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Abstract
This study compares two different methodologies for produc-
ing data-driven synthesis of child speech from existing systems
that have been trained on the speech of adults. On one hand,
an existing statistical parametric synthesiser is transformed us-
ing model adaptation techniques, informed by linguistic and
prosodic knowledge, to the speaker characteristics of a child
speaker. This is compared with the application of voice con-
version techniques to convert the output of an existing wave-
form concatenation synthesiser with no explicit linguistic or
prosodic knowledge. In a subjective evaluation of the similarity
of synthetic speech to natural speech from the target speaker,
the HMM-based systems evaluated are generally preferred, al-
though this is at least in part due to the higher dimensional
acoustic features supported by these techniques.
Index Terms: child speech, statistical parametric speech syn-
thesis, HMM-based speech synthesis, voice conversion, HTS,
Average Voice Models, Festival

1. Introduction
The synthesis of child speech presents particular difficulties for
data-driven systems due to the type and quantity of data which
it is feasible to collect from child speakers. Data-driven speech
synthesisers are conventionally trained on corpora that are pho-
netically balanced, consistently read, and cleanly recorded.
The type of child speech typically available, in contrast, more
closely resembles ‘found’ data. It will be unbalanced in terms
of the units it covers due to the fact that it is infeasible to have
a child read a recording script that has been specially designed
with a view to phonetic/prosodic coverage. Children’s speech
shows a greater degree of variability than adults’, and the data
will typically be read less consistently than adult data. Fi-
nally, the data available will typically be imperfectly recorded,
as practical considerations mean it is less easy to get a child into
a purpose-built recording booth than an adult speaker.

In [1], what is to our knowledge the first data-driven synthe-
sis of child speech was presented. In this work, the difficulties
inherent in a small corpus of child speech were overcome by
the use of Hidden Markov Model (HMM)-based synthesis tech-
niques. In particular, speaker adaptation techniques were used
to adapt an existing average voice model – trained on a clean,
phonetically rich corpus collected from six adult speakers – to
the speech characteristics of a child target speaker. We consid-
ered the resulting synthetic speech successful in that it clearly
reflected the nature of the training data: the speech synthesiser
sounds like a child reading, with the same patterns of hesitancy
and disfluency observed in the training data.

However, there exist methods for imposing the voice char-

acteristics of a novel speaker on an existing synthesiser besides
those employed in the above work. Voice conversion techniques
aim to convert the speech of a source speaker in such a way that
the converted speech appears to have been produced by a differ-
ent, target speaker. As well as being applied to the conversion
of natural speech, popular voice conversion techniques such as
those based on spectral conversion with Gaussian mixture mod-
els (GMMs: [2],[3]) have been used to convert speech synthe-
sisers’ output to the voice characteristics of new speakers. For
example, in [4], the output of a concatenative (diphone) synthe-
siser is used to create ‘source speaker’ training data for a voice
conversion model. The voice conversion model allows arbitrary
novel utterances subsequently produced by the synthesiser to be
converted to the voice characteristics of the target speaker.

The application of voice conversion to the output of an ex-
isting speech synthesiser is particularly attractive in the context
of sample-based concatenative methods where there is no sta-
tistical model whose parameters can be transformed as in the
case of HMM-based synthesisers. Additionally, voice conver-
sion can be performed when annotation of the training data is
limited: no knowledge of the linguistic/prosodic structure of
the data is necessary as e.g. the classes of spectral features rep-
resented by the Gaussian mixture components are determined
purely on the basis of acoustic measures.

Lack of dependence on knowledge of the data’s linguistic
and prosodic structure can be beneficial in some circumstances,
and when the match between source and target speaker is close,
acceptable results can be obtained by ignoring the conversion
of duration altogether. However, the distinctive patterns of hes-
itancy and disfluency observed in the segmental durations of our
child target speaker are a very distinctive part of the speaker’s
identity and are quite different from the patterns found in any
adult speech database. It does not seem reasonable to expect to
capture the speaker characteristics of this data in a satisfactory
manner when performing speaker transformation while ignor-
ing the conversion of duration. But the satisfactory conversion
of speaker durational characteristics is not straightforward in a
voice conversion setting where no use is made of linguistic and
prosodic annotation.

The purpose of the present study is to compare the poten-
tial offered by HMM-based adaptation and GMM-based voice
conversion techniques for the transformation of existing synthe-
sisers trained on adult speech to the voice characteristics of our
child target speaker.
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Table 1: Identifying letters used for each system. Trans-
formations are to the target speaker in all cases except for
the duration adaptation of system B. HMM: HMM adaptation
(CSMAPLR + MAP), VC: Voice Conversion (including uniform
stretch for duration).
System Transformation method
identifier Base system Spect. F0 Dur.
A HTS average voice HMM HMM HMM
B HTS average voice HMM HMM HMM

(to SLT)
C Multisyn SLT VC VC None
D Multisyn SLT VC VC VC

2. The systems built
2.1. Overview

The rationale of the investigation presented here was to com-
pare the two types of system in as practical a way as possible.
This meant constructing and comparing systems that would be
credible in a real-world context. An adaptive HMM-based syn-
thesiser (System A in Table 1) was matched against a voice-
converted synthesiser (System C) which was based on an exist-
ing unit selection synthesiser. By doing this we in one sense
reduced the usefulness of the evaluation in that base synthesiser
type (unit selection / statistical parametric) was not a factor kept
constant. In another sense, however, the evaluation was more
useful than if System C had been based on an HMM-based sys-
tem in that the resulting systems are more representative of the
kinds of speech synthesiser that are actually being built. Ac-
counts of voice conversion applied to concatenative systems are
more easily found in research literature (e.g. [4]) than accounts
of voice conversion applied to statistical parametric synthesis-
ers.

Systems B and D represent a concession to the need to con-
trol for some of the differences between systems in the evalu-
ation. As mentioned above, in GMM-based voice conversion,
the source speaker’s durations are typically used unconverted in
the output speech and this is the case in our System C. In HMM-
based adaptive systems, on the other hand (e.g. our system A),
models are routinely adapted to speaker-specific duration char-
acteristics. System D represents an attempt to bridge this gap
by converting duration in a shallow, data-driven fashion. In ad-
dition to voice conversion techniques being applied to spectral
features and F0, knowledge of the total duration of training data
for source and target speakers is used to uniformly stretch con-
verted utterances’ duration by an appropriate factor. In System
B, the opposite approach to lessening the same difference be-
tween systems A and C is followed. That is, the duration model
used is not adapted to the target speaker, but to one of the adult
speakers on whose data the average voice was trained (SLT, on
whose data the unit selection voices underlying Systems C and
D were also trained). The idea was to produce a system more
easily comparable with System C where SLT’s durations were
also used in the converted speech.

2.2. Target speaker data collection

Collection and preparation of this data is described more fully
in [1]. Briefly, the North American-accented English speech
of a 7-year old tri-lingual (Spanish, English, German) female
was collected using a headset microphone in an informal setting
at the home of one of the authors over the course of several
months. The subject was very familiar with the story book text,

which she was allowed to read without interruption. A total of
just over 100 minutes of speech data were collected.

The data was segmented into utterance-sized units and
hand-transcribed with considerable care. A number of sen-
tences were held out from the corpus for later use in evaluation.

The necessary linguistic and prosodic annotation was ob-
tained using the Multisyn voice-building tools [5]. The forced
alignment used to determine the final phonetic transcription al-
lows for vowel reduction and the insertion of pauses between
words, pause insertion being particularly important in the case
of such hesitantly read data.

In the present experiments, only one size of target speaker
dataset was used, consisting of the whole of the training corpus.
We note that no very small dataset was used in the evaluation,
and that it is on just such a set that we might expect voice con-
version methods to outperform HMM-based ones.

2.3. HTS systems (Systems A and B)

System A was previously described in [1] (where it received
the identifying letter F). System B was newly constructed for
these experiments but the same procedure was used: it is merely
a combination of elements taken from two different adaptive
voices adapted in the same way but to different speakers (our
child target speaker and the speaker SLT from the ARCTIC
database). These systems were built using HTS version 2.1 [6].

