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ABSTRACT

Confidence measures play a key role in spoken term detection
(STD) tasks. The confidence measure expresses the posterior proba-
bility of the search term appearing in the detection period, given the
speech. Traditional approaches are based on the acoustic and lan-
guage model scores for candidate detections found using automatic
speech recognition, with Bayes’ rule being used to compute the de-
sired posterior probability.

In this paper, we present a novel direct posterior-based confi-
dence measure which, instead of resorting to the Bayesian formula,
calculates posterior probabilities from a multi-layer perceptron
(MLP) directly. Compared with traditional Bayesian-based meth-
ods, the direct-posterior approach is conceptually and mathemati-
cally simpler. Moreover, the MLP-based model does not require
assumptions to be made about the acoustic features such as their
statistical distribution and the independence of static and dynamic
co-efficients. Our experimental results in both English and Span-
ish demonstrate that the proposed direct posterior-based confidence
improves STD performance.

Index Terms— Spoken term detection, confidence measure,
posterior probabilities, MLP

1. INTRODUCTION
We adopt the definition of the spoken term detection (STD) task pro-
vided by NIST in 2006 [1], in which the goal is to locate spoken
terms from audio archives precisely and reliably. Applications of
STD include indexing and searching the increasing amounts of au-
dio material available on the world-wide web, as well as in scenarios
such as meetings, lectures, presentations and everyday conversation.

A typical STD system consists of three main components: a
speech recogniser to transcribe input speech in terms of word or sub-
word lattices; a lattice searcher to detect all potential occurrences of
the search term; a decision maker to select only reliable detections.

Although more accurate speech recognition and better lattice
searching schemes will generally improve the performance of any
STD system, they are of little use without a good confidence mea-
sure. Many acoustic and linguistic cues could be used to calculate
the confidence in each potential occurrence of the search term, e.g.,
whole-term or framewise acoustic likelihood, likelihood ratio of the
top and second candidates, etc. Furthermore, various confidence
measures can be combined to form a composite confidence measure.

Although various confidence might work well in practice, we
prefer a posterior-based confidence as this is more theoretically clear.
Basically, to tell what the spoken word is in the speech segment from
t1 to t2, the decision based on the posterior probability p(Kt2

t1
|OT

1 )

would be optimal in the sense of error-minimum, where Kt2
t1

denotes

the event that term K appears in the speech segment from frame t1
to t2, and OT

1 is the whole speech with T frames. It is natural and
straightforward to read p(Kt2

t1
|OT

1 ) as confidence of the event Kt2
t1

.
Conventionally, the posterior probability is computed from the

acoustic and language model scores computed by the recogniser [2].
There are two shortcomings of this Bayesian-based approach: (1) the
likelihood is computed from a generative probabilistic model, i.e.,
HMMs, which makes some incorrect assumptions, such as frame-
wise and possibly component-wise independence of acoustic fea-
tures, and a finite number of Gaussian mixtures; (2) computing the
confidence is expensive and requires evidence from the whole lattice.

We propose a new posterior-based confidence measurement,
which is directly calculated from posterior probabilities produced
by a MLP network directly, so can be called a direct posterior confi-
dence measure. The new approach does not make any assumptions
regarding the distributional form and independence properties of the
acoustic features and it requires no evidence from the lattice.

This new measure is inspired by the Tandