinforcement learning

agents is based on the Hierarchical Abstract Machines (HAMs) of (Parr and Russell,

1997). In this approach the system designer specifies a partial program (HAM) and

leaves the unspecified part to the hierarchical reinforcement learning agent.

Litman et al. (2000); Singh et al. (2002) incorporated priorknowledge into an

MDP-based dialogue system (NJFun) by means of hand-craftedrules used to com-

press the state-action space. This approach allowed them toperform very efficient

learning. Our approach differs from Litman and co-workers’approach in two respects:

(1) NJFun does not provide a formal framework to incorporateprior knowledge, our

approach is based on deterministic-stochastic finite statemachines; (2) NJFun applies

flat dialogue optimization, while our approach applies hierarchical optimization.

Heeman (2007) proposed combining the information-state update approach with

reinforcement learning dialogue systems. In this approachthe information-state (dia-

logue state) is hand-crafted by update rules based on preconditions and effects. In this

combined approach a subset of preconditions that are easy tospecify are hand-crafted,

and those less easy to specify are left to the reinforcement learning agent. Our approach

differs from the Heeman’s approach as follows: (1) prior knowledge is specified with

deterministic-stochastic finite state machines instead ofinformation-state update rules,

and (2) we optimize hierarchical dialogue strategies instead of flat dialogue strategies.

Williams (2008a,b) proposed executing a Partially Observable MDP (POMDP) and

a Hand-Crafted (HC) dialogue controller in parallel. At each time step, the HC con-

troller is in states(e.g. semantic frame) and the POMDP is in belief stateb (probability

distribution over POMDP states), the HC controller nominates a subset of actions, and

the POMDP updates a value function only for that particular subset of actions. Thus,

a POMDP solution is found on a more compact space of policies.Our approach and

Williams’s approach share the idea of executing a partial program in parallel with an

optimized decision-making model, but they differ as follows: (1) our HAM-based form

of prior knowledge does not consider belief states: nevertheless, HAMs can be used for

decision-making at higher levels where dialogue states canbe identified with certainty;

(2) whilst the HC controller of Williams’s approach is an arbitrary computer program,

our approach is based on deterministic-stochastic finite state machines and provides a

formal reinforcement learning method; and (3) our approachoptimizes a hierarchy of

partial programs, which is more scalable and suitable for reusability.

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 133

6.6 Discussion

This chapter addresses further issues in dialogue optimization for real world systems:

(a) the role of prior, or expert knowledge, (b) sub-optimal solutions, (c) search space

reduction before learning, (d) reusable solutions, and (e)partially specified behaviour.

Firstly, the approach of learning dialogue policies without prior knowledge simply

exacerbates the problem. The role of prior knowledge is important for at least two rea-

sons: (1) to reduce the search space in order to find faster solutions and with reduced

computational demands, and (2) to allow the opportunity to incorporate ad hoc con-

straints due to system requirements. In addition, the incorporation of prior knowledge

in reinforcement learning for spoken dialogue systems has proved to be very useful

in order to optimize behaviour from real conversations (Walker, 2000; Litman et al.,

2000; Singh et al., 2002). Otherwise, a large number of dialogues is required for such

a purpose, and this is only possible with simulations (whichcan be unrealistic).

Secondly, one of the dangers of using prior knowledge in reinforcement learning

agents is that sub-optimal solutions may be obtained. Therefore, the quality of the

learnt policies using the approach proposed in this thesis (divide and conquer plus

prior knowledge) will depend on two aspects: the hierarchical state representation, and

the HAM-based partially specified dialogue strategy. Nevertheless, the learning agents

will find optimal context-independent policies according to the specified constraints.

Thirdly, a typical approach to incorporate prior knowledgeinto reinforcement learn-

ing agents is to reduce state-action pairs before learning.This represents a problem if

spoken dialogue behaviours are frequently updated (eitherrestricting it or extending

it), where a new learnt policy has to be found. This is a strongreason for prefer-

ring hand-crafted instead of learnt dialogue behaviour. The proposed partial programs

can avoid re-learning when additional deterministic behaviour is incorporated into the

HAMs. But the policies must be re-learnt when additional stochastic behaviour is in-

corporated into the HAMs. In general, partial programs running in parallel with learnt

behaviour may help to reduce re-learning of policies with frequent updates.

Fourthly, a desirable property in approaches for building spoken dialogue systems

is that of reusable components. The topic of reusable learntdialogue behaviours is

important for at least two reasons. First, it aims to relievesystem developers of the

effort of doing many expert tasks. Second, it aims to speed upthe development-

deployment process for conversational agents. In this context, the application of hierar-

chical SMDPs to dialogue systems may become relevant for thefollowing reasons: (1)

Chapter 6. Hierarchical dialogue optimization: a prior-knowledge approach 134

by reusing learnt dialogue behaviours like those generatedfrom chapter 5, and (2) by

reusing modularized prior expert knowledge as proposed in this chapter. Lemon et al.

(2006a) reuse a single policy (exactly the same) in different dialogue contexts. How-

ever, there is much more to do – such as reusing similar behaviours – for facilitating

the rapid development of conversational agents with optimized behaviours.

Fifthly, the idea of partially specified dialogue strategies is relevant to the field be-

cause it is useful to balance the strengths of purely learnt behaviour and purely hand-

crafted behaviour. The approach of Levin and Pieraccini (1997); Levin et al. (2000)

is to design automatically the behaviour of dialogue systems. This thesis argues that

semi-learnt behaviour is more attractive for the followingreasons: (a) it is more co-

herent than purely learnt behaviour, (b) it plays a more active role in the system’s

development life cycle, and (c) it is more suitable for online learning.

Finally, two approaches have been proposed in this thesis: (1) SMDP-based hierar-

chical dialogue optimization, and (2) SMDP-based hierarchical dialogue optimization

constrained with HAMs. These approaches complement each other in order to pro-

vide a more scalable and flexible composite approach for optimizing spoken dialogue

agents. The next chapter describes an experimental evaluation with real users.

6.7 Conclusions

This chapter proposed learning partially specified dialogue strategies using constrained

Semi-Markov decision processes and hierarchical reinforcement learning. These par-

tial strategies are specified through hierarchical abstract machines, where obvious be-

haviour is specified with deterministic choices and non-obvious behaviour with stochas-

tic choices. The latter is the behaviour to be learnt by the reinforcement learning agent.

It was applied experimentally to simulated dialogue systems in the flight booking and

travel planning domains , and the proposed approach was compared with reinforcement

learning ab initio. Experimental results show that the flight booking system used only

0.20% of the flat state-action space, and the travel planning system less than 0.01%

of the flat state-action space. Hence learning is much fasterand with less computa-

tional demands than learning without prior knowledge. Evenwith such reductions,

the learnt dialogue policies outperformed hand-crafted behaviour. In addition, it was

found that a combination of hand-crafted and (semi) learnt policies may result in bet-

ter performance than using them separately. All these results suggest that the proposed

approach can be applied to large-scale and real-world spoken dialogue systems.

Chapter 7

A spoken dialogue system using

hierarchical reinforcement learning

This chapter aims to validate the hypotheses and preliminary conclusions derived from

the previous chapters. Section 7.1 explains the need for more sophisticated spoken

dialogue systems. Section 7.2 describes the architecture of a travel planning spoken

dialogue system with three different dialogue behaviours:deterministic, fully-learnt,

and semi-learnt. The first is used as a baseline for the lattertwo that employ spoken di-

alogue strategies generated by hierarchical reinforcement learning. Section 7.3 reports

on a quantitative and qualitative evaluation in a laboratory setting with real users. Sec-

tion 7.4 discusses the strengths and weaknesses of the spoken dialogue system under

evaluation. Finally, section 7.5 provides a summary of findings.

7.1 Introduction

The behaviour of spoken dialogue systems is typically hand-coded by designers and

developers. This approach has several limitations: it is prone to errors, time-consuming,

ad hoc, non-optimized, and non-adaptive, among others. A potential solution is sys-

tems that learn their dialogue behaviour (Levin and Pieraccini, 1997) through the use of

some sort of intelligent agent that behaves rationally during the dialogue by choosing

the best actions according to some performance measure (Russell and Norvig, 2003).

Zue (2007) proposed a long-term vision of dialogue systems that can learn, grow, and

reconfigure themselves. See chapter 2 for a brief literaturereview on spoken dialogue

systems that learn their dialogue behaviour using reinforcement learning.

Briefly, previous research in dialogue strategy design using the reinforcement learn-

135

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 136

ing paradigm has been carried out through two types of conversational environment:

real and simulated. Performing experiments on real environments requires large amounts

of time, effort and resources. This explains the relative lack of investigations in the

field, where two approaches have been employed: first, learn behaviour from real di-

alogues and then test it on a real environment (Walker, 2000;Singh et al., 2002); and

second, learn behaviour on a simulated environment and thentest it on a real one

(Lemon et al., 2006a; Young et al., 2007; Toney, 2007). The former may be referred

to as ‘real learnt behaviour’, the latter as ‘simulated learnt behaviour’. On the one

hand, real learnt behaviour is more attractive because it uses real data, but it is not very

practical due to the large number of dialogues required for optimal learning. On the

other hand, simulated learnt behaviour is more practical but the right things may not

be learnt due to the use of a simulated environment, which will inevitably be simpler

than the real environment. This suggests that both behaviours have to be backed up

with testing on real environments to guarantee their performance.

The problem addressed here is the evaluation of learnt behaviours for large-scale

spoken dialogue systems. Most previous investigations of learned spoken dialogue

behaviours have been concerned with evaluating small-scale systems, typically using a

single dialogue goal with few slots of information. This limitation was the motivation

to propose and evaluate a more scalable dialogue optimization framework. The idea

of evaluating learnt dialogue behaviours with real users isparticularly relevant for

showing the effectiveness of the proposed dialogue simulation environment, and the

hierarchical reinforcement learning framework describedin chapters 5 and 6. For this

purpose a heuristic-based simulation framework was used togenerate human-machine

conversations, producing coherent and distorted conversations (see chapter 4). Once

the learning agents designed the dialogue behaviours, theywere put into operation

in a realistic environment, in the domain of travel planning. The resulting spoken

dialogue system allowed users to book flights, hotels and cars. This system shares

similarities with the DARPA Communicator dialogue systems(Walker et al., 2002),

but used dialogue behaviours designed by hierarchical reinforcement learning agents,

using the Semi-Markov decision processes formalism.

The objectives in this chapter were to show that the proposeddialogue simulator

can help learning agents to find dialogue strategies that outperform hand-coded, deter-

ministic behaviour, and that hierarchical dialogue behaviours learnt in the presence of

constraints derived from prior knowledge (semi-learnt behaviours) are more suited to

deployment than fully deterministic or fully-learnt dialogue behaviours.

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 137

7.2 System architecture

The CSTR travel planning spoken dialogue system supported deterministic or learnt

dialogue behaviour. The latter uses dialogue strategies designed by hierarchical rein-

forcement learning agents on a simulated environment (see chapters 4-6). This system

is based on the Open Agent Architecture (OAA) (Cheyer and Martin, 2001). Fig-

ure 7.1 shows a high-level architecture using eight OAA-based agents in order to sup-

port speech-based task-oriented human-machine communication. The communication

flows between facilitator (parent) and the other agents (children). Briefly, the user gives

speech signalsxu
t corresponding to wordswu

t , concepts or slotscu
t , and dialogue acts

au
t . However, the machine understands them with distortions (˜wu

t , c̃u
t , ãu

t), and answers

back to the user with speech signalsxm
t corresponding to wordswm

t , slotscm
t , and di-

alogue actsam
t . The user may also misunderstand the machine, and so on untilone of

the conversants terminates the conversation atT system turns. The rest of this section

describes each agent based on dialogue fragments showing inputs and outcomes.

Figure 7.1: Architecture of the CSTR travel planning spoken dialogue system support-

ing deterministic or learnt dialogue behaviour. Human-machine communication is

carried out with speech signals xt , words wt , concepts or slots ct , and dialogue acts at .

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 138

7.2.1 Facilitator agent

OAA is an agent-based framework to build autonomous, flexible, fault-tolerant, dis-

tributed and reusable software systems (Cheyer and Martin,2001). OAA agents can

be written in multiple programming languages and run on a computer network with

different operating systems. They have a parent agent called facilitator, coordinat-

ing the communication of child agents by keeping a knowledgebase of their services.

Child agents are service providers and service requesters.The former let the facilitator

know of their own capabilities, and the latter request capabilities from other agents.

They communicate by passing string messages between child agents and facilitator.

7.2.2 Speech recognition agent

The task of this agent was to receive user speech signals after each machine prompt

wm
t and to generate a word sequence including confidence levels ˜wu

t , derived from

the recognition hypothesis incorporating confidence scores w̄u
t . This agent used the

multithreaded ATK API, which is a layer on top of the HTK speech recognition li-

braries (Young, 2007, 2006). This agent used the acoustic models (trained with data

from British speakers) generated from the TALK project1, and customized-based lan-

guage models with a lexicon of 263 words. The confidence levels were assigned by

dividing the confidence score range[0...1] into three equal areas, equivalent tol =low,

m=medium, andh =high confidence. The following table illustrates this process.

ID Event Outcome

wm
t Machine prompt Welcome to the CSTR travel planning system.

Tell me your flight information.

wu
t User response I would like a single flight from Edinburgh to Paris.

w̄u
t ASR hypothesis how(0.27) about(0.31) a(0.15) single(0.60)

with confidence flight(0.56) with(0.32) b.m. i.(0.47) from(0.70)

scores edinburgh(0.59) to(0.40) paris(0.56)

w̃u
t ASR hypothesis how(l) about(l) a(l) single(m) flight(m) with(l)

w/conf. levels b. m. i.(m) from(h) edinburgh(m) to(m) paris(m)

wm
t+1 Machine prompt A single flight from Edinburgh to Paris. travelling

with BMI. When do you want to travel? ...

wu
t+1 User response I would like to travel with Air France.

1Our ASR and TTS agents used wrappers generated from the TALK project (Lemon et al., 2005).

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 139

7.2.3 Semantic parsing agent

This agent generated concept or keyword sequences ˜cu
t from a (distortedly) recognised

word sequence ¯wu
t . This agent used the Phoenix spontaneous speech parser thatmaps

a word string into a semantic frame. A semantic frame is a set of slots of information,

each slot with an associated context-free grammar. Such grammars are compiled into

recursive transition networks, which are matched with the given word sequence by a

top-down chart parsing algorithm (Ward, 1994). This agent used 3 frames (correspond-

ing to flights, hotels and cars) including 18 semantic networks. See the table below for

a sample parsed word sequence.

ID Event Outcome

wm
t Machine prompt Welcome to the CSTR travel planning system.

Tell me your flight information.

wu
t User response I would like a single flight from Edinburgh to Paris.

w̄u
t ASR hypothesis how about a single flight with b.m. i. from

wo/conf. scores edinburgh to paris

c̃u
t Semantic parse Flight:[FlightType].SINGLE

Flight:[DepCity].[City].EDINBURGH

Flight:[DesCity].[City].PARIS

Flight:[Airline].BMI

ãu
t User dialogue pro(FlightType=single.m,DepCity=edinburgh.m,

act DesCity=paris.m,Airline=bmi.m)

wm
t+1 Machine prompt A single flight from Edinburgh to Paris travelling

with BMI. When do you want to travel? ...

wu
t+1 User response I would like to travel with Air France.

7.2.4 Dialogue act recognition agent

This agent generated user dialogue acts ˜au
t using a two-stage approach. First, a user

dialogue act type was selected taking into account the current concept sequence ˜cu
t and

last machine dialogue act corresponding to the machine prompt wm
t . Once a dialogue

act type had been selected, it took context into account to become a user dialogue act

ãu
t . Although it is possible to generate more than one dialogue act per user utterance,

this agent generated a single user dialogue act (see the table above for an example).

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 140

7.2.5 Database system agent

This agent returned database tuples based on SQL queries from the dialogue manager.

It used a web scraper to populate a local database, retrieving travel data from a com-

mercial web site (www.opodo.co.uk). This strategy was selected in order to avoid

long time responses from direct queries to the web site. The database stored infor-

mation from dialogue scenarios such as the shown in Table 7.2. This agent returned

an empty data set when it experienced unknown slot-values. That situation occurred

if some slots were filled incorrectly due to mis-recognitions, which forced the user to

reprovide the wrong information in order to obtain a non-empty data set (see example

below). That situation also served to test the early subtasktermination (section 5.2.4).

SYS: Welcome to the CSTR travel planning system.

Tell me your flight information.

USR: I would like a single flight from Edinburgh to Paris.

SYS: A single flight from Edinburgh to Paris travelling with BMI.

When do you want to travel?

USR: I would like to travel with Air France

SYS: A flight travelling with Air France. When do you want to travel?

USR: [cut off] the sixth

SYS: A flight leaving on May sixth.

At what time do you prefer to travel?

USR: Ehh I would like to travel on December the sixth in the morning

SYS: At what time do you prefer to travel? For example you can say:

A flight in the afternoon.

USR: A flight in the morning

SYS: Did you say a flight in the morning?

USR: Yes

SYS: Please wait while I retrieve information. I am sorry I didn’t

find any flights from Edinburgh to Paris on may sixth travelling

with Air France. Try again with some different information.

USR: December the sixth

SYS: Did you say a single flight leaving on December sixth

USR: Yes

SYS: Please wait while I retrieve information. I found 2 flights from

Edinburgh to Paris with Air France...

www.opodo.co.uk

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 141

7.2.6 Dialogue management agent

This agent generated machine dialogue actsam
t from the hierarchy of policiesπi

j based

on three different types of dialogue behaviours: deterministic, fully-learnt and semi-

learnt. Thedeterministicstrategy is based on a mapping from states to actionsf (s,a)

using the baseline machine dialogue behaviour described insection 4.3.2:

πi
j(s) = f (s,a), (7.1)

wheres is a state inSi
j anda is an action inAi

j . The two learnt behaviours were opti-

mized for efficient dialogues. Thefully-learnt behaviour used a hierarchical dialogue

agent (based on eq. 5.10) that could use the full action set ineach state (see chapter 5):

π∗ij (s) = argmax
a∈Ai

j

Q∗ij (s,a). (7.2)

In contrast, thesemi-learntbehaviour (also based on eq. 5.10) used “partially specified

dialogue strategies” for constraining the actions in each joint statew = (s, s̄), wheres

is an environment state and ¯s is a choice state in the partial policy (see chapter 6):

π∗ij (w) = argmax
a∈A′ij

Q∗ij (w,a). (7.3)

Table 7.1 shows an example of the form of dialogue control in the CSTR travel

planning system given by a hierarchical reinforcement learning agent with fully-learnt

behaviour. The agent uses a hierarchy of learnt dialogue policies π∗ij , where each

policy chooses the action with the highest cumulative reward for each state. Notice

that machine decisions can be primitive actions such as{‘req=request’, ‘mic=multiple

implicit confirmation’}, or composite actions (also referred to as ‘subtasks’) suchas

{‘M2
0=sub-dialogue for outbound flight’, ‘M3

0=sub-dialogue for collecting mandatory

slots in the outbound flight’}. A dialogue subtask uses a separate learnt policy to act in

the sub-dialogue. When a subtask is invoked, it obtains its initial dialogue state from

the machine’s knowledge base that is updated from observations in the environment.

A subtask returns to its parent subtask when it reaches a terminal state.

The specifications of these spoken dialogue controllers were expressed in XML

files encapsulating information about hierarchical dialogue structures, learning envi-

ronment, knowledge bases of simulated user and machine, andlearning setup (see

chapters 4, 5, 6, and appendix B for more information). Sincethese spoken dialogue

behaviours only differ in their action-selection mechanism, and the rest of the OAA-

based agents (see figure 7.1) did not change regardless of thebehaviour of choice, it is

fair to say that these behaviours were evaluated under similar conditions.

C
hapter

7.
A

spoken
dialogue

system
using

hierarchicalreinforcem
entlearning

142

Table 7.1: Fragment of a real dialogue in the CSTR travel planning system using policiesπ∗ij , the state representation is shown in Table 5.2.

Agent Policy State Action Dialogue Act Utterance

SYS π∗00 0,0,0,0,0,0 gre gre() Welcome to the CSTR travel planning system.

0,1,0,0,0,0 M1
0

π∗10 1,0,0 M2
0

π∗20 0,0,0,0,0 M3
0

π∗30 0,0,0,0,0,0,0 req req(DepCity) Tell me your flight information.

USR pro(FlightType=single,DepCity=edinburgh,I would like a single flight from

DesCity=paris) Edinburgh to Paris.

SYS π∗30 0,2,2,0,0,2,2 acc

π∗30 2,2,2,0,0,2,2 mic mic(FlightType=single,DepCity=edinburgh,A single flight from Edinburgh to Paris

DesCity=paris,Airline=bmi)+req(DepDate) travelling with BMI. When do you want to travel?

USR pro(Airline=air france) I would like to travel with Air France.

SYS π∗30 2,4,4,0,0,2,4 sic sic(Airline=air france)+req(DepDate) A flight travelling with air france.

When do you want to travel?

USR pro(DepDate=december sixth) December the sixth

SYS π∗30 2,4,4,2,0,4,4 acc

SYS π∗30 3,4,4,2,0,4,4 sic sic(DepDate=may sixth)+req(DepTime) A flight leaving on May sixth.

At what time do you prefer to travel?

USR rep(DepDate=december sixth, ehh i would like to travel on December the sixth

DepTime=morning) in the morning.

...

SYS π∗30 3,4,4,4,4,4,4 [terminal state]

π∗20 0,0,2,2,0 dbq+sta dbq(db)+sta(db) Please wait while I retrieve information...

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 143

7.2.7 Language generation agent

The task of this agent was to generate a machine promptwm
t in natural language based

on a template-based approach. A prompt template has a word sequence embedding

variables, and was selected given the current machine dialogue actam
t , dialogue state

sm
t or joint statewm

t , and a simple help mechanism2. Once a prompt template had

been selected, it took context into account by replacing variables with values in the

machine’s knowledge base in order to generate the word sequencewm
t+1. This agent

included 463 prompt templates. The table below (with omitted dialogue states) shows

a sample prompt templatecm
t and its corresponding machine promptwm

t+1.

ID Event Outcome

wm
t Machine prompt Welcome to the CSTR travel planning system.

Tell me your flight information.

ãu
t User dialogue pro(FlightType=single.m,DepCity=edinburgh.m,

act DesCity=paris.m,Airline=bmi.m)

am
t Machine mic(FlightType=single,DepCity=edinburgh,

Dialogue act DesCity=paris,Airline=bmi)+req(DepDate)

cm
t Prompt for action ‘mic’ A $FlightType flight from $DepCity to $DesCity

travelling with $Airline.

Prompt for action ‘req’ When do you want to travel?

wm
t+1 Machine prompt A single flight from Edinburgh to Paris travelling

with BMI. When do you want to travel? ...

wu
t+1 User response I would like to travel with Air France.

7.2.8 Speech synthesis agent

This agent generated speech signalsxm
t from a given word sequencewm

t . This agent is

based on the Festival text-to-speech system3 with an HTS voice generated from eight

hours of recorded speech (Yamagishi et al., 2007). The speech signals were generated

online, using a pre-processing stage to split word sequences at punctuation symbols in

order to avoid long silences in the machine’s utterance.

2Simple automatic help: a) 1st slot collection=no help, b) 2nd collection=help prompt suggesting to
fill multiple slots, c) 3rd collection: help prompt suggesting a shorter sentence, d) 4rd collection=help
prompt suggesting to fill a single slot, e) others=help prompt suggesting to rephrase the sentence.

3http://www.cstr.ed.ac.uk/projects/festival

http://www.cstr.ed.ac.uk/projects/festival

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 144

7.3 System evaluation

These experiments aimed to investigate whether hierarchically learnt dialogue be-

haviour can outperform deterministic behaviour in a realistic environment, and to eval-

uate the heuristic simulation environment with real data. For such a purpose the system

described in the previous section was implemented and deployed to a population of real

users for its corresponding evaluation. See appendix C for asample dialogue.

7.3.1 Evaluation methodology

The CSTR travel planning spoken dialogue system was evaluated using a number of

metrics, mostly derived from the PARADISE framework (Walker et al., 2000), which

has been widely accepted for evaluating the performance of spoken dialogue systems.

(i) Dialogue Efficiency: This group of quantitative metrics includessystem turns,

user turns, andelapsed time(in seconds). All of them report averages per di-

alogue goal (flight, hotel, car). Elapsed time includes the time used by both

conversants.

(ii) Dialogue Quality: This group of metrics includesWord Error Rate(WER),Key-

word Error Rate(KER), andEvent Error Rate(EvER). The latter is decomposed

into the following metrics reported as percentages:correct acceptance, correct

confirmation, correct rejection, false acceptance, false confirmationand false

rejection. Other commonly reported metrics include percentages of commands

and barge-ins, but this dialogue system did not support them.

(iii) Task Success: This group of quantitative metrics includestask successanddia-

logue reward. Task success uses a binary approach, where each dialogue task is

classified as successful if the user achieved the goal (e.g. booking a flight, ho-

tel or car) as in (Bohus and Rudnicky, 2005b). Dialogue reward combines task

success and dialogue length in terms of system turns (Lemon et al., 2006a):

DialogueReward=

{

100 -|SystemTurns| for successful dialogue

0 - |SystemTurns| for failed dialogue
(7.4)

(iv) User Satisfaction: These qualitative metrics includeeasy to understand, system

understood, task easy, interaction pace, what to say, system response, expected

behaviour, and future use. Their sum represents the overall user satisfaction

score.

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 145

7.3.2 Experimental setup

The experiments of this research were restricted to a user population of native speak-

ers of English and evaluated the three machine dialogue behaviours described in the

previous three chapters: deterministic (‘D’), fully-learnt (‘F’), and semi-learnt (‘S’).

In these experiments each user was presented with six dialogue tasks (travel book-

ings), with the system using each of the three behaviours twice, so that each user

experienced all behaviours. The first three dialogues concerned single bookings and

the last three dialogues concerned composite bookings. Table 7.2 shows examples of

single and composite travel booking tasks. The six dialogues per user were collected

using one of the following two sequences: DSFFSD and SDFFDS;i.e. half of the

users interacted first with a deterministic behaviour, and the other half interacted first

with a learnt behaviour. Whilst deterministic and semi-learnt behaviours started the

dialogues interchangeably, fully-learnt behaviour always started the composite travel

bookings. This sequence of dialogues was used because otheralternative sequences

such as{DSFFSD, DFSSFD, SDFFDS, SFDFDS, FSDDSF, FDSSDF} require larger

data collections (the more data the more expensive and time-consuming).

Table 7.2: Sample tasks in the CSTR travel planning spoken dialogue system. In the

experiments reported here, each user participated in 3 single and 3 composite tasks.

Booking Task

Single

Try to book asingleflight from London to Paris leaving on

December 6thin theafternoon, and travelling withany airline.

What is the cost of the most expensive flight?

Composite

a) Try to book areturn flight from Edinburgh to Amsterdam

leaving onJanuary 22nd in themorning, and returning on

the1st of February in theevening.

What is the cost of the cheapest flight withBritish Airways ?

b) Try to book acheaphotel indowntown with any hotel brand.

What is the cost of the cheapest hotel in downtown?

c) Try to rent acompact carnear theairport for three dayson

January 22nd with pick-up time at7PM. You don’t have

any preference regarding rental company.

What is the rental cost of the most expensive car?

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 146

Each dialogue was logged using an extended version of the DATE dialogue anno-

tation scheme (Walker and Passonneau, 2001). These log fileswere used to compute

quantitative results. In addition, at the end of each dialogue, participants were asked

to fill in a questionnaire (Table 7.3) in order to compute qualitative results, evaluated

with a 5-point Likert scale, where 5 represents the highest score.

A population of 32 users voluntarily agreed to participate in the experimental eval-

uation. They had an average age of 36 with a gender distribution of 69% (22) male

versus 31% (10) female. The participants’ country of originwere as follows: 53%

(17) from the UK, 38% (12) from USA, and 9% (3) from Canada. From this user pop-

ulation, 28% (9) had no experience with spoken dialogue systems, 56% (18) had some

experience interacting with a spoken dialogue system at least once, and 16% (5) were

expert users. The latter were researchers in spoken dialogue processing.

Table 7.3: Subjective dialogue measures for qualitative evaluation.

Measure Question

Easy to Understand Was the system easy to understand?

System Understood Did the system understand what you said?

Task Easy Was it easy to find the flight/hotel/car you wanted?

Interaction Pace Was the pace of interaction with the system appropriate?

What to Say Did you know what you could say at each point?

System Response Was the system fast and quick to reply to you?

Expected Behaviour Did the system work the way you expected it to?

Future Use Do you think you would use the system in the future?

7.3.3 Experimental results

This subsection describes an analysis of results computed from automatic and manual

transcriptions at the syntactic and semantic level. Table 7.4 shows a summary of re-

sults comparing semi-learnt dialogue behaviour against deterministic and fully-learnt

dialogue behaviour; including statistical significance. For such a purpose data vectors

(averaged per speaker) were verified through Lilliefors tests which indicated that they

do not come from normal distributions. This suggests that non-parametric tests should

be used. Thus, significance tests are reported with the Wilcoxon signed-rank test as

suggested by (Demsar, 2006).

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 147

Table 7.4: Results of the CSTR travel planning spoken dialogue system comparing

three different dialogue behaviours, organized accordingto the following groups of

metrics: dialogue efficiency, dialogue quality, task success and user satisfaction.

Measure Deterministic Fully-Learnt Semi-Learnt p-values

Behaviour(1) Behaviour(2) Behaviour(3) (1,2) (1,3) (2,3)

Avg. System Turns 16.63 12.24 15.09 ≤ 0.05 ≤ 0.05 ≤ 0.05

Avg. User Turns 14.38 9.69 12.63 ≤ 0.05 ≤ 0.05 ≤ 0.05

Avg. Time (secs) 177.23 139.59 165.11 ≤ 0.05

Word Error Rate 0.429 0.410 0.428

Keyword Error Rate 0.300 0.278 0.301

Event Error Rate 0.409 0.351 0.372

Correct Acceptance 5.51 26.34 20.95 ≤ 0.05 ≤ 0.05

Correct Confirmation 48.51 36.17 39.86 ≤ 0.05 ≤ 0.05 ≤ 0.05

Correct Rejection 5.18 2.37 1.92 ≤ 0.05 ≤ 0.05

False Acceptance 3.25 12.27 9.30 ≤ 0.05 ≤ 0.05 ≤ 0.05

False Confirmation 32.64 20.11 26.60 ≤ 0.05 ≤ 0.05 ≤ 0.1

False Rejection 4.91 2.55 1.36 ≤ 0.05 ≤ 0.05

Avg. Task Success 0.94 0.62 0.95 ≤ 0.05 ≤ 0.05

Avg. Dialogue Reward 79.46 54.68 82.56 ≤ 0.05 ≤ 0.05 ≤ 0.05

Easy to Understand 4.34 4.31 4.44

System Understood 3.09 2.72 3.28 ≤ 0.05 ≤ 0.05

Task Easy 3.50 3.00 3.45 ≤ 0.1 ≤ 0.05

Interaction Pace 3.52 3.55 3.50

What to Say 3.45 3.47 3.58

System Response 3.67 3.64 3.63

Expected Behaviour 3.42 3.08 3.52 ≤ 0.05 ≤ 0.05

Future Use 3.14 2.83 3.28 ≤ 0.05 ≤ 0.05

User Satisfaction 28.14 26.59 28.67 ≤ 0.1 ≤ 0.05

(1) Note on statisfical significance: typically, p-valuesp≤ 0.05 are considered to be statistically

significant, and p-valuesp≤ 0.1 are indicative of a statistical trend.

(2) Note on task success: the drop of performance in fully-learnt behaviour was mainly caused

by infinite loops, where the execution of actiona in statesdid not change the states′ = s.

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 148

7.3.3.1 Analysis of quantitative and qualitative results

Dialogue efficiency: fully-learnt behaviour seems to outperform significantlythe other

behaviours by obtaining fewer system turns, fewer user turns and less time. This is

not surprising because it was known in advance that this dialogue policy included

infinite loops in some dialogue states. In the experiments these kind of dialogues were

manually stopped after three repetitive actions, considered as evidence of an infinite

loop, Table 7.5 shows an example. The purpose of testing thisdialogue policy was

three-fold: (1) to evaluate how users perceive a dialogue policy with infinite loops; (2)

to raise the issue of (in)coherent behaviour inferred by reinforcement learning agents,

which has been ignored in previous related work; and (3) to compare its performance

against a similar dialogue policy, but constrained with prior expert knowledge.

This phenomenon did not happen with deterministic or semi-learnt behaviours be-

cause their prior knowledge constrained more tightly the available actions per dia-

logue state. From these two dialogue strategies, it can be observed that semi-learnt

behaviour outperformed deterministic, with significant differences in system and user

turns. These results suggest that although learnt behaviours were optimized for dia-

logue efficiency, they cannot be evaluated in the same way. Therefore, a wider reper-

toire of evaluation metrics is preferable for a deeper analysis of dialogue behaviours.

Dialogue quality: Fully-learnt behaviour obtained the lowest word and keyword er-

ror rates. These results are not statistically significant,which suggests that behaviours

were compared under similar recognition error rates. Deterministic and semi-learnt

behaviours exhibited similar word and keyword error rates,but different event error

rates. Typically, spoken dialogue strategies have to handle trade-offs between accep-

tance, confirmation and rejection of recognition hypotheses, which can be classified

as correct or incorrect. Ideally, dialogue behaviours should choose actions maximiz-

ing correct acceptance/confirmation/rejection events, whilst minimizing the incorrect

ones. From these results it can be inferred that semi-learntbehaviour handled such

trade-offs better than deterministic behaviour by issuingmore acceptances and fewer

confirmations. This implies the use of more implicit confirmations and fewer explicit

confirmations, which helps to explain why semi-learnt behaviour was more efficient

than the deterministic one. Although dialogue policies were not optimized for ‘event

error rate’ (see equation 4.13, p 75), these results suggestthat optimizing for dialogue

efficiency produced an indirect optimization for such trade-offs. In addition, it can be

observed that deterministic and semi-learnt behaviours are significantly different in all

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 149

Table 7.5: Real dialogue with infinite loop in the CSTR travel planning dialogue sys-

tem, where the fully-learnt policy did not learn the action ‘rel=constraint relaxation’

for the (mis-)recognized slot values, and kept trying the action ‘dbq=database query’.

Agent Subtask State Action Utterance

SYS M0
0 0,0,0,0,0 gre Welcome to the CSTR travel planning system.

M0
0 0,1,0,0,0,0 M1

0

M1
0 1,0,0 M2

0

M2
0 0,0,0,0,0 M3

0

M3
0 0,0,0,0,0,0,0 req Tell me your flight information.

USR I would like to fly from Edinburgh to London.

SYS M3
0 0,2,2,0,0,0,0 acc

M3
0 2,2,2,0,0,0,0 mic+ A flight from Edinburgh to London.

req When do you want to travel?

USR On the 6th of December in the evening.

SYS M3
0 2,4,4,3,2,0,0 acc

M3
0 4,4,4,3,2,0,0 mic+ A flight on December 6th in the evening.

req What is your preferred airline?

USR -tish Airways

SYS M3
0 4,4,4,2,4,0,0 sic+ A flight leaving on May 8th.

M3
0 req What is your preferred airline?

USR British Airways

SYS M3
0 4,4,4,4,4,2,0 acc

M3
0 5,4,4,4,4,2,0 sic+ A flight travelling with British Airways.

req What kind of flight do you want?

Single or return.

USR Single

SYS M3
0 5,4,4,4,4,4,3 sec Did you say a single flight?

USR Yes

SYS M3
0 5,4,4,4,4,4,4 [terminal state]

M2
0 0,0,2,2,0 dbq+sta Please wait while I retrieve information.

SYS M2
0 1,0,2,2,0 dbq+sta Please wait while I retrieve information.

SYS M2
0 1,0,2,2,0 dbq+sta Please wait while I retrieve information.

... [manually stopped]

Note: (1) dialogues with 3 repetitive actions were considered as evidence of an infinite loop,

and were manually stopped, (2) the state representation is described in Table 5.2.

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 150

recognition events (correct/false acceptance/confirmation/rejection). In contrast, both

learnt behaviours are significantly different in only half of the recognition events, sug-

gesting that learnt behaviours act in a more similar way thandeterministic behaviour.

Task success: Fully-learnt behaviour was significantly outperformed bythe other

behaviours that generated more successful conversations.This is where fully-learnt

behaviour paid the price for generating some infinite dialogues that had to be artificially

terminated before successful completion. In addition, whilst deterministic and semi-

learnt behaviours were very similar in terms of task success, semi-learnt behaviour

significantly outperformed its deterministic counterpartin terms of dialogue reward.

This suggests that the dialogue reward metric is reflecting well the combined results

from dialogue efficiency and dialogue accuracy.

User satisfaction: Users evaluated the semi-learnt behaviour as the best. Although,

semi-learnt behaviour was significantly different to fully-learnt behaviour, it was not

significantly different to its deterministic counterpart.A similar user satisfaction result

was found by Singh et al. (2002) and Lemon et al. (2006a). The performance of opti-

mized confirmation strategies may be obscured by high recognition error rates. Future

experiments could investigate optimized confirmation strategies under lower recogni-

tion error rates. In addition, the differences between learnt behaviours were statistically

significant in the following qualitative metrics:system understood, task easy, expected

behaviour, andfuture use. Similar differences were observed when comparing statisti-

cal significance between deterministic and fully learnt behaviour. These results suggest

that those are the metrics with more impact on perceived system performance in the

presence of unexpected dialogue behaviour such as infinite loops.

The results above can be summarized as follows (see also box plots of Figure 7.2).

First, dialogues by deterministic and semi-learnt behaviour were more successful than

dialogues by fully-learnt behaviour. These unsuccessful dialogues were reflected in

the efficiency metrics, where fully-learnt behaviour falsely seems to be most efficient.

Second, deterministic and semi-learnt behaviours are equally successful but the latter

is more efficient.Third, real users perceived fully-learnt behaviour as the worst,and

the other behaviours with equivalent medians.Finally, the problem of infinite loops

could have been avoided (as in equation 5.11); however, if a spoken dialogue policy

uses fully-learnt behaviour without a good reward functionor without constraints to

generate dialogues that make sense to humans, then it may notlearnsuccessful and

coherent behaviours. According to the quantitative and qualitative results above, it

can be concluded that semi-learnt behaviour was better thanthe other behaviours.

C
hapter

7.
A

spoken
dialogue

system
using

hierarchicalreinforcem
entlearning

151

Deterministic Fully−Learnt Semi−Learnt

0

0.2

0.4

0.6

0.8

1

T
as

k
S

uc
ce

ss

Behaviour
Deterministic Fully−Learnt Semi−Learnt

−20

0

20

40

60

80

D
ia

lo
gu

e
R

ew
ar

d

Behaviour
Deterministic Fully−Learnt Semi−Learnt

1.5

2

2.5

3

3.5

4

4.5

5

U
se

r
S

at
is

fa
ct

io
n

Behaviour

Deterministic Fully−Learnt Semi−Learnt

10

15

20

25

30

35

40

S
ys

te
m

 T
ur

ns

Behaviour
Deterministic Fully−Learnt Semi−Learnt

5

10

15

20

25

30

35

U
se

r
T

ur
ns

Behaviour
Deterministic Fully−Learnt Semi−Learnt

50

100

150

200

250

300

350

400

450

E
la

ps
ed

 T
im

e
(s

ec
s)

Behaviour

Figure 7.2: Box plots of dialogue evaluation metrics per machine behaviour in the CSTR travel planning spoken dialogue system. The system

performance in the top plots is interpreted as ‘the higher the better’ and in the bottom plots as ‘the lower the better’.

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 152

7.3.3.2 Analysis of results based on users with only success ful dialogues

A further (and possibly more fair) comparison of behaviourswas based on users with

only successful dialogues4 – shown in Table 7.6. It shows a summary of results com-

paring deterministic and fully-learnt behaviour against semi-learnt behaviour; includ-

ing statistical significance. Firstly, it can be observed that both learnt behaviours were

more efficient than their deterministic counterpart (in system/user turns, atp≤ 0.05),

and the differences between learnt behaviours were not significant. Secondly, no sig-

nificant differences were observed in dialogue quality. However, the statistical trend

in event error rate suggests that the semi-learnt behaviourhandled the trade-offs of ac-

ceptance /confirmation/rejection events more effectively. Thirdly, it can be noted that

both learnt behaviours obtained more reward than their deterministic counterpart, and

that therefore this metric is reflecting the significant differences observed from effi-

ciency metrics. Last, similar to the results for all dialogues, the semi-learnt behaviour

obtained the highest score in user satisfaction, but the differences were not significant.

These results confirm that semi-learnt dialogue behaviour is a better alternative

than deterministic, and indicate that its performance is comparable to that of fully-

learnt behaviour when they are evaluated on only successfuldialogues.

Table 7.6: Results of the CSTR travel planning spoken dialogue system using data from

users – with only successful dialogues. They are organized in the following groups of

metrics: dialogue efficiency, dialogue quality, task success and user satisfaction.

Measure Deterministic Fully-Learnt Semi-Learnt p-values

Behaviour(1) Behaviour(2) Behaviour(3) (1,2) (1,3) (2,3)

Avg. System Turns 14.58 11.94 12.58 ≤ 0.05 ≤ 0.05

Avg. User Turns 12.50 9.75 10.23 ≤ 0.05 ≤ 0.05

Avg. Time (secs) 159.74 142.69 132.48 ≤ 0.05

Word Error Rate 0.343 0.265 0.276

Keyword Error Rate 0.209 0.137 0.167 ≤ 0.1

Event Error Rate 0.365 0.233 0.175 ≤ 0.1 ≤ 0.1

Avg. Task Success 1.00 1.00 1.00

Avg. Dialogue Reward 85.42 88.06 87.42 ≤ 0.05 ≤ 0.05

User Satisfaction 31.28 31.78 32.39

4Users with only successful dialogues: 9 users out of 32, where each user did six dialogue tasks.

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 153

7.3.4 Evaluation of simulated behaviours

This section describes a quantitative analysis of simulated and real dialogue behaviours.

For such a purpose, the performances of speech recognition,user behaviour, and ma-

chine behaviour were compared using the evaluation metricsof section 4.4.

7.3.4.1 Real versus simulated speech recognition

The real conversational environment used the ATK/HTK speech recognizer, and the

simulated one used a simulated speech recognition error model (see section 4.3). Recog-

nition results in terms of Keyword Error Rate (KER) for both environments were as

follows: 20% in the simulated environment and 29% in the realone. For confidence

scoring, the real environment showed confidence scores based on the probability den-

sity functions shown in Figure 7.3 (estimated from real databased on a normal density

function), and the simulated environment generated uniformly distributed random con-

fidence scores resulting in equal numbers of confidence levels. It can be observed that

simulation used a more conservative KER and different distributions of confidence

levels. This is because no training data was assumed, where the realistic probability

distributions for recognition errors and confidence scoring were unknown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

ASR Confidence Score

P
ro

ba
bi

lit
y

D
en

si
ty

Good Recognition
Bad Recognition

Figure 7.3: Probability density functions estimated from observed speech recognition

confidence scores of keywords in data collected by the CSTR travel planning system.

Previous work in Automatic Speech Recognition (ASR) simulation has assumed

that exponential probability distributions can model the behaviour of ASR confidence

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 154

scorers (Pietquin, 2004; Williams, 2006). This research found that this assumption

does not hold for the ASR system used here. Instead, thegamma probability dis-

tributions are suggested to simulate ASR confidence scores, which are more flexible

and include the exponential distribution. Thus, learnt dialogue policies in a second

stage can be retrained with more realistic ASR behaviour in order to generate poten-

tially even better policies. Nevertheless, it was found that even conservative ASR error

modelling was sufficient to find better dialogue policies than deterministic behaviour.

7.3.4.2 Real versus simulated user behaviour

Simulated user behaviour was compared against real user behaviour and against ran-

dom user behaviour (see 2.4 for a review on dialogue simulation). For such a purpose

three evaluation metrics were used: Precision-Recall based on the F-Measure score, di-

alogue similarity based on the Kulback-Leibler (KL) divergence, and Coherence Error

Rate (CER). They were applied following the descriptions ofsection 4.5. The objec-

tives of this evaluation were: (a) to observe if the simulated user model used to learn

the dialogue strategies was a reasonable thing to use, and (b) to validate that dialogue

realism could be distinguished by the proposed metrics (KL-divergence and CER).

This evaluation used three sets of user responses: (1) real user responses were ex-

tracted from annotated data from the realistic environment, consisting in 192 dialogues

including 4623 user utterances; (2) simulated coherent responses used algorithm 5 de-

scribed in section 4.3.1; and (3) simulated random responses used the same algorithm,

but user dialogue acts were chosen randomly (at line 12) and with a random sequence

of slots. It must be noted that all user responses (real, simulated coherent or simulated

random) were derived from machine dialogue acts in the real logged data, which al-

lows a more fair comparison. In addition, all user responseswere not distorted because

they were compared before speech recognition occurred.

Table 7.7 shows results of simulated user behaviour for two evaluation metrics:

Precision-Recall and KL-divergence. It can be seen that both metrics agreed in the

ranking of dialogue realism, including the proposed KL-divergence metric.

These results show that simulated coherent behaviour is more similar to real user

behaviour than simulated random behaviour. It can be observed that the Precision-

Recall of simulated coherent behaviour obtained higher scores than those reported be-

fore (Schatzmann et al., 2005b; Georgila et al., 2006), approaching the upper-bound

scores from real user behaviour. To further analyze precision-recall results, the average

of the more strict precision-recall ‘F-Measure’ was computed incrementally according

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 155

Table 7.7: Evaluation of real and simulated user behaviour with Precision-Recall in

terms of F-Measure (the higher the better) and KL-divergence (the lower the better).

Compared Dialogues
F-Measure

KL-divergence
less strict more strict

Real1 vs Real2 0.915 0.749 1.386

Real vs Simulated Coherent 0.708 0.612 4.281

Real vs Simulated Random 0.633 0.360 5.025

Simulated Coherent vs Simulated Random0.417 0.247 6.532

Notes: (1) The less strict F-Measure score considers a user response as a sequence of actions,

and the more strict score considers a user response as a single action, (2) the real dialogues

were divided into two subsets (’Real1’ and ’Real2’) to provide an upper-bound score, (3) KL-

divergence used Witten-Bell discounting to smooth the probability distributions.

to the size of the dialogue data. This is shown in Figure 7.4. It can be observed that the

more real dialogue data the higher the precision-recall. This is because precision-recall

is strictly penalizing unseen behaviour, and as more real data is observed, more varied

user responses per machine action are possible to match simulated responses.

0 50 100 150 200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

F
−

M
ea

su
re

Number of Dialogues

Simulated Coherent Responses
Simulated Random Responses

Figure 7.4: F-measures of real vs. simulated user responses in functionof the data

size, showing that the more real dialogue data is used, the higher the precision-recall.

In addition, the results in terms of Coherence Error Rate (CER) for real, simulated

and random responses were 8.23%, 2.99%, 30.10%, respectively. The user responses

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 156

with silences or incomplete dialogue acts were considered as incoherences because

whatever the user said (e.g. partial words, out-of-vocabulary words, mumbles, etc.),

no dialogue act could be extracted from the given utterance.It can be observed that

simulated coherent behaviour behaved very optimistically, that is not very different

from real user behaviour, and it is significantly different from the coherence of random

behaviour. This metric is interesting because it evaluatesa different perspective from

the existing metrics, it may be used as a complementary evaluation, and future work

may apply it to different data sets and domains to evaluate its significance.

7.3.4.3 Evaluating the baseline of machine dialogue behavi our

To evaluate the deterministic (hand-crafted) machine dialogue behaviour of the CSTR

travel planning spoken dialogue system, the evaluation metric called ‘Event Error Rate

(EvER)’ was used, defined by equation 4.13. For such a purpose, different confirma-

tion strategies were proposed in Table 4.13, aiming to find a reasonable baseline of

machine dialogue behaviour. The assumption here was that the confirmation strategy

with the lowest EvER would be the best baseline. Real data (all keywords with their

corresponding confidence scores) collected from the CSTR travel planning system was

used to compute EvER for such confirmation strategies, see Table 7.8. It can be seen

that the deterministic behaviour of choice in this research(Strategy3) indeed obtained

the lowest EvER, together with ‘Strategy4’. Although they obtained the same result,

the former is more attractive, due to its use of implicit confirmations because it leads

towards more efficient conversations. Therefore, it can be concluded that the learnt

dialogue strategies used in the CSTR travel planning dialogue system were compared

against a reasonable baseline of deterministic machine dialogue behaviour.

Table 7.8: Event Error Rate (EvER) results of real dialogues for confirmation strate-

gies of Table 4.13. Abbreviations: ca=correct acceptance,cc=correct confirmation,

cr=correct rejection, fa=false acceptance, fc=false confirmation, fr=false rejection.

Strategy ca(%) cc(%) cr(%) fa(%) fc(%) fr(%) EvER(%)

Strategy1 73.6 0 0 26.3 0 0 26.3

Strategy2 71.9 2.2 0 17.0 9.3 0 26.3

Strategy3 26.7 44.6 9.3 2.5 14.4 2.2 19.2

Strategy4 0 71.4 9.3 0 17.0 2.2 19.2

Strategy5 0 73.6 0 0 26.3 0 26.3

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 157

7.3.5 Do people want to talk to spoken dialogue systems?

During the experiments with the CSTR travel planning spokendialogue system – at

the end of each participant session, participants were asked the following question:

‘Would you use spoken dialogue systems for other tasks basedon this experience?’

Participants ranked their preference using a 5-point Likert scale, where the higher the

score, the better the satisfaction. Figure 7.5 shows the results from this question, which

is a combination of dialogue reward and preference for future use. It was noted that

only 12%(4) percent of participants were pessimistic in their future use, 56%(18) of

participants preferred to stay neutral, and 31%(10) were optimistic in its future use.

The scores in preference of future use per user type were 3.0 for novice users, 3.28 for

experienced users, and 3.2 for expert users (see p. 146 for proportions of user types).

To further analyze this, consider splitting the group of participants: the first group with

dialogue reward smaller than 80 and the rest in the second group. There was a 2.8 score

in preference of future use for the first group of participants against a 3.7 score for the

second group. Based on this result (significant atp = 0.006) it can be inferred thatthe

higher the dialogue reward the higher the preference for future use of dialogue systems.

This result can be related to the fact that dialogue strategies need high overall dialogue

rewards to gain wider acceptance by real users. This should motivate the speech and

language processing community to build more sophisticatedspoken dialogue systems.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Participant

D
ia

lo
gu

e
R

ew
ar

d

Strongly disagree
Disagree
Neither agree or disagree
Agree
Strongly agree

Figure 7.5: Scatter plot showing participants’ preference given the following question:

‘Would you use spoken dialogue systems for other tasks basedon this experience?’.

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 158

7.4 Discussion and future directions

This section discusses the following issues derived from the experimental results de-

scribed above: (1) coherent learnt dialogue behaviour, (2)unrealistic error simulation,

and (3) robust semantic knowledge updates.

Firstly, a danger of learnt dialogue strategies is that theymay yield incoherent be-

haviour, such as the fully-learnt behaviour reported in this thesis. This situation may

happen if the reward function does not penalize bad actions properly. The importance

of this issue increases as the dialogue system becomes larger, with more complex be-

haviours, where the avoidance of incoherent actions in fully-learnt behaviours is not

guaranteed. Therefore, this research suggests thatspoken dialogue strategies should

not only be optimal according to some performance measure, but also coherent

in their actions. The semi-learnt behaviour evaluated in this chapter ensured coherent

behaviour through the use of partially specified dialogue strategies.

Secondly, the simulated conversational environment that was used did not model

errors as in a real environment, which was to be expected due to the lack of training

data. Nonetheless, the experimental results provided evidence to conclude that this

heuristic-based dialogue simulation approach was useful for learning dialogue strate-

gies with superior performance compared with a reasonable baseline of deterministic

behaviour. This result is relevant for spoken dialogue systems in new domains, where

annotated dialogue data is not available. The simulated environment could be enhanced

with probability distributions estimated from real annotated data as in Schatzmann

et al. (2007b). However, due to the fact that collecting training data is costly and time

consuming, a potential for further research is to investigate methods for generalizing

simulated behaviours for spoken dialogue systems across different domains.

Thirdly, one of the most important limitations of this work was the lack of a robust

approach for updating slot values. Due to the fact that speech recognition hypotheses

may include errors, it was difficult to know when to update or reject the recognised

slot values. The effect of non-robust keyword updating is that the system eventually

gives the impression of forgetting what has been said before. This highlights the im-

portance of effective and efficient mechanisms for dialoguehistory tracking. Future

research can incorporate beliefs into the knowledge-rich states of the proposed frame-

work with ideas from approaches such as regression methods (Bohus and Rudnicky,

2005a), POMDPs (Roy et al., 2000; Williams, 2006), or Bayesian models (Horvitz and

Paek, 1999, 2000; Paek and Horvitz, 2000; Williams, 2007d; Thomson et al., 2008).

Chapter 7. A spoken dialogue system using hierarchical reinforcement learning 159

7.5 Conclusions

A spoken dialogue system was presented using hierarchical reinforcement learning

under the formalism of Semi-Markov decision processes, andits performance was

investigated for three different types of machine dialoguebehaviour: deterministic,

fully-learnt and semi-learnt.

Semi-learnt behaviour was quantitatively better than the other dialogue behaviours.

It achieved similar task success to deterministic behaviour (∼ 95%) and more efficient

conversations by using 9% fewer system turns, 12% fewer userturns, and 7% less time.

It also outperformed fully-learnt behaviour by 35% in termsof higher task success.

However, although fully-learnt behaviour resulted in inferior overall performance, it

cannot be discarded as a better alternative than hand-crafted behaviour. But it is less

flexible and less coherent than semi-learnt behaviour because it does not include a

mechanism to guarantee coherent actions, which is essential for successful dialogues.

On the other hand, whilst users did perceive significant qualitative differences between

fully-learnt behaviour and the other behaviours, they did not observe significant differ-

ences between deterministic and semi-learnt behaviours.

The key findings in this chapter can be summarized as follows:

(1) hierarchical semi-learnt dialogue agents are a better alternative (with higher

overall performance) than deterministic or fully-learnt behaviour;

(2) highly-coherent user behaviour and conservative recognition error rates (key-

word error rate of 20%) were sufficient for learning dialoguepolicies with supe-

rior performance to a reasonable hand-crafted behaviour;

(3) learnt dialogue agents should include a mechanism to guarantee coherent be-

haviour;

(4) hierarchical reinforcement learning dialogue agents are feasible and promising

for the (semi-) automatic design of optimized behaviours inlarger-scale spoken

dialogue systems.

Chapter 8

Conclusions and future work

This thesis investigated how to optimize the behaviour of information-seeking spo-

ken dialogue systems in a scalable and efficient way under thereinforcement learning

paradigm. It proposed two approaches for learning hierarchical dialogue strategies

based on the Semi-Markov Decision Process (SMDP) model. Thefirst approach used

a hierarchy of SMDPs that ignore irrelevant state variablesand actions, where the

root SMDP represents the entire dialogue session and its child SMDPs represent sub-

dialogues, and each child can have more descendants and so on, forming a hierarchy

of SMDPs. The second approach extends the previous one by including partially spec-

ified dialogue strategies to learn only where necessary, providing the actions available

per state for the current SMDP at runtime. It includes the HAM+HSMQ-Learning al-

gorithm to find a hierarchy of optimal context-independent policies. In addition, this

thesis proposed a heuristic dialogue simulation frameworkso that the reinforcement

learning agents could acquire their behaviour automatically. In contrast to other di-

alogue strategy learning approaches, this research suggested learning a hierarchy of

dialogue policies instead of a single one, simultaneously integrating hand-coded and

learnt behaviours into a single framework. Experimental results in simulated and real

environments provided evidence to conclude that both approaches scale well, and that

hierarchical reinforcement learning agents are feasible and promising for the (semi) au-

tomatic design of adaptive behaviours in larger-scale dialogue systems. However, the

second approach is more appealing with respect to dialogue as it outperforms hand-

coded behaviour, and is more suitable for online learning inreal environments.

The main contributions made by this thesis are: (1) the Semi-Markov Decision Pro-

cess (SMDP) model for spoken dialogue; (2) the concept of partially specified dialogue

strategies; and (3) the evaluation of learnt dialogue behaviours with real users.

160

Chapter 8. Conclusions and future work 161

8.1 Future work

This research suggests the following promising research avenues for endowing spoken

dialogue systems with optimized, adaptive, robust and scalable behaviours.

8.1.1 Hierarchical dialogue action under uncertainty

The spoken dialogue system investigated here used the first-best recognition and un-

derstanding hypotheses. It is well known that such hypotheses are prone to errors. An

important enhancement consists of keeping track of uncertain events such as recog-

nised words, current dialogue goal, and type of user. This suggests that system beliefs

need to be modelled at different levels of granularity. There are at least two approaches

that can be investigated for such a purpose. First, POMDP-based dialogue approaches

(Williams, 2006; Young et al., 2007; Henderson and Lemon, 2008) can be extended

with a hierarchical setting (Theocarous, 2002; Theocarouset al., 2004; Pineau, 2004).

Second, the approaches proposed in this thesis can be extended with an additional

probabilistic knowledge base (e.g. belief network) to maintain dialogue information

under uncertainty. This would help to balance the issues of robustness and scalability

into an integrated framework.

8.1.2 Learning more complex dialogue strategies

This thesis focused on optimizing confirmation strategies to keep their assessment sim-

ple rather than evaluating multiple dimensions. Nonetheless, there is a wide range of

optimized dialogue behaviours that can be incorporated into this kind of system. For

example: learning initiative strategies (Litman et al., 2000; Walker, 2000), learning to

give help (Frampton and Lemon, 2006), learning to ground (Pietquin, 2007), learn-

ing to present information (Rieser and Lemon, 2007), learning to clarify (Rieser and

Lemon, 2006a), learning to negotiate (English and Heeman, 2005), learning to recover

from errors (Bohus, 2007; Skantze, 2007; Frampton and Lemon, 2008), learning multi-

modal strategies (Rieser and Lemon, 2008), and learning to collaborate. The thorough

integration of all these behaviours into a single frameworkremains to be investigated.

This would require the support of learning on large search spaces – hence the impor-

tance of this topic. The underpinning ideas of the proposed approaches are appealing

for such a purpose. In general, the long-term goal is to buildspoken dialogue systems

with behaviours that approximate better to more natural conversations.

Chapter 8. Conclusions and future work 162

8.1.3 Learning reusable dialogue strategies

The proposed reinforcement learning algorithm and many other algorithms in the liter-

ature update values for each individual state-action pair.It would be useful if they could

apply such updates in more than one situation. The hierarchical nature of the proposed

approaches allows the reuse of complete dialogue policies,but the reuse of similar

behaviours remains to be investigated. Several approacheshave been proposed by ma-

chine learning researchers and they could be applied to spoken dialogue (Konidaris

and Barto, 2007; Asadi and Huber, 2007; Wilson et al., 2007; Taylor and Stone, 2007).

This is also known in the literature of reinforcement learning as ‘knowledge trans-

fer’. Methods with such capacity would increase the learning speed, and facilitate the

deployment of spoken dialogue systems with reusable dialogue behaviours.

8.1.4 Hierarchical dialogue control using function approx imation

The proposed approaches include support for tabular hierarchical reinforcement learn-

ing. However, if a given subtask is intractable (i.e. the state-action space becomes too

large and indecomposable) then alternative methods shouldbe adopted to make such

subtasks feasible. One of the most promising approaches reported in the literature of

reinforcement learning is that of function approximation.The approaches proposed

in this thesis could be combined with function approximators such as neural networks

or linear function approximation (Henderson et al., 2005).Furthermore, this research

avenue opens the possibility of learning spoken dialogue behaviours combining (sub)

solutions derived from different reinforcement learning approaches.

8.1.5 Safe dialogue state abstraction

In the proposed approaches the system designer has manuallyto remove irrelevant state

variables and actions for each subtask. This was essential for dramatically reducing

the state-action space. Although this is useful because it allows the system designer to

specify what to remove, it may become problematic if relevant information is removed,

leading to unsafe state abstraction. Therefore, it would beuseful to have a method

for performing state abstraction of dialogue information in a safer way (Dietterich,

1999; Andre and Russell, 2002; Jong and Stone, 2005). In addition, previous work on

dialogue-based feature selection can be extended with a hierarchical setting.

Chapter 8. Conclusions and future work 163

8.1.6 Hierarchy discovery of dialogue subtasks

In the proposed approaches the system designer has to specify the hierarchy of sub-

tasks manually. Although specifying hierarchies may be intuitive – such as writing the

structure of an object oriented program, it would be useful if the dialogue hierarchy

could be inferred from data or interactions with an environment. Such methods might

allow the finding of better hierarchies than the manually designed ones, although so far

they have been investigated only in small-scale navigationdomains (McGovern, 2002;

Hengst, 2003). The previous topic would offer useful results for such a purpose.

8.1.7 Hierarchical dialogue reward functions

The current practice of reinforcement learning for spoken dialogue uses a single reward

function. Although the proposed approaches in this thesis allowed the use of a differ-

ent reward function per subtask, the experimental setting used the same performance

function across the entire hierarchy. Intuitively, hierarchical dialogue optimizations

such as those described in subsection 8.1.2 may require different types of reward func-

tion at different levels of granularity. Moreover, as the dialogue complexity increases,

it becomes more difficult to specify such performance functions. It remains to be in-

vestigated how to specify or infer such hierarchical rewardfunctions once dialogue

data has been collected and annotated. The PARADISE evaluation framework may be

explored for this purpose (Walker, 2000).

8.1.8 Online dialogue strategy learning from real users

Currently available approaches for dialogue strategy learning – including the proposed

ones – learn behaviour in an offline fashion. This means that learnt behaviours are de-

rived either from simulated conversational environments or from collected dialogues.

An alternative approach is to (re) learn online from real human-machine interactions.

This research direction applied to large-scale systems would require very efficient

learning methods: the issue of coherent dialogue behaviourbecomes crucial, moreover

several of the previously proposed research avenues might help for such a purpose.

8.1.9 Task-independent dialogue simulation

The proposed approaches used a heuristic model for simulating human-machine di-

alogues. Alternative approaches train probabilistic simulation models from dialogue

Chapter 8. Conclusions and future work 164

data. However, every time a new spoken dialogue system is built, a new dialogue simu-

lator is required. A more practical approach would be to havea generic dialogue simu-

lator that can be used in systems for different domains. Suchkinds of simulator should

understand a wide range of behaviours with a common notationacross dialogue sys-

tems. Even if the previous research avenue becomes feasible, such simulators would

be useful for deploying behaviours with an initial optimization.

8.1.10 Richer knowledge representations

The knowledge representation in the proposed approaches isrudimentary and so limits

the expressive description of complex situations and actions, and may be more appro-

priate for other types of interaction such as negotiation orcollaborative dialogues in

human-robot interaction. The emerging field of relational reinforcement learning (Dze-

roski et al., 2001; Tadepalli et al., 2004) and hybrid approaches (Ryan, 2002) might be

investigated. Alternatively, the knowledge base of the proposed approaches could be

augmented not only with belief networks but also with hierarchical relational struc-

tures. This work could be based on an integrated knowledge base for robust and adap-

tive dialogue strategy learning of more complex conversations. In general, dialogue

knowledge representation is an important research topic for endowing reinforcement

learning spoken dialogue agents with robust and descriptive knowledge.

8.1.11 A benchmark framework for spoken dialogue strategie s

It is well known that the progress of spoken dialogue strategies is difficult to assess.

The lack of standards makes the comparison of new spoken dialogue strategies against

state-of-the-art ones difficult. Several computer sciencecommunities evaluate their

methods or agents on standardized software frameworks or resources. For instance,

the reinforcement learning community organizes the ‘Reinforcement Learning Com-

petition’1 to compare the performance of their methods. The robotics community or-

ganizes the ‘RoboCup Soccer Competition’2 to compare their methods embedded into

robots. The speech synthesis community organizes the ‘Blizzard Challenge’3 to com-

pare their techniques. Such kinds of initiative would be very valuable in assessing

progress for spoken dialogue research.

1http://rl-competition.org/
2http://www.robocup.org/
3http://festvox.org/blizzard/

http://rl-competition.org/
http://www.robocup.org/
http://festvox.org/blizzard/

Chapter 8. Conclusions and future work 165

8.2 Findings

The following findings were derived from this research:

(i) Hierarchical task decomposition with state-action abstraction reduces search

spaces dramaticallyAlthough this is not new, it confirms the claim that top-

down hierarchical control reduces the complexity of decision makers from expo-

nential to linear in the size of the problem. Experimental results in flight-booking

and travel planning systems report state-action space reductions of more than

99%. This highlights the importance of this approach for large-scale systems.

(ii) Hierarchical reinforcement learners find solutions fasterthan flat learners

This is derived from learning dialogue behaviours on reduced state-action spaces

rather than full ones. Experiments on a simulated spoken dialogue system in

the flight-booking domain reported that hierarchical reinforcement learning con-

verged roughly four orders of magnitude faster than flat reinforcement learning.

(iii) Hierarchical reinforcement learning agents find near-optimal solutionsThis

is not new either, but confirms the claim by machine learning researchers that hi-

erarchical reinforcement learners may find solutions with slight sub-optimalities.

Experiments on a flight-booking system report a small loss inoptimality of 0.3

more system turns than flat learning, resulting in slightly longer dialogues.

(iv) Hierarchical learnt dialogue strategies can outperform reasonable hand-

coded baselinesExperimental results report that hierarchical learnt dialogue

strategies are better than a reasonable hand-coded behaviour (this baseline out-

performed other hand-coded dialogue behaviours on real data). This was found

in both simulated and real conversational environments. However, the benefits in

the real environment were smaller than its counterpart due to the use of a simpler

simulated dialogue model for dialogue strategy learning.

(v) Semi-learnt dialogue policies are a good alternative to fully-learnt or de-

terministic behaviour Experimental results report the propensity of fully-learnt

behaviours to learn incoherent actions, possibly due to thefact that reward func-

tions do not penalize bad actions correctly. This problem isreduced in semi-

learnt behaviours because by learning only where necessary; even if they do not

explore the search space completely they will take coherentactions. Semi-learnt

Chapter 8. Conclusions and future work 166

behaviours are also appealing because they can find the best actions (according

to reward functions) that might not be easy to specify for a system designer.

(vi) Real users act with highly coherent behaviour at the dialogue act levelThe

experiments reported in this thesis reveal that real users in task-oriented con-

versations behaved coherently 92% of the time. This result rated the incoherent

user dialogue acts against all user dialogue acts, and can betaken into account

in simulating user behaviour.

(vii) Fully-coherent user behaviour and conservative recognition error rates are

sufficient for learning better policies than hand-coded behaviour The simu-

lated conversational environment employed in this research used fully-coherent

user behaviour and distorted user dialogue acts with 20% of recognition error

rates with a flat distribution. This setup was sufficient to learn a spoken dialogue

behaviour that was more efficient than a deterministic one.

(viii) Learnt dialogue policies should include a mechanism to guarantee coherent

behaviour Experimental results report that fully-learnt behaviour may not learn

the best actions per state, and possibly behave incoherently when testing the

learnt policy. This may be due to the following situations: (1) simple reward

functions; (2) insufficient exploration during learning; and (3) incorrect state

transitions. Experimental results confirm that the first situation (and potentially

the second as well) can be avoided by constraining the actions available to only

situation-action pairs that make sense to humans.

(ix) The proposed approaches can be applied to larger-scale dialogue systems

This research implemented a real spoken dialogue system in the travel planning

domain with five dialogue goals and 26 slots of information. This is the largest

scale spoken dialogue system so far (in terms of dialogue goals and slots) tested

using the reinforcement learning paradigm. Although it focused on optimizing

confirmation strategies, the proposed framework supports larger-scale systems

with a wider range of optimized behaviours, which is essential to build more

sophisticated conversational agents.

Appendix A

Notation

Table A.1: Notation for human-machine dialogue modelling.

Symbol Description

km
t Machine’s knowledge base at timet

ku
t Simulated user’s knowledge base at timet

πm Machine’s dialogue strategy

πu Simulated user’s dialogue strategy

sm
t Machine dialogue state at timet

wm
t Joint machine dialogue state at timet

su
t User dialogue state at timet

am
t Machine dialogue act at timet

au
t User dialogue act at timet

ãm Distorted machine dialogue act at timet

ãu Distorted user dialogue act at timet

xm
t Machine speech signals at timet

xu
t User speech signals at timet

wm
t Machine words at timet

wu
t User words at timet

cm
t Machine keywords at timet

cu
t User keywords at timet

(sm
t ,am

t ,su
t ,a

u
t) User-machine interaction at the dialogue act level

(sm
t ,Di

j) Sub-dialogue of user-machine interactions in statesm
t

D Dialogue of user-machine interactions

167

Appendix A. Notation 168

Table A.2: Notation for flat and hierarchical reinforcement learning.