2.3.1. Training

Both systems adopted the gender-mixed average voice from
the HTS entry in the Blizzard Challenge 2007 [7]. Details
of the training of this gender-mixed average voice model are
given in [7]. Briefly, it was trained on the six adult speakers
of CMU-ARCTIC speech database [8], four male and two fe-
male. First, the speech of the training corpus was parameterised
as 40 mel-cepstral coefficients, log F0 and the energy of ape-
riodic components in 5 frequency bands, and the dynamic and
acceleration features derived from all of these, yielding a 138-
dimension observation vector for the HMMs. F0 was extracted
using a three-stage procedure, where the outputs of three differ-
ent pitch-trackers were made to ‘vote’ on the F0 value of any
given frame. Spectral analysis was performed with the high
quality vocoder STRAIGHT [9], and the STRAIGHT spectra
were converted to mel-cepstral coefficients. After the data had
been parameterised, two gender-dependent average voice mod-
els were trained using Speaker Adaptive training (SAT); that
is, speaker normalisation was applied during estimation of the
models, to avoid different speaker-dependent voice character-
istics “diluting” the average models. Then, the parameters of
both gender-dependent models were clustered and tied using
decision-tree based clustering, with gender included as a con-
text feature. Then the clustered HMMs were re-estimated using
SAT, regression classes for the normalisation being determined
from the gender-mixed decision-trees. State durations obtained
during this estimation were used to initialise duration probabil-
ity distributions which were then clustered. SAT was performed
on the complete HSMMs to re-estimate all parameters (includ-
ing duration) with speaker normalisation.

It should be noted that the device that enables the incor-
poration of high-level prosodic features into the model is the
decision tree for context clustering. Context clustering enables
the extreme context-dependency of speech units, which are de-
fined not only in terms of immediate phonetic and linguistic
contexts, but also in terms of long-range factors that might have
a bearing on units’ prosodic realisation (see [10] for the full list
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used). The rich context-dependency of the speech units results
in a very large number of possible models. This in turn means
that almost all models will be sparsely represented in the train-
ing corpus and that, at synthesis time, models of missing units
will certainly need to be created. Both of these problems are
solved by mapping the large number of possible HMM states
onto a much smaller number of states whose parameters are ac-
tually estimated. The mapping from logical to physical HMM
states is done by means of decision-trees.

2.3.2. Adaptation

Adaptation to the target speakers was performed with the pro-
cedure used for the same HTS entry in the Blizzard Challenge.
Adaptation was performed with a combination of constrained
structural maximum a posteriori linear regression (CSMAPLR),
using the decision tree obtained during average-voice training to
structure the hierarchical transforms, followed by maximum a
posteriori (MAP) adaptation.

System A is made up of the spectral, F0, aperiodicity and
duration models adapted in this way to the child target speaker.
The only difference in System B is that the duration model has
been substituted for one adapted to the data of the adult speaker
SLT.

2.3.3. Synthesis

Ten sentences from the story Goldilocks and the Three Bears
which were to be used in evaluation were synthesised with the
Festival speech synthesis system [11]. Festival’s front-end per-
formed the phonetic and linguistic predictions needed to pro-
vided a sequence of context-dependent labels for each utter-
ance. Based on these predictions, parameters were generated
using the two systems that had been trained, and waveforms
were synthesised from those parameters.

2.4. Voice conversion systems (Systems C and D)

2.4.1. Training

The synthesiser used as the ‘source speaker’ in the voice conver-
sion systems (Systems C and D) was an existing unit selection
voice which had been built with the data of the speaker SLT
from the ARCTIC database. The voice had been constructed
using the Multisyn voice building tools ([5]).

The voice conversion systems were built using scripts avail-
able as part of the FestVox scripts implementing techniques
developed by Toda ([3], [12]). First of all, the missing half
of the necessary parallel corpus of source and target speaker
speech was created by synthesising the contents of the child
speech corpus using the base unit selection synthesiser. Then
the speech was parameterised, using the same procedure de-
scribed in Section 2.3.1 above with STRAIGHT analysis rather
than the FestVox analysis tools. The only departure from the
analysis procedure described in Section 2.3.1 was that a lower
dimension static feature vector was used (24 – the 0th coeffi-
cient was not used for training GMMs). This was a result of
initial work in which attempts at training joint GMMs on much
higher order features failed even with few mixture components.

The conversion model for spectral features was trained
as follows. The static parameters were supplemented by dy-
namic features and then joint feature vectors were obtained
from source and target speech by alignment with Dynamic Time
Warping. The parameters of a GMM (weights, means and co-
variance matrices for 128 mixture components) over the joint
features were initialised using Vector Quantization, and then

iteratively refined using Expectation Maximisation. The data
alignment and GMM training were iterated.

The conversion model for F0 was obtaining by comput-
ing the mean and standard deviation of both source and tar-
get speakers’ log F0. Additionally, the necessary information
for performing rudimentary duration conversion by uniform
stretching was collected in the form of a duration scaling fac-
tor.