Symbol Description

t Discrete time step

T Final time step

st State at timet

at Action at timet

rt Reward at timet

π Policy

π(s) Action taken in states

S Set of environment states

A(s) Set of all possible actions in states

P(s′|s,a) Probability of transition froms to s′ under actiona

R(s′|s,a) Expected reward for taking actiona in s transitioning tos′

Vπ(s) Value of statesunder policyπ
V∗(s) Value of statesunder optimal policyπ∗

Qπ(s,a) Value of taking actiona in states under policyπ
Q∗(s,a) Value of taking actiona in states under optimal policyπ∗

γ Discount rate parameter

α Step size parameter

τ Discrete multiple time-step

s̄n Abstract machine state at timen

M = {M0
0, ...,M

i
j} Hierarchy of Semi-Markov Decision Processes (modelj at leveli)

H = {H0
0 , ...,H i

j} Hierarchy of abstract machines (HAMj at leveli)

M ′ = {M
′0
0 , ...,M

′ j
j } Hierarchy of induced Semi-Markov Decision Processes (SMDPs)

M′ij =< S′ij ,A
′i
j ,T
′i
j ,R′ij > Induced Semi-Markov Decision Processes (modelj at leveli)

π = {π0
0, ...,π

i
j} Hierarchical policy

πi
j Policy for SMDP j at leveli

π∗ij Optimal policy for SMDPj at leveli

Si
j Set of environment states for SMDPMi

j

Ai
j Set of actions for SMDPMi

j

Pπi
j (s′,τ|s,a) Probability of transition froms to s′ undera lastingτ time steps

Rπi
j (s′,τ|s,a) Expected cumulative reward for taking actiona in s transitioning tos′

V∗ij (s) Value of statesunder optimal policyπ∗ij
Q∗ij (s,a) Value of taking actiona in states under optimal policyπ∗ij

γτ Discount rate for executing actiona lastingτ time steps

Appendix B

Dialogue data structures

The dialogue data structures described in this appendix have the purpose of represent-

ing knowledge about the conversation for the simulated userand machine. They are

referred to the human-machine dialogue simulation framework described in chapter 4.

The data structures are briefly described as follows.

• Table B.1 shows the classes used to build the knowledge base of the simulated

user. They are instantiated or re-initialized for each simulated conversation, and

were implemented with hash tables for fast information retrieval. These classes

are only used during simulation; on real conversations theyare ignored. Sec-

tion 4.3.1 explains how to use them.

• Table B.2 shows the classes used to build the machine’s knowledge base. They

are instantiated or re-initialized for each real or simulated conversation, and

were also implemented with hash tables. See also section 4.3.1 for how to use

them. These classes only included the first hypotheses of recognition and parsing

events; however, they can be updated from an additional probabilistic knowledge

base to mitigate uncertainty in the conversation.

• Tables B.3 and B.4 are used to generate the state-action space of the flight book-

ing dialogue system. This state representation only includes state variables for

flat dialogue optimization. Table 5.1 extends this set of state variables for hier-

archical dialogue optimization.

• Tables B.5, B.6, and B.7 are used to generate the state-action space of the travel

planning dialogue system. This state representation also includes state variables

for flat dialogue optimization. Table 5.2 extends this set ofstate variables for

dialogue optimization with a hierarchical setting.

169

Appendix B. Dialogue data structures 170

Table B.1: Description of dialogue-based classes to represent user knowledge.

Class Attribute Values

DialogueFocus
lastUserDA last user dialogue act

lastMachineDA last received machine dialogue act

goalInFocus current dialogue goalgi ∈G

frameInFocus current semantic framef j ∈ Fgi

slotInFocus current information slotck ∈Cgi
f j

DialogueAct

dialogueAct dialogue act type with slot-value pairs

dialogueActType [dialogue act types from table 4.1]

slotValues a set of slot-value pairs

DialogueGoal

goalID gi ∈G = {g0, ...,g|G|−1}

goalStatus {0=unfilled, 1=filled, 2=acknowledged, 3=relaxed}

frames a set of instances of the classSemanticFrame

SemanticFrame

frameID f j ∈ F = { f0, ..., f|F|−1}

frameStatus {0=unfilled, 1=filled, 2=confirmed, 3=relaxed}

frameType {non-terminal,terminal}

acknowledged {0=no, 1=yes}

slots a set of instances of the classSlot

Slot

slotID ci ∈C = {c0, ...,c|C|−1}

slotValue keyword of the users’s goal (e.g., flight/hotel/car)

slotStatus {0=unprovided, 1=provided, 2=reprovided

3=confirmed, 4=relaxed}

retries {0, 1, 2, 3}

explicitConfirmations {0, 1,...}

implicitConfirmations {0, 1,...}

Recognition

ker keyword error rate, default= 0.1

obedience probability of providing slot in focus, default= 0.8

multiSlotFilling probability of providing other slots, default= 0.4

negativeConfirmation probability of saying “no” in explicit confirm-

mations, without reproviding slots, default= 0.2

Appendix B. Dialogue data structures 171

Table B.2: Description of dialogue-based classes to represent machine knowledge.

Class Attribute Values

DialogueStatus
salutation {0=null, 1=greeted, 2=closed}

completion {0=non-started, 1=in-progress, 2=completed}

topicShift {0=none,1=pending}

infoPresentation {0=unprovided, 1=provided}

DialogueFocus
lastMachineDA last machine dialogue act

lastUserDA last received user dialogue act

goalInFocus current dialogue goalgi ∈G

frameInFocus current semantic framef j ∈ Fgi

slotInFocus current information slotck ∈Cgi
f j

grammarInFocus current grammar∈ { f lights,hotels,cars,yesno}

DialogueAct

dialogueAct dialogue act type with slot-value pairs

dialogueActType [dialogue act types from table 4.1]

slotValues a set of slot-value pairs

DialogueGoal ... [similarly as in table B.1]

SemanticFrame

frameID f j ∈ F = { f0, ..., f|F|−1}

frameStatus {0=unfilled, 1=filled, 2=confirmed, 3=relaxed}

frameType {initial,mandatory,optional,terminal}

acknowledged {0=no, 1=yes}

slots a set of instances of the classSlot

Slot

slotID ci ∈C = {c0, ...,c|C|−1}

slotValue keyword in the recognition dictionary

confScore speech recognition confidence score[0, ...,1]

slotStatus {0=unfilled, 1=low confidence (conf.),

2=medium conf., 3=high conf., 4=confirmed}

retries {0, 1, 2, 3}

explicitConfirmations {0, 1,...}

implicitConfirmations {0, 1,...}

Recognition

ker keyword error rate, default= 0.2

lowConfidence proportion of low confidence values, default= 1/3

medConfidence proportion of medium conf. values, default= 1/3

highConfidence proportion of high conf. values, default= 1/3

DatabaseInfo

dbQuery SQL statement

dbResult {0=null, 1=none, 2=few, 3=many}

dbTuples retrieved database tuples

Appendix B. Dialogue data structures 172

Table B.3: State variables for the 6-slot flight booking spoken dialogue system.

Variable Values Description

C00 {0,1,2,3,4} Status of mandatory slot ‘departure city’

C01 {0,1,2,3,4} Status of mandatory slot ‘destination city’

C02 {0,1,2,3,4} Status of mandatory slot ‘date’

C03 {0,1,2,3,4} Status of mandatory slot ‘time’

C04 {0,1,2,3,4} Status of optional slot ‘airline’

C05 {0,1,2,3,4} Status of termianl slot ‘flight offer’

SIF {0, ...,5} Slot in focus

DBT {1,2,3} Size of database tuples

Notes on domain values of state variables: C0?={0=unfilled, 1=low confidence, 2=medium

confidence, 3=high confidence, 4=confirmed}; SIF={0=departure city, 1=destination city,

2=date, 3=time, 4=airline, 5=flight offer}; DBT={1=none, 2=few, 3=many}.

Table B.4: Action space for the 6-slot flight booking spoken dialogue system.

Action Description

01 req Request slot in focus

02 apo+req Apology for mis-recognition + request slot in focus

03 sic+req Single implicit confirmation + request slot in focus

04 mic+req Multiple implicit confirmation + request slot in focus

05 sec Single explicit confirmation of the slot in focus

06 mec Multiple explicit confirmation of filled slots

07 acc Move to the next ascending slot with lower-value

(see example in the dialogue shown in page 35)

08 dbq+sta Perform a database query + inform the database status

09 pre+ofr Information presentation + offer options

10 apo+ofr Apology for mis-recognition + offer options

Appendix B. Dialogue data structures 173

Table B.5: Dialogue goals in the 26-slot travel planning spoken dialogue system.

Goal ID Description

G00 Metagoal for flight booking (outbound and return flights)

G01 Requests, offers, and acknowledges information for a outbound flight

G02 Requests, offers, and acknowledges information for a return flight

G03 Requests, offers, and acknowledges information for a hotelroom

G04 Requests, offers, and acknowledges information for a car

G05 Summarizes, offers and acknowledges information of flights, hotel and car

Table B.6: Action space for the 26-slot travel planning spoken dialogue system.

Action Description

01 req Request slot in focus

02 apo+req Apology for mis-recognition + request slot in focus

03 sic+req Single implicit confirmation + request slot in focus

04 mic+req Multiple implicit confirmation + request slot in focus

05 sec Single explicit confirmation of the slot in focus

06 mec Multiple explicit confirmation of filled slots

07 acc Move to the next ascending slot with lower-value

08 dbq+sta Perform a database query + inform the database status

09 pre+ofr Information presentation + offer options

10 apo+ofr Apology for mis-recognition + offer options

11 ofr Offer database options

12 rel Relax slots of dialogue goal in focus

13 ack Acknowledgement of dialogue goal in focus

14 gre Greeting

15 clo Good bye

Appendix B. Dialogue data structures 174

Table B.7: State variables for the 26-slot travel planning spoken dialogue system.

Variable Values Description

SAL {0,1,2} Status of salutation: null, greeting, closing

GIF {0,1,2,3,4,5} Dialogue goal in focus

SGF {0,1,2,3} Status of goal in focus

C00 {0,1,2,3,4} Status of mandatory slot ‘departure city’ of goal G01

C01 {0,1,2,3,4} Status of mandatory slot ‘destination city’ of goal G01

C02 {0,1,2,3,4} Status of mandatory slot ‘departure date’ of goal G01

C03 {0,1,2,3,4} Status of mandatory slot ‘departure time’ of goal G01

C04 {0,1,2,3,4} Status of mandatory slot ‘airline’ of goal G01

C05 {0,1,2,3,4} Status of mandatory slot ‘flight type’ of goal G01

C06 {0,1,2,3,4} Status of optional slot ‘airport’ of goal G01

C07 {0,1,2,3,4} Status of terminal slot ‘choice’ of goal G01

C15 {0,1,2,3,4} Status of mandatory slot ‘return date’ of goal G02

C16 {0,1,2,3,4} Status of mandatory slot ‘return time’ of goal G02

C17 {0,1,2,3,4} Status of terminal slot ‘choice’ of goal G02

C18 {0,1,2,3,4} Status of initial slot ‘want hotel’ of goal G03

C19 {0,1,2,3,4} Status of mandatory slot ‘location’ of goal G03

C20 {0,1,2,3,4} Status of mandatory slot ‘price’ of goal G03

C21 {0,1,2,3,4} Status of mandatory slot ‘brand’ of goal G03

C22 {0,1,2,3,4} Status of terminal slot ‘choice’ of goal G03

C23 {0,1,2,3,4} Status of initial slot ‘want car’ of goal G04

C24 {0,1,2,3,4} Status of mandatory slot ‘cat type’ of goal G04

C25 {0,1,2,3,4} Status of mandatory slot ‘location’ of goal G04

C26 {0,1,2,3,4} Status of mandatory slot ‘pickup date’ of goal G04

C27 {0,1,2,3,4} Status of mandatory slot ‘pickup time’ of goal G04

C28 {0,1,2,3,4} Status of mandatory slot ‘rental days’ of goal G04

C29 {0,1,2,3,4} Status of optional slot ‘rental company’ of goal G04

C30 {0,1,2,3,4} Status of terminal slot ‘choice’ of goal G04

C31 {0,1,2,3,4} Status of mandatory slot ‘want summary’ of goal G05

C32 {0,1,2,3,4} Status of terminal slot ‘book trip’ of goal G05

SIF {0, ...,7,16, ...,32} Slot in focus

DBT {0,1,2,3} Number of database tuples of current goal

PRE {0,1} Status of information presentation in goal

ACK {0,1} Status of acknowledgement for current goal

Notes on domain values of state variables: GIF={0=flight booking, 1=outbound flight,

2=return flight, 3=hotel booking, 4=car rental, 5=summarize trip}; SGF={0=unfilled, 1=filled,

2=confirmed, 3=relaxed}; the domain values of variables for slots are the same as in TableB.3.

Appendix C

Sample hierarchical dialogue

This appendix describes a real dialogue between a user and the CSTR travel plan-

ning spoken dialogue system using a semi-learnt hierarchical reinforcement learning

dialogue agent. This dialogue agent – optimized for efficient conversations – chooses

hierarchical actions with a divide and conquer approach, according to knowledge in the

hierarchical states1. The interested reader is referred to chapter 6 for more details about

semi-learnt hierarchical dialogue control, to chapter 4 for information about dialogue

acts, and to chapter 7 for information about the CSTR travel planning system.

Briefly, the hierarchical dialogue can be traced as follows:the machine is in the root

subtaskM′00 and state0,0,0,0,0,0, and selects the primitive actiongrecorresponding to

a greeting. Then in the same subtask the machine is in an updated state0,1,0,0,0,0,

where it selects the composite actionM′10 (in charge of booking flights), by invoking

this subtask the new dialogue state is1,0,0. Then it selects another composite action

M′20 (in charge of booking a single flight), and its initial state is 0,0,0,0,0. In this

subtask it selects the composite actionM′30 (in charge of collecting mandatory slots)

and its initial state is0,0,0,0,0,0,0, here the strategy selects actions for collecting slots

until finding the terminal state4,4,4,4,4,4,4. Once the subtask has been completed,

control returns to its parent subtaskM′20 with an updated state2,0,2,2,2. Here the state

was updated to ignore collecting optional slots and terminal slot. Then returns to its

parent subtaskM′10 with an updated state1,2,0, from which it calls the subtaskM′21
(in charge of booking the return flight). The strategy is now in the initial state0,0,0,0

and selects actionM′33 (in charge of collecting mandatory slots), once completingthat

subtask it returns control to its parent in order to select action M′34 , which completes

the return flight booking; and so on until the end of the conversation.

1The choice states constrain the actions to be available in the environment states.

175

A
ppendix

C
.

S
am

ple
hierarchicaldialogue

176

Table C.1: Real conversation in the CSTR travel planning spoken dialogue system using semi-learnt hierarchical dialogue control(PART 1).

Agent Subtask Env. State Choice State Action Dialogue Act Utterance

SYS M′00 0,0,0,0,0,0 choice1 gre gre() Welcome to the CSTR travel planning system.

M′00 0,1,0,0,0,0 choice2 M′10
M′10 1,0,0 choice4 M′20
M′20 0,0,0,0,0 choice5 M′30
M′30 0,0,0,0,0,0,0 choice8 req req(C00) Tell me your flight information.

USR pro(C05=return,C00=edinburgh, I would like a return flight from Edinburgh

C01=amsterdam,C02=january 22,to Amsterdam on january twenty second.

C03=morning)

ASR I would like a return flight from rome

go to Amsterdam on january twenty second.

SYS M′30 0,1,1,2,0,0,2 choice10 apo+req apo()+req(C00) Try again. Tell me your flight information.

For example you can say: a return flight from

Edinburgh to london leaving on the eighteenth

of november in the afternoon travelling with

British Airways.

USR pro(C05=return,C00=edinburgh, I a return flight from Edinburgh to Ams-

C01=amsterdam,C02=january 22terdam leaving on january twenty second

ASR I a return flight from Edinburgh to Amsterdam

leaving on january twenty second

SYS M′30 0,2,2,2,0,0,1 choice10 mec mec(C05=return,C00=edinburgh,Did you say a return flight from Edinburgh to

C01=amsterdam,C02=january 22)Amsterdam leaving on january twenty second?

USR con(C05=yes,C00=yes, Yes

C01=yes,C02=yes)

A
ppendix

C
.

S
am

ple
hierarchicaldialogue

177

Table C.2: Real conversation in the CSTR travel planning spoken dialogue system using semi-learnt hierarchical dialogue control(PART 2).

Agent Subtask Env. State Choice State Action Dialogue Act Utterance

ASR Yes

SYS M′30 3,4,4,4,0,0,4 choice8 req req(C03) At what time do you prefer to travel?

USR pro(C03=morning) In the morning

ASR In the morning

SYS M′30 3,4,4,4,2,0,4 choice9 sec sec(C03=morning) Did you say a flight in the morning?

USR con(C03=yes) Yes

ASR Yes

SYS M′30 4,4,4,4,4,0,4 choice8 req req(C04) What is your preferred airline?

USR pro(C04=british airways) British Airways

ASR British Airways

SYS M′30 4,4,4,4,4,2,4 choice9 sec sec(C04=british airways) Did you say a flight travelling with British

Airways?

USR con(C04=yes) Yes

ASR Yes

SYS M′30 4,4,4,4,4,4,4 [terminal state]

SYS M′20 2,0,2,2,2 [terminal state]

SYS M′10 1,2,0 choice4 M′21
SYS M′21 0,0,0,0 choice5 M′33
SYS M′33 15,0,0 choice8 req req(C15) When do you want to return?

USR pro(C15=february 01) January no february first

ASR January third in the morning Air France

A
ppendix

C
.

S
am

ple
hierarchicaldialogue

178

Table C.3: Real conversation in the CSTR travel planning spoken dialogue system using semi-learnt hierarchical dialogue control(PART 3).

Agent Subtask Env. State Choice State Action Dialogue Act Utterance

SYS M′33 15,2,1 choice10 mec mec(C15=january 03, Did you say a flight returning on january third

C16=morning) In the morning?

USR rep(C15=february 01) No a flight on february first

ASR No i flying on february first

SYS M′33 15,2,1 choice10 mec mec(C15=february 01, Did you say a flight returning on february

C16=morning) first in the morning?

USR pro(C16=evening) In the evening

ASR In the evening

SYS M′33 15,2,2 choice10 mec mec(C15=february 01, Did you say a flight returning on february

C16=morning) first in the evening?

USR con(C15=yes,C16=yes)Yes

ASR Yes

SYS M′33 15,4,4 [terminal state]

SYS M′21 0,0,2,0 choice5 dbq+sta Please wait while I retrieve information.

SYS M′21 2,0,2,0 choice5 M′34
SYS M′34 0,0,0,0 choice14 pre+ofr pre(db tuples)+ofr(C17) I found 2 return flights from Edinburgh to

Amsterdam with British Airways. Choice 1:

departing at six fourty five a.m. and arriving

at eleven twenty a.m. The return flight

departs at four fourty five p.m. and arrives

at seven fifty p.m. The price is 147 pounds

and 60 pence. Choice 2: departing at ten a.m.

A
ppendix

C
.

S
am

ple
hierarchicaldialogue

179

Table C.4: Real conversation in the CSTR travel planning spoken dialogue system using semi-learnt hierarchical dialogue control(PART 4).

Agent Subtask Env. State Choice State Action Dialogue Act Utterance

and arriving at three five p.m. The return

flight departs at four fourty five p.m. and

arrives at seven fifty p.m. The price is 152

pounds and 60 pence. Which choice do you

prefer?

USR pro(C17=one) Choice one

ASR Choice one

SYS M′34 0,0,1,2 choice15 sec sec(C17=one) Did you say choice one?

USR con(C17=yes) Yes

ASR Yes

SYS M′34 0,0,1,4 choice16 ack ack(G02) I have added this flight to your itinerary.

SYS M′34 1,0,1,4 [terminal state]

SYS M′21 2,0,2,2 choice5 [terminal state]

SYS M′10 2,2,2 choice4 [terminal state]

SYS M′00 3,1,2,0,0,0 choice2 M′22
SYS M′22 0,0,0,0,0 choice5 M′35
SYS M′35 0 choice6 req req(C18) Do you want a hotel in Amsterdam?

USR con(C18=yes) Yes

ASR Yes

SYS M′35 4 [terminal state]

SYS M′22 0,0,2,0,0 choice5 M′36

A
ppendix

C
.

S
am

ple
hierarchicaldialogue

180

Table C.5: Real conversation in the CSTR travel planning spoken dialogue system using semi-learnt hierarchical dialogue control(PART 5).

Agent Subtask Env. State Choice State Action Dialogue Act Utterance

SYS M′36 19,0,0,0 choice8 req req(C19) Tell me your hotel information.

USR pro(C20=cheap,C19=downtown) I would like a cheap hotel in downtown

ASR Yes

SYS M′36 19,2,3,0 choice10 mec mec(C20=cheap,C19=downtown)Did you say a cheap hotel in downtown?

USR con(C20=yes,C19=yes) Yes

ASR Yes

SYS M′36 21,4,4,0 choice8 req req(C21) What is your preferred hotel chain?

USR pro(C21=any hotel) Any hotel

ASR Any hotel

SYS M′36 21,4,4,2 choice9 sec sec(C21=any hotel) Did you say any hotel brand?

USR con(C21=yes) Yes

ASR Yes

SYS M′36 19,4,4,4 [terminal state]

SYS M′22 0,0,2,2,0 choice5 dbq+sta Please wait while I retrieve information.

SYS M′22 2,0,2,2,0 choice5 M′37
SYS M′37 0,0,0,0 choice14 pre+ofr pre(db tuples)+ofr(C22) I found 2 hotels in Amsterdam downtown.

Choice 1: Die Port Van Cleve, it is a 4 stars

hotel 0.1 kilometers from downtown. the price

per adult per night is 90 pounds and 78 pence.

Choice 2: Swissotel Amsterdam, it is a

4 stars hotel 0.2 kilometers from downtown.

the price per adult per night is 99 pounds and

A
ppendix

C
.

S
am

ple
hierarchicaldialogue

181

Table C.6: Real conversation in the CSTR travel planning spoken dialogue system using semi-learnt hierarchical dialogue control(PART 6).

Agent Subtask Env. State Choice State Action Dialogue Act Utterance

43 pence. Which choice do you prefer?

USR pro(C22=one) Choice one

ASR Choice one

SYS M′37 0,0,1,2 choice15 sec sec(C22=one) Did you say choice one?

USR con(C22=yes) Yes

ASR Yes

SYS M′37 0,0,1,4 choice16 ack ack(G03) I have added this hotel to your itinerary.

SYS M′37 1,0,1,4 [terminal state]

SYS M′22 2,0,2,2,2 [terminal state]

SYS M′00 4,1,2,2,0,0 M′23
SYS M′23 0,0,0,0,0,0 M′38
SYS M′38 0 choice6 req req(C23) Do you want a car in Amsterdam?

USR con(C23=yes) Yes

ASR Yes

SYS M′38 4 [terminal state]

SYS M′23 0,0,3,0,0,0 choice5 M′39
SYS M′39 24,0,0,0,0,0 choice8 req req(C24) Tell me your car information.

USR pro(C24=compact,C25=airport) I would like a compact car near the airport

ASR I would like a compact car near the airport

SYS M′39 24,2,2,0,0,0 choice10 mec mec(C24=compact,C25=airport)Did you say a compact car near the airport?

USR con(C24=yes,C25=yes) Yes

ASR Yes hertz

A
ppendix

C
.

S
am

ple
hierarchicaldialogue

182

Table C.7: Real conversation in the CSTR travel planning spoken dialogue system using semi-learnt hierarchical dialogue control(PART 7).

Agent Subtask Env. State Choice State Action Dialogue Act Utterance

SYS M′39 24,2,2,0,0,0 choice10 mec mec(C24=compact,C25=airport) Did you say a compact car near the airport?

USR con(C24=yes,C25=yes) Yes

ASR Yes

SYS M′39 26,4,4,0,0,0 choice8 req req(C26) When do you want to pick it up?

USR pro(C26=january 22,C27=07 pm) On january twenty second at seven p.m.

ASR I january twenty second at seven p.m.

SYS M′39 26,4,4,2,3,0 choice10 mec mec(C26=january 22,C27=07 pm)Did you say a car on january twenty second at

seven pm?

USR con(C26=yes,C27=yes) Yes

ASR Yes

SYS M′39 28,4,4,4,4,0 choice8 req req(C28) How many days do you want to rent it?

USR pro(C28=three) Three days

ASR Yes please

SYS M′39 28,4,4,4,4,0 choice8 req req(C28) How many days do you want to rent it? For

rep(C28=three) example you can say: a car for two days.

USR Three days

ASR Three days anyrental company

SYS M′39 28,4,4,4,4,2 choice9 sec sec(C28=three) Did you say a car for three days?

USR con(C28=yes) Yes

ASR Yes

A
ppendix

C
.

S
am

ple
hierarchicaldialogue

183

Table C.8: Real conversation in the CSTR travel planning spoken dialogue system using semi-learnt hierarchical dialogue control(PART 8).

Agent Subtask Env. State Choice State Action Dialogue Act Utterance

SYS M′39 24,4,4,4,4,4 [terminal state]

SYS M′23 0,0,2,2,0,0 choice5 M′3A
SYS M′3A 2 choice12 sec sec(C29=anycompany) Did you say a car rented from any rental

company?

USR con(C29=yes) Yes

ASR Yes

SYS M′3A 4 [terminal state]

SYS M′23 0,0,2,2,2,0 choice5 dbq+sta Please wait while I retrieve information.

SYS M′23 2,0,2,2,2,0 choice5 M′3B
SYS M′3B 0,0,0,0 choice14 pre+ofr pre(db tuples)+ofr(C30) I found 2 compact cars in Amsterdam airport

rented from auto Europe. Choice 1: the price

per day is 60 pounds and 8 pence. Choice 2:

the price per day is 81 pounds and 13 pence.

Which choice do you prefer?

USR pro(C30=two) Choice two

ASR Choice two

SYS M′3B 0,0,1,2 choice15 sec sec(C30=two) Did you say choice two?

USR con(C30=yes) Yes

ASR Yes

SYS M′3B 0,0,1,4 choice16 ack ack(G04) I have added this car to your itinerary.

SYS M′3B 1,0,1,4 [terminal state]

SYS M′23 2,0,2,2,2,2 [terminal state]

A
ppendix

C
.

S
am

ple
hierarchicaldialogue

184

Table C.9: Real conversation in the CSTR travel planning spoken dialogue system using semi-learnt hierarchical dialogue control(PART 9).

Agent Subtask Env. State Choice State Action Dialogue Act Utterance

SYS M′00 5,1,2,2,2,0 choice2 M′24
SYS M′24 0,0,0,0 choice5 M′3C
SYS M′3C 0 choice8 req req(C31) Do you want a summary of your trip?

USR con(C31=yes) Yes

ASR Yes

SYS M′3C 4 [terminal state]

SYS M′24 0,0,2,0 choice5 dbq+sta Let me retrieve your information.

SYS M′24 2,0,2,0 choice5 M′3D
SYS M′3D 0,0,0,0 choice14 pre+ofr pre(db tuples)+ofr(C32) All right. You have a flight from Edinburgh to

Amsterdam with British Airways on january

twenty second departing at six fourty five

a.m. and arriving at eleven twenty a.m. It

returns on february first departing at four

forty five p.m. and arriving at seven fifty

p.m. It costs 147 pounds and 60 pence. In

Amsterdam you have a single bedroom in the

Die Port Van Cleve downtown hotel. It costs

90 pounds and 78 pence per night. Also you

have a compact car in Amsterdam airport with

auto Europe for three days. It costs 81 pounds

and 13 pence per day. The total cost of your

travel is 1 thousand 208 pounds and 1 pence.

A
ppendix

C
.

S
am

ple
hierarchicaldialogue

185

Table C.10: Real conversation in the CSTR travel planning dialogue system using semi-learnt hierarchical dialogue control (PART 10).

Agent Subtask Env. State Choice State Action Dialogue Act Utterance

Do you want to book this trip?

USR con(C32=yes) Yes

ASR Yes

SYS M′3D 0,0,1,4 choice16 ack ack(G05) All right, your trip has been booked.

SYS M′3D 1,0,1,4 [terminal state]

SYS M′24 2,0,2,2 [terminal state]

SYS M′00 5,1,2,2,2,2 choice3 clo clo() Thanks for calling the CSTR travel planning

system. Good bye!

SYS M′00 5,2,2,2,2,2 [terminal state]

Abbreviations:

SYS=CSTR travel planning spoken dialogue system

CSTR=Centre for speech technology research

USR=Participant in the evaluation of the dialogue system

ASR=Automatic speech recognition hypothesis

M′ij =Induced dialogue subtask

Env. State=Environment state in SMDPMi
j

Choice State=Choice state in HAM for the current subtask

SMDP=Semi-Markov decision process

HAM=Hierarchical abstract machine

References

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu,L., and Stent, A. (2001a).

Towards conversational human-computer interaction.AI Magazine, 22(4):27–37.

Allen, J., Ferguson, G., and Stent, A. (2001b). An architecture for more realistic

conversational systems. InIntelligent User Interfaces Conference (IUI), pages 1–8,

Santa Fe, NM, USA.

Andre, D. (2003).Programmable Reinforcement Learning Agents. PhD thesis, Uni-

versity of California at Berkeley.

Andre, D. and Russell, S. (2000). Programmable reinforcement learning agents.

In Neural Information Processing Systems Conference (NIPS), pages 1019–1025,

Cambridge, MA.

Andre, D. and Russell, S. (2002). State abstraction for programmable reinforcement

learning agents. InAAAI Conference on Artificial Intelligence, pages 119–125, Al-

berta, Canada.

Asadi, M. and Huber, M. (2007). Effective control knowledgetransfer through learning

skill and representation hierarchies. InInternational Joint Conference on Artificial

Intelligence (IJCAI), pages 2054–2059, Hyderabad, India.

Atrash, A. and Pineau, J. (2006). Efficient planning and tracking in POMDPs with

large observation spaces. InAAAI Workshop on Statistical and Empirical Ap-

proaches for Spoken Dialogue Systems, pages 7–12, Boston, MA, USA.

Austin, J. (1962).How to Do Things with Words. Cambridge University Press.

Barto, A. and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement

learning. Discrete Event Dynamic Systems: Theory and Applications, 13(1-2):41–

77.

186

References 187

Benson, S. and Nilsson, N. (1996).Machine Intelligence 14: Applied Machine Intel-

ligence, chapter Reacting, Planning and Learning in an Autonomous Agent, pages

29–62. Oxford University Press.

Bertsekas, D. and Tsitsiklis, J. (1996).Neuro-Dynamic Programming. Athena Scien-

tific.

Bohus, D. (2007).Error Awareness and Recovery in Task-Oriented Spoken Dialog

Systems. PhD thesis, Carnegie Mellong University.

Bohus, D. and Rudnicky, A. (2003). Ravenclaw: Dialogue management using hier-

archical task decomposition and an expectation agenda. InEuropean Conference

on Speech Communication and Technology (Eurospeech), pages 597–600, Geneva,

Switzerland.

Bohus, D. and Rudnicky, A. (2005a). Constructing accurate beliefs in spoken dialogue

systems. InIEEE Workshop on Automatic Speech Recognition and Understanding

(ASRU), pages 272–277, San Juan, Puerto Rico.

Bohus, D. and Rudnicky, A. (2005b). Sorry, i didn’t catch that! - an investigation of

non-understanding errors and recovery strategies. InWorkshop on Discourse and

Dialogue (SIGDIAL), pages 128–143, Lisbon, Portugal.

Bohus, D. and Rudnicky, A. (2006). A ’K hypothesis + other’ belief updating model.

In AAAI Workshop on Statistical and Empirical Approaches for Spoken Dialogue

Systems, pages 13–18, Boston, MA, USA.

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision theoretic planning: Structural

assumptions and computational leverage.Journal of Artificial Intelligence Research,

11(1):1–94.

Bradtke, S. and Duff, M. (1994). Reinforcement learning methods for continuous-time

Markov decision processes. InNeural Information Processing Systems Conference

(NIPS), pages 393–400, Denver, CO, USA.

Cheyer, A. and Martin, D. (2001). The open agent architecture.Journal of Autonomous

Agents and Multi-Agent Systems, 4(1-2):143–148.

Chu-Carroll, J. (1999). Form-based reasoning for mixed-initiative dialogue manage-

ment in information-query systems. InEuropean Conference on Speech Communi-

cation and Technology (Eurospeech), pages 1519–1522, Budapest, Hungry.

References 188

Chu-Carroll, J. and Nickerson, J. (2000). Evaluating automatic dialogue strategy adap-

tation for a spoken dialogue system. InNorth American Chapter of the Association

for Computational Linguistics (NAACL), pages 202–209, Seattle, WA.

Chung, G. (2004). Developing a flexible spoken dialog systemusing simulation.

In International Conference on Computational Linguistics (ACL), pages 63–70,

Barcelona, Spain.

Clark, H. (1996).Using Language. Cambridge University Press.

Cuayáhuitl, H., Renals, S., Lemon, O., and Shimodaira, H. (2005). Human-computer

dialogue simulation using hidden Markov models. InIEEE Workshop on Automatic

Speech Recognition and Understanding (ASRU), pages 290–295, San Juan, Puerto

Rico.

Cuayáhuitl, H., Renals, S., Lemon, O., and Shimodaira, H. (2006a). Learning dia-

logue strategies using reinforcement learning with reduced state-action spaces. In

INTERSPEECH, pages 469–472, Pittsburgh, PA, USA.

Cuayáhuitl, H., Renals, S., Lemon, O., and Shimodaira, H. (2006b). Reinforcement

learning of dialogue strategies using hierarchical abstract machines. InIEEE Work-

shop on Spoken Language Technology (SLT), pages 182–185, Palm Beach, Aruba.

Cuayáhuitl, H., Renals, S., Lemon, O., and Shimodaira, H. (2007). Hierarchical di-

alogue optimization using semi-Markov decision processes. In INTERSPEECH,

pages 2693–2696, Antwerp, Belgium.

Currie, K. and Tate, A. (1991). O-plan: the Open planning architecture. Artificial

Intelligence, 52(1):49–86.

Dayan, P. and Hinton, G. (1992). Feudal reinforcement learning. InNeural Information

Processing Systems Conference (NIPS), pages 271–278, San Francisco, CA, USA.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets.Jour-

nal of Machine Learning Research, 7:1–30.