2.4.2. Synthesis and conversion

The sentences to be used in evaluation were synthesised with
Festival’s front-end as in Section 2.3.3, but this time waveform
generation was performed by the concatenation of units selected
from the SLT database by the Multisyn unit selection engine.
The resulting waveform was then analysed in the same way as
the training corpus had been. The spectral features were supple-
mented with dynamic features, and a sequence of single mixture
component conditional probability density functions was deter-
mined from the GMM and input speech vectors using Viterbi
selection. These PDFs were used to compute maximum like-
lihood static parameter sequences considering both static and
dynamic parts of the distributions.

Source speaker’s log F0 was converted by normalising the
log F0 contour using the source speaker’s mean and standard de-
viation, and then imposing the target speaker’s mean and stan-
dard deviation (computed during training) on the resulting con-
tour.

Speech was then resynthesised using the source speaker’s
power and aperiodicity measures unmodified together with the
converted spectral features and log F0.

For system D, the additional step of converting duration
was performed by uniformly stretching the converted utterance
in accordance with the duration scaling factor computed dur-
ing training. Utterances’ duration was scaled using Pitch Syn-
chronous Overlap and Add (in Praat: [13]).

3. Subjective Evaluation
3.1. Evaluation procedure

An XAB test was conducted in which a pairwise comparison
was made of the four systems in terms of the similarity of the
synthetic speech to the natural speech of the target speaker. Four
reference sentences spoken by the target speaker which had
been held out of the training corpus were analysed and resyn-
thesised as described in Section 2.3.1 above with no manipula-
tion of the features. They were presented at the beginning of the
evaluation and at intervals throughout it as X, and listeners were
encouraged to listen to the samples as much as they wanted.
The ten ‘Goldilocks’ sentences were synthesised with each of
the four systems, and for each sentence an AB pair (randomly
ordered) was made for each pair of systems, resulting in 60 AB
pairs. The listening test was conducted via a web browser, with
a total of 10 unpaid listeners. The 60 pairs were presented in
random order and listeners were asked to choose the sentence in
which the synthetic speech’s speaker characteristics were most
similar to those of the natural reference samples.

3.2. Evaluation results

Figure 1 shows the results of the evaluation. Significant pref-
erences were detected for all pairs of systems except B vs. D.
System A – the HMM synthesiser with duration adapted to the
child target speaker – was preferred to both voice conversion
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Figure 1: Results of XAB test for speaker individuality. Vertical
lines show 95% confidence intervals (with Bonferroni correc-
tion).

systems and to the other HMM-based synthesiser.
The evaluation shows that the HMM-based systems were

generally preferred as more similar to the original speaker than
the voice converted unit selection systems. In only one case
(B vs. D, where the HMM-based system not adapted to tar-
get speaker duration was compared with the voice-converted
system with uniform duration modification) was no significant
preference for the HMM-based system found.

4. Conclusions
The premise of the experiment presented here was that the two
types of system under investigation should be compared in a
‘realistic’ a way as possible. The considerable differences be-
tween the systems were not factored out in the construction of
stimuli because these differences were motivated by real-world
considerations. That is, a concatenative system was used as
the basis of the voice conversion systems (rather than a sta-
tistical parametric synthesiser which would have made com-
parison with the other systems easier) because the possibility
of performing voice conversion is more relevant in the con-
text of concatenative systems. Likewise, higher order acous-
tic features were used for the HMM-based systems because the
method supported higher order features; lower order features
were used for performing voice conversion due to the fact that
attempts at using higher order features in initial work resulted in
difficulties training the GMMs. Both discrepancies are reason-
able according to the rationale with which the experiment was
designed in that two different but credibly real-world systems
were compared using the highest order acoustic features they
were found to support in initial tests. The evaluation revealed
a general preference for the HMM-based systems. However,
the discrepancies in the construction of the different types of
system mean that it is not possible to attribute the superior per-
formance of the HMM-based systems used directly to the use
of HMM-based adaptation. The superior quality of waveform
synthesis from higher order acoustic features undoubtedly con-
tributes something to the relative success of the HMM-based
systems. We hypothesise that if differences of synthesiser type
(concatenative / statistical parametric) and acoustic feature or-
der were controlled for in evaluation, synthetic speech from an
adapted HMM-based synthesiser would still outperform speech

from a voice-converted system due to the high-level linguistic
and prosodic information which can be used to inform the adap-
tation. We plan to test this hypothesis in a future evaluation.

In ongoing work, we are exploring the effect of reducing
the amount of target speaker training data on the relative per-
formance of HMM and voice conversion based methods. It is
hypothesised that listener preference for HMM-based systems
over voice conversion systems will be reduced when less target
speaker data is available.
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