Denecke, M., Dohsaka, K., and Nakano, M. (2004). Fast reinforcement learning of

dialogue policies using stable function approximation. InInternational Joint Con-

ference on Natural Language Processing (IJCNLP), pages 1–11, Jeju, Korea.

References 189

Dietterich, T. (1999). State abstraction in MAXQ hierarchical reinforcement learn-

ing. InNeural Information Processing Systems Conference (NIPS), pages 994–1000,

Denver, CO, USA.

Dietterich, T. (2000a). Hierarchical reinforcement learning with the MAXQ value

function decomposition.Journal of Artificial Intelligence Research, 13(1):227–303.

Dietterich, T. (2000b). An overview of MAXQ hierarchical reinforcement learning.

In Symposium on Abstraction, Reformulation, and Approximation (SARA), pages

26–44, HorseshoeBay, TX, USA.

Dzeroski, S., Raedt, L., and Driessens, K. (2001). Relational reinforcement learning.

Machine Learning, 43:7–52.

Eckert, W., Levin, E., and Pieraccini, R. (1997). User modeling for spoken dialogue

system evaluation. InIEEE Workshop on Automatic Speech Recognition and Un-

derstanding (ASRU), pages 80–87, Santa Barbara, CA, USA.

English, M. and Heeman, P. (2005). Learning mixed initiative dialogue strategies by

using reinforcement learning on both conversants. InHuman Language Technology

Conference (HLT), pages 1011–1018, Vancouver, Canada.

Filisko, E. and Seneff, S. (2005). Developing city name acquisition strategies in spoken

dialogue systems via user simulation. InWorkshop on Discourse and Dialogue

(SIGDIAL), pages 144–155, Lisbon, Portugal.

Filisko, E. and Seneff, S. (2006). Learning decision modelsin spoken dialogue systems

via user simulation. InAAAI Workshop on Statistical and Empirical Approaches for

Spoken Dialogue Systems, pages 19–24, Boston, MA, USA.

Foka, A. and Trahanias, P. (2007). Real-time hierarchical POMDPs for autonomous

robot navigation.Robotics and Autonomous Agents, 55(7):561–571.

Frampton, M. and Lemon, O. (2005). Reinforcement learning of dialogue strategies

using the user’s last dialogue act. InWorkshop on Knowledge and Reasoning in

Practical Dialogue Systems (IJCAI), pages 83–90, Edinburgh, Scotland.

Frampton, M. and Lemon, O. (2006). Learning more effective dialogue strategies us-

ing limited dialogue move features. InInternational Conference on Computational

Linguistics (ACL), pages 185–192, Sydney, Australia.

References 190

Frampton, M. and Lemon, O. (2008). Using dialogue acts to learn better repair strate-

gies for spoken dialogue systems. InIEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), pages 5045–5048, Las Vegas, NV, USA.

Gasic, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., Yu, K., and Young,

S. (2008). Training and evaluation of the HIS POMDP dialoguesystem in noise.

In Workshop on Discourse and Dialogue (SIGDIAL), pages 112–119, Columbus,

Ohio, USA.

Georgila, K., Henderson, J., and Lemon, O. (2005a). Learning user simulations for

information state update dialogue systems. InINTERSPEECH, pages 893–896, Lis-

bon, Portugal.

Georgila, K., Henderson, J., and Lemon, O. (2006). User simulation for spoken dia-

logue systems: Learning and evaluation. InINTERSPEECH, pages 267–659, Pitts-

burgh, PA, USA.

Georgila, K., Lemon, O., and Henderson, J. (2005b). Automatic annotation of com-

municator dialogue data for learning dialogue strategies and user simulations. In

Workshop on the Semantics and Pragmatics of Dialogue (DIALOR), Nancy, France.

Ghavamzadeh, M. and Mahadevan, S. (2001). Continuous-timehierarchical reinforce-

ment learning. InInternational Conference on Machine Learning (ICML), pages

186–193, Williams College, MA, USA.

Ghavamzadeh, M. and Mahadevan, S. (2007). Hierarchical average reward reinforce-

ment learning.Journal of Machine Learning Research, 8:2629–2669.

Goddeau, D., Meng, H., Polifroni, J., Seneff, S., and Busayapongchai, S. (1996). A

form-based dialogue manager for spoken language applications. In International

Conference on Speech and Language Processing (ICSLP), pages 701–704, Philadel-

phia, PA, USA.

Goddeau, D. and Pineau, J. (2000). Fast reinforcement learning of dialogue strate-

gies. InIEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), pages II1233–II1236, Istambul, Turkey.

Gordon, G. (2000). Reinforcement learning with function approximation converges

to a region. InNeural Information Processing Systems Conference (NIPS), pages

1040–1046, Denver, CO, USA.

References 191

Grosz, B. and Sidner, C. (1986). Attention, intentions and the structure of discourse.

Computational Linguistics, 12(3):175–204.

Gruber, T. (1993). Toward principles for the design of ontologies used for knowledge

sharing.International Journal of Human-Computer Studies, 43(5-6):907–928.

Hansen, E. and Zhou, R. (2003). Synthesis of hierarchical finite-state controllers for

POMDPs. InInternational Conference on Automated Planning and Scheduling

(ICAPS), pages 113–122, Trento, Italy.

Heeman, P. (2007). Combining reinforcement learning with information-state up-

date rules. InHuman Language Technology Conference (HLT), pages 268–275,

Rochester, NY, USA.

Henderson, J. and Lemon, O. (2008). Mixture model POMDPs forefficient handling of

uncertainty in dialogue management. InInternational Conference on Computational

Linguistics (ACL), pages 73–76, Columbus, Ohio, USA.

Henderson, J., Lemon, O., and Georgila, K. (2005). Hybrid reinforcement/supervised

learning for dialogue policies from communicator data. InWorkshop on Knowledge

and Reasoning in Practical Dialogue Systems (IJCAI), pages 68–75, Edinburgh,

Scotland.

Henderson, J., Lemon, O., and Georgila, K. (2008). Hybrid reinforcement/supervised

learning of dialogue policies from from fixed data sets. volume 34, pages 487–511.

Hengst, B. (2003).Discovering Hierarchy in Reinforcement Learning. PhD thesis,

University of New South Wales.

Horvitz, E. and Paek, T. (1999). A computational architecture for conversation. In

International Conference on User Modelling (UM), pages 201–210, Banff, Canada.

Horvitz, E. and Paek, T. (2000). Deeplistener: Harnessing expected utility to guide

clarification dialog in spoken language systems. InInternational Conference on

Speech and Language Processing (ICSLP), pages 226–229, Beiging, China.

Howard, R. (1971).Dynamic Probabilistic Systems: Semi-Markov and Decision Pro-

cesses (Volume II). Dover Publications, Inc.

Huang, X., Acero, A., and Hon, H. (2001).Spoken Language Processing: A Guide to

Theory, Algorithm, and System Development. Prentice Hall.

References 192

Hurtado, L., Griol, D., Sanchis, E., and Segarra, E. (2007).A statistical user simula-

tion technique for the improvement of a spoken dialog system. In Iberoamerican

Congress on Pattern Recognition (CIARP), pages 743–752, Viña del Mar, Chile.

Jaakkola, T., Jordan, M., and Singh, S. (1994). Oh the convergence of stochastic

iterative dynamic programming algorithms.Neural Computation, 6(6):1185–1201.

Jong, N. and Stone, P. (2005). State abstraction discovery from irrelevant state vari-

ables. InInternational Joint Conference on Artificial Intelligence(IJCAI), pages

752–757, Edinburgh, Scotland.

Jonsson, A. (2008).Hierarchical Decomposition in Reinforcement Learning. VDM

Verlag Dr. Muller.

Jonsson, A. and Barto, A. (2000). Automated state abstraction for options using the

U-Tree algorithm. InNeural Information Processing Systems Conference (NIPS),

pages 1054–1060, Denver, CO, USA.

Jurafsky, D. and Martin, J. (2008).An Introduction to Natural Language Processing,

Computational Linguistics, and Speech Recognition. Prentice Hall.

Kaelbling, . (1993). Hierarchical reinforcement learning: Preliminary results. InInter-

national Conference on Machine Learning (ICML), pages 167–163, San Francisco,

CA, USA.

Kaelbling, L., Littman, M., and Cassandra, A. (1998). Planning and acting in partially

observable stochastic domains.Artificial Intelligence, 101:99–134.

Kaelbling, L., Littman, M., and Moore, A. (1996). Reinforcement learning: A survey.

Journal of Artificial Intelligence Research, 4:237–285.

Karlsson, R. (1997).Learning to Solve Multiple Goals. PhD thesis, University of

Rochester.

Konidaris, G. and Barto, A. (2007). Building portable options: Skill transfer in re-

inforcement learning. InInternational Joint Conference on Artificial Intelligence

(IJCAI), pages 895–900, Hyderabad, India.

Larsson, S. and Traum, D. (2000). Information state and dialogue management in the

TRINDI dialogue move engine toolkit.Natural Language Engineering, 5(3-4):323–

340.

References 193

Lemon, O., Georgila, K., and Henderson, J. (2006a). Evaluating efectiveness and

portability of reinforcement learned dialogue strategieswith real users: The TALK

TownInfo evaluation. InIEEE Workshop on Spoken Language Technology (SLT),

pages 178–181, Palm Beach, Aruba.

Lemon, O., Kallirroi, G., and Stuttle, M. (2005). D4.2: Showcase exhibiting reinforce-

ment learning for dialogue strategies in the in-car domain.Technical Report Talk

Project, Deliverable 4.2, University of Edinburgh.

Lemon, O., Liu, X., Shapiro, D., and Tollander, C. (2006b). Hierarchical reinforce-

ment learning of dialogue policies in a development environment for dialogue sys-

tems: REALL-DUDE. InWorkshop on the Semantics and Pragmatics of Dialogue

(BRANDIAL), pages 185–186, Postdam, Germany.

Levin, E. and Pieraccini, R. (1997). A stochastic model of computer-human interaction

for learning dialog strategies. InEuropean Conference on Speech Communication

and Technology (Eurospeech), pages 1883–1886, Rhodes, Greece.

Levin, E., Pieraccini, R., and Eckert, W. (1998). Using Markov decision process for

learning dialog strategies. InIEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), pages 201–204, Istanbul, Turkey.

Levin, E., Pieraccini, R., and Eckert, W. (2000). A stochastic model of human machine

interaction for learning dialog strategies.IEEE Transactions on Speech and Audio

Processing, 8(1):11–23.

Lin, B. and Lee, L. (2001). Computer-aided analysis and design for spoken dialogue

systems based on quantitative simulations.IEEE Transactions on Speech and Audio

Processing, 8(5):534–548.

Litman, D. and Allen, J. (1987). A plan recognition model forsubdialogues in conver-

sations.Cognitive Science, 11:163–200.

Litman, D., Kearns, M., Singh, S., and Walker, M. (2000). Automatic optimization of

dialogue management. InInternational Conference on Computational Linguistics

(COLING), pages 502–508, Saarbrucken, Germany.

Litman, D. and Pan, S. (2002). Designing and evaluating an adaptive spoken dialogue

system.User Modeling and User-Adapted Interaction, 12(2/3):111–137.

References 194

López-Cózar, R., Callejas, Z., and McTear, M. (2008). Testing the performance of spo-

ken dialogue systems by means of an artificial user.Artificial Intelligence Review,

26(4):291–323.

López-Cózar, R., De la Torre, A., Segura, J., and Rubio, J.(2003). Assessment of

dialogue systems by means of a new simulation technique.Speech Communication,

40(3):387–407.

Mahadevan, S., Ghavamzadeh, M., Rohanimanesh, K., and Theocarous, G. (2004).

Handbook of Learning and Approximate Dynamic Programming, chapter Hierar-

chical Approaches to Concurrency, Multiagency, and Partial Observability, pages

285–310. John Wiley & Sons.

Mahadevan, S., Marchalleck, N., Das, T., and Gosavi, A. (1997). Self-improving

factory simulation using continuous-time average-rewardreinforcement learning. In

International Conference on Machine Learning (ICML), pages 202–210, Nashville,

TN, USA.

Makar, R. and Mahadevan, S. (2001). Hierarchical multi-agent reinforcement learn-

ing. In International Conference on Autonomous agents (Agents), pages 246–253,

Montreal, Canada.

Marthi, B. (2006). Concurrent Hierarchical Reinforcement Learning. PhD thesis,

University of California at Berkeley.

Marthi, B., Russell, S., and Andre, D. (2006). A compact, hierarchical Q-function

decomposition. InConference on Uncertainty in Artificial Intelligence (UAI), Cam-

bridge, MA, USA.

Marthi, B., Russell, S., Latham, D., and Guestrin, C. (2005). Concurrent hierarchical

reinforcement learning. InInternational Joint Conference on Artificial Intelligence

(IJCAI), pages 779–785, Edinburgh, Scotland.

McGovern, A. (2002).Autonomous Discovery of Temporal Abstractions from Interac-

tion with an Environment. PhD thesis, University of Massachusetts Amherst.

McTear, M. (1998). Modelling spoken dialogues with state transition diagrams: Expe-

riences with the CSLU toolkit. InInternational Conference on Speech and Language

Processing (ICSLP), pages 1223–1226, Sidney, Australia.

References 195

McTear, M. (2004).Spoken Dialogue Technology: Toward the Conversational User

Interface. Springer.

Mitchell, T. (2004).Machine Learning. McGraw-Hill.

Moriarty, D., Schultz, A., and Grefenstette, J. (1999). Evolutionary algorithms for

reinforcement learning.Journal of Artificial Intelligence Research, 11:241–276.

Nilsson, N. (1994). Teleo-reactive programs for agent control. Journal of Artificial

Intelligence Research, 1:139–158.

Ohta, M., Kumada, Y., and Noda. (2003). Using suitable action selection rule in rein-

forcement learning. InIEEE International Conference on Systems, Man and Cyber-

netics, pages 4358–4363, Washington, DC, USA.

Paek, T. (2006). Reinforcement learning for spoken dialogue systems: Comparing

strengths and weaknesses for practical deployment. InWorkshop on Dialogue on

Dialogues - Multidisciplinary Evaluation of Advanced Speech-based Interacive Sys-

tems (INTERSPEECH), Pittsburgh, PA, USA.

Paek, T. and Chickering, D. M. (2005). The Markov assumptionin spoken dialogue

management. InWorkshop on Discourse and Dialogue (SIGDIAL), pages 35–44,

Lisbon, Portugal.

Paek, T. and Horvitz, E. (2000). Conversation and action under uncertainty. InConfer-

ence on Uncertainty in Artificial Intelligence (UAI), pages 455–464, San Francisco,

CA, USA.

Paek, T. and Pieraccini, R. (2008). Automating spoken dialogue management design

using machine learning: An industry perspective. volume 50, pages 716–729.

Parr, R. (1998).Hierarchical Control and Learning for Markov Decision Processes.

PhD thesis, University of California at Berkeley.

Parr, R. and Russell, S. (1997). Reinforcement learning with hierarchies of machines.

In Neural Information Processing Systems Conference (NIPS), pages 1043–1049,

Denver, CO, USA.

Pieraccini, R., Caskey, S., Dayanidhi, K., Carpenter, B., and Phillips, M. (2001).

ETUDE, a recursive dialogue manager with embedded user interface patterns. In

References 196

IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),

pages 244–247, Madonna di Campiglio, Italy.

Pietquin, O. (2004).A Framework for Unsupervised Learning of Dialogue Strategies.

PhD thesis, Faculté Polytechnique de Mons.

Pietquin, O. (2006). Consistent goal-directed user model for realistic man-machine

task-oriented spoken dialogue simulation. InIEEE International Conference on

Multimedia and Expo, pages 425–428, Toronto, Canada.

Pietquin, O. (2007). Learning to ground in spoken dialogue systems. InIEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages

165–168, Hawaii, USA.

Pietquin, O. and Dutoit, T. (2006). A probabilistic framework for dialogue simulation

and optimal strategy learning.IEEE Transactions on Speech and Audio Processing,

14(2):589–599.

Pietquin, O. and Renals, S. (2002). ASR system modeling for automatic evaluation and

optimization of dialogue systems. InIEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), pages 46–49, Orlando, FL, USA.

Pineau, J. (2004).Tractable Planning Under Uncertainty: Exploiting Structure. PhD

thesis, Carnegie Mellon University.

Pineau, J., Gordon, G., and Thrun, S. (2006). Anytime point-based approximations for

large POMDPs.Journal of Artificial Intelligence Research, 27:335–380.

Pineau, J., Roy, N., and Thrun, S. (2001). A hierarchical approach to POMDP planning

and execution. InWorkshop on Hierarchy and Memory in Reinforcement Learning

(ICML), William College, Massachusetts.

Precup, D. (2000).Temporal Abstraction in Reinforcement Learning. PhD thesis,

University of Massachusetts Amherst.

Prommer, T., Holzapfel, H., and Waibel, A. (2006). Rapid simulation-driven rein-

forcement learning of multimodal dialog strategies in human-robot interaction. In

INTERSPEECH, pages 1918–1921, Pittsburgh, PA, USA.

Putterman, M. (1994).Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons.

References 197

Reichman, R. (1978). Conversational coherency.Cognitive Science, 2(4):283–327.

Rich, C. and Sidner, C. (1998). Collagen: A collaboration manager for software inter-

face agents.User Modeling and User-Adapted Interaction, 8(3/4):315–350.

Rieser, V. and Lemon, O. (2006a). Cluster-based user simulations for learning dialogue

strategies. InINTERSPEECH, pages 1766–1769, Pittsburgh, PA, USA.

Rieser, V. and Lemon, O. (2006b). Using logistic regressionto initialize reinforcement-

learning-based dialogue systems. InIEEE Workshop on Spoken Language Technol-

ogy (SLT), pages 190–193, Palm Beach, Aruba.

Rieser, V. and Lemon, O. (2007). Learning dialogue strategies for interactive database

search. InINTERSPEECH, pages 2689–2692, Antwerp, Belgium.

Rieser, V. and Lemon, O. (2008). Learning effective multimodal dialogue strategies

from Wizard-of-Oz data: Bootstrapping and evaluation. InInternational Conference

on Computational Linguistics (ACL), pages 638–646, Columbus, Ohio, USA.

Roy, N., Pineau, J., and Thrun, S. (2000). Spoken dialogue management using proba-

bilistic reasoning. InInternational Conference on Computational Linguistics (ACL),

pages 93–100, Hong Kong.

Rudnicky, A., Thayer, E., Constantinides, P., Tchou, C., Shern, R., Lenzo, K., W.,

X., and Oh, A. (1999). Creating natural dialogs in the Carnegie Mellon Communi-

cator system. InEuropean Conference on Speech Communication and Technology

(Eurospeech), pages 1531–1534, Budapest, Hungary.

Rudnicky, A. and Wu, W. (1999). An agenda-based dialogue management architecture

for spoken language systems. InIEEE Workshop on Automatic Speech Recognition

and Understanding (ASRU), pages 337–340, Keystone, Colorado, USA.

Russell, S. and Norvig, P. (2003).Artificial Intelligence: A Modern Approach. Pearson

Education.

Ryan, M. (2002).Hierarchical Reinforcement Learning: A Hybrid Approach. PhD

thesis, University of New South Wales.

Sacerdoti, E. (1975). The nonlinear nature of plans. InInternational Joint Conference

on Artificial Intelligence (IJCAI), pages 206–215, Tbilisi, Georgia, URRS.

References 198

Schatzmann, J., Georgila, K., and Young, S. (2005a). Quantitative evaluation of user

simulation techniques for spoken dialogue systems. InWorkshop on Discourse and

Dialogue (SIGDIAL), Lisbon, Portugal.

Schatzmann, J., Stuttle, M. N., Weilhammer, K., and Young, S. (2005b). Effects of the

user model on simulation-based learning of dialogue strategies. InIEEE Workshop

on Automatic Speech Recognition and Understanding (ASRU), pages 220–225, San

Juan, Puerto Rico.

Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H., and Young, S. (2007a).

Agenda-based user simulations for bootstrapping a POMDP dialogue system. In

Human Language Technology Conference (HLT), pages 149–152, Rochester, NY.

Schatzmann, J., Thomson, B., and Young, S. (2007b). Error simulation for training

statistical dialogue systems. InIEEE Workshop on Automatic Speech Recognition

and Understanding (ASRU), pages 526–531, Kyoto, Japan.

Schatzmann, J., Thomson, B., and Young, S. (2007c). Statistical user simulation with

a hidden agenda. InWorkshop on Discourse and Dialogue (SIGDIAL), pages 273–

282, Antwerp, Belgium.

Schatzmann, J., Weilhammer, K., Stuttle, M., and Young, S. (2006). A survey on statis-

tical user simulation techniques for reinforcement learning of dialogue management

strategies.Knowledge Engineering Review, 21(2):97–126.

Scheffler, K. (2002). Automatic Design of Spoken Dialogue Systems. PhD thesis,

Cambridge University.

Scheffler, K. and Young, S. (2000). Probabilistic simulation of human-machine dia-

logues. InIEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP), pages 1217–1220, Istanbul, Turkey.

Scheffler, K. and Young, S. (2001). Corpus-based simulationfor automatic strategy

learning and evaluation. InWorkshop on Adaptation in Dialogue Systems (NAACL),

Pittsburgh, PA, USA.

Scheffler, K. and Young, S. (2002). Automatic learning of dialogue strategy using

dialogue simulation and reinforcement learning. InHuman Language Technology

Conference (HLT), pages 12–19, San Diego, CA, USA.

References 199

Searle, J. (1969).Speech Acts. Cambridge University Press.

Seneff, S. and Polifroni, J. (2000). Dialogue management inthe Mercury flight reserva-

tion system. InANLP/NAACL, Workshop on Conversational Systems, pages 11–16,

Seattle, WA, USA.

Shapiro, D. and Langley, P. (2002). Separating skills from preference: Using learning

to program by reward. InInternational Conference on Machine Learning (ICML),

pages 570–577, Sydney, Australia.

Singh, S. (1992). Reinforcement learning with a hierarchy of abstract models. InAAAI

Conference on Artificial Intelligence, pages 202–207, San Jose, CA, USA.

Singh, S., Kearns, M., Litman, D., and Walker, M. (1999). Reinforcement learning for

spoken dialogue systems. InNeural Information Processing Systems Conference

(NIPS), pages 956–962, Denver, CO, USA.

Singh, S., Litman, D., Kearns, M., and Walker, M. (2002). Optimizing dialogue man-

agement with reinforcement learning: Experiments with theNJFun system.Journal

of Artificial Intelligence Research, 16:105–133.

Singh, S. and Sutton, R. (1996). Reinforcement learning with replacing eligibility

traces.Machine Learning, 22:123–158.

Skantze, G. (2007).Error Handling in Spoken Dialogue Systems: Managing Uncer-

tainty, Grounding and Miscommunication. PhD thesis, KTH - Royal Institute of

Technology.

Spaan, M. and Vlassis, N. (2005). Perseus: Randomized point-based value iteration

for POMDPs.Journal of Artificial Intelligence Research, 24:195–220.

Staab, S. and Studer, R. (2004).Handbook on Ontologies. Springer.

Stolle, M. and Precup, D. (2002). Learning options in reinforcement learning. In

Symposium on Abstraction, Reformulation, and Approximation (SARA), pages 212–

223, Kananaskis, Alberta, Canada.

Stone, P., Sutton, R., and Kuhlmann, G. (2005). Reinforcement learning for RoboCup-

soccer keepaway.Adaptive Behaviour, 13(3):165–188.

Sutton, R. and Barto, A. (1998).Reinforcement Learing: An Introduction. MIT Press.

References 200

Sutton, R., Precup, D., and Singh, S. (1999). Between MDPs and Semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial Intelli-

gence, 112(1):181–211.

Tadepalli, P., Givan, R., and Driessens, K. (2004). Relational reinforcement learning:

An overview. InWorkshop on Relational Reinforcement Learning - ICML, pages

1–9, Banff, Canada.

Taylor, M. and Stone, P. (2007). Cross-domain transfer for reinforcement learning. In

International Conference on Machine Learning (ICML), pages 879–886, Corvallis,

OR, USA.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon.Communications

of the ACM, 38(3):58–68.

Theocarous, G. (2002).Hierarchical Learning and Planning in Partially Observable

Markov Decision Processes. PhD thesis, Michigan State University.

Theocarous, G., Murphy, K., and Kaelbking, L. (2004). Representing hierarchical

POMDPs as DBNs for multi-scale robot localization. InIEEE International Con-

ference on Robotics and Automation (ICRA), pages 1045–1051, New Orleans, LA,

USA.

Thomson, B., Schatzmann, J., and Young, S. (2008). Bayesianupdate of dialogue

state for robust dialogue systems. InIEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), pages 4937–4940, Las Vegas, USA.

Toney, D. (2007).Evolutionary Reinforcement Learning of Spoken Dialogue Strate-

gies. PhD thesis, University of Edinburgh.

Toney, D., Moore, J., and Lemon, O. (2006a). Developing conversational interfaces

with XCS. In Workshop on Learning Classifier Systems (GECCO), Seattle, WA,

USA.

Toney, D., Moore, J., and Lemon, O. (2006b). Evolving optimal inspectable strategies

for spoken dialogue systems. InHuman Language Technology Conference (HLT),

pages 173–176, New York, NY, USA.

Torres, F., Sanchis, E., and Segarra, E. (2008). User simulation in a stochastic dialog

system.Computer Speech and Language, 22(3):230–255.

References 201

Uschold, M. and Gruninger, M. (1996). Ontologies: Principles, methods, and applica-

tions. Knowledge Engineering Review, 11(2):93–155.

Uther, W. (2002). Tree Based Hierarchical Reinforcement Learning. PhD thesis,

Carnegie Mellon University.

Walker, M., Passonneau, R., and Boland, J. (2001). Quantitative and qualitative evalu-

ation of DARPA Communicator spoken dialogue systems. InInternational Confer-

ence on Computational Linguistics (ACL), pages 515–522.

Walker, M. (2000). An application of reinforcement learning to dialogue strategy se-

lection in a spoken dialogue system for email.Journal of Artificial Intelligence

Research, 12:387–416.

Walker, M., Kamm, C., and Litman, D. (2000). Towards developing general models of

usability with PARADISE.Natural Language Engineering, 6(3):363–377.

Walker, M., Litman, D., Kamm, C., and Abella, A. (1997). PARADISE: A framework

for evaluating spoken dialogue agents. InInternational Conference on Computa-

tional Linguistics (ACL), pages 271–280, Madrid, Spain.

Walker, M. and Passonneau, R. (2001). DATE: A dialogue act tagging scheme for

evaluation of spoken dialogue systems. InHuman Language Technology Conference

(HLT), pages 1–8, San Diego, CA, USA.

Walker, M., Rudnicky, A., Prasad, R., Aberdeen, J., Bratt, E., Garofolo, J., Hastie, H.,

Le, A., Pellom, B., Potamianos, A., Passonneau, R., Roukos,S., Sanders, G., Seneff,

S., and Stallard, D. (2002). DARPA communicator: Cross-system results for the

2001 evaluation. InInternational Conference on Speech and Language Processing

(ICSLP), pages 273–276, Colorado, CO, USA.

Ward, W. (1994). Extracting information from spontaneous speech. InInternational

Conference on Speech and Language Processing (ICSLP), pages 18–22, Yokohama,

Japan.

Watkins, C. (1989).Learning from Delayed Rewards. PhD thesis, King’s College.

Watkins, C. and Dayan, P. (1992). Technical note Q-learning. Machine Learning,

8(3-4):279–292.

References 202

Whiteson, S. and Stone, P. (2006). Evolutionary function approximation for reinforce-

ment learning.Journal of Machine Learning Research, 7:877–917.

Williams, J. (2006).Partially Observable Markov Decision Processes for SpokenDi-

alogue Management. PhD thesis, Cambridge University.

Williams, J. (2007a). A method for evaluating and comparinguser simulations: The

Cramer-Von Misses divergence. InIEEE Workshop on Automatic Speech Recogni-

tion and Understanding (ASRU), pages 508–513, Kyoto, Japan.

Williams, J. (2007b). Partially observable Markov decision processes for spoken dialog

systems.Computer Speech and Language, 21(2):393–422.

Williams, J. (2007c). Scaling POMDPs for spoken dialog management.IEEE Trans-

actions on Speech and Audio Processing, 15(7):2116–2129.

Williams, J. (2007d). Using particle filters to track dialogue state. InIEEE Workshop

on Automatic Speech Recognition and Understanding (ASRU), pages 502–507, Ky-

oto, Japan.

Williams, J. (2008a). The best of both worlds: Unifying conventional dialog systems

and POMDPs. InINTERSPEECH, Brisbane, Australia.

Williams, J. (2008b). Integrating expert knowledge into POMDP optimization for

spoken dialogue systems. InAAAI Workshop on Advancements in POMDP Solvers,

Chicago, USA.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. (2007). Multi-task reinforcement learn-

ing: A hierarchical Bayesian approach. InInternational Conference on Machine

Learning (ICML), pages 1015–1022, Corvallis, OR, USA.

Yamagishi, J., Zen, H., Toda, T., and Tokuda, K. (2007). Speaker-independent HMM-

based speech synthesis system - HTS-2007 system for the blizzard challenge 2007.

In The Blizzard Challenge, pages 1–6, Bonn, Germany.

Young, S. (2000). Probabilistic methods in spoken dialoguesystems.Philosophical

Transactions of the Royal Society (Series A), 358(1769):1389–1402.

Young, S. (2002). Talking to machines (statistically speaking). In International Con-

ference on Speech and Language Processing (ICSLP), pages 9–16, Denver, CO,

USA.

References 203

Young, S. (2006).The HTK Book. Cambridge University Engineering Department.

Young, S. (2007).ATK: An Application Toolkit for HTK. Cambridge University Engi-

neering Department.

Young, S., Schatzmann, J., Weilhammer, K., and Ye, H. (2007). The hidden infor-

mation state approach to dialogue management. InIEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), pages 149–152, Honolulu,

Hawaii.

Zhang, B., Cai, Q., Mao, J., and Guo, B. (2001). Planning and acting under uncertainty:

A new model for spoken dialogue system. InConference on Uncertainty in Artificial

Intelligence (UAI), pages 572–579, Seattle, WA, USA.

Zue, V. (2007). On organic interfaces. InINTERSPEECH, pages 1–8, Antwerp, Bel-

gium.

Zue, V. and Glass, J. (2000). Conversational interfaces: Advances and challenges.

IEEE Transactions on Speech and Audio Processing, 88(8):1166–1180.

	Introduction
	Motivation
	Research goal
	Approach
	Contributions
	Outline

	Reinforcement learning for spoken dialogue systems
	Dialogue as an optimization problem
	Background on reinforcement learning
	Markov decision processes
	Tabular reinforcement learning algorithms

	Approaches for dialogue optimization
	Dialogue as a Markov decision process
	Dialogue as a partially observable MDP
	Dialogue control using function approximation
	Dialogue control using evolutionary reinforcement learning
	Learning with real and simulated dialogues
	Evaluation of learnt dialogue policies with real users

	Approaches for dialogue simulation
	Rule-based simulated user models
	Probabilistic simulated user models
	Probabilistic-goal-directed simulated user models
	Deterministic-probabilistic simulated user models
	Evaluation of simulated dialogues

	Open questions in dialogue strategy optimization
	Summary

	Hierarchical reinforcement learning: a perspective on spoken dialogue
	Introduction
	An illustrative decision-making problem
	Temporal abstraction for dialogue strategy learning
	State abstraction for dialogue strategy learning

	Hierarchical reinforcement learning approaches
	Hierarchical abstract machines
	MAXQ

	Semi-Markov Decision Processes
	Current state of hierarchical reinforcement learning
	Discussion
	Summary

	A heuristic simulation environment for learning dialogue strategies
	Introduction
	A heuristic dialogue simulation environment
	Human-machine dialogue modelling
	Knowledge representation for conversational agents
	Modelling conversational behaviour
	Speech recognition error simulation
	Database querying simulation

	Experimental spoken dialogue systems
	Case study: flight booking system
	Case study: travel planning system

	Evaluating user and machine dialogue behaviour
	Evaluation metrics for user behaviour
	A reasonable choice of baseline machine behaviour

	Discussion
	Summary

	Hierarchical dialogue optimization: a divide-and-conquer approach
	Introduction
	Background on dialogue strategy learning
	Related work on hierarchical reinforcement learning

	Dialogue as a Semi-Markov Decision Process
	Dialogue control using hierarchical SMDPs
	Decomposing a spoken dialogue manager into subtasks
	Execution of dialogue subtasks
	Termination of dialogue subtasks
	State transitions in SMDP-based dialogue optimization

	Reinforcement learning for hierarchical SMDPs
	Experimental setup
	The flight booking case study
	The travel planning case study

	Experimental results
	The flight booking dialogue system
	The travel planning dialogue system
	Analysis of learnt behaviour without infinite loops

	Discussion
	Conclusions

	Hierarchical dialogue optimization: a prior-knowledge approach
	Introduction
	Partially specified dialogue strategies
	Dialogue control using constrained hierarchical SMDPs
	Decomposing a dialogue manager into subtasks
	Execution of dialogue subtasks
	Termination of dialogue subtasks
	State transitions in constrained hierarchical SMDPs

	Reinforcement learning for constrained hierarchical SMDPs
	Experiments and results
	Experimental setup
	Experimental results: flight booking case study
	Experimental results: travel planning case study
	Analysis of learnt behaviours with finite dialogues

	Related work
	Discussion
	Conclusions

	A spoken dialogue system using hierarchical reinforcement learning
	Introduction
	System architecture
	Facilitator agent
	Speech recognition agent
	Semantic parsing agent
	Dialogue act recognition agent
	Database system agent
	Dialogue management agent
	Language generation agent
	Speech synthesis agent

	System evaluation
	Evaluation methodology
	Experimental setup
	Experimental results
	Evaluation of simulated behaviours
	Do people want to talk to spoken dialogue systems?

	Discussion and future directions
	Conclusions

	Conclusions and future work
	Future work
	Hierarchical dialogue action under uncertainty
	Learning more complex dialogue strategies
	Learning reusable dialogue strategies
	Hierarchical dialogue control using function approximation
	Safe dialogue state abstraction
	Hierarchy discovery of dialogue subtasks
	Hierarchical dialogue reward functions
	Online dialogue strategy learning from real users
	Task-independent dialogue simulation
	Richer knowledge representations
	A benchmark framework for spoken dialogue strategies

	Findings

	Notation
	Dialogue data structures
	Sample hierarchical dialogue
	References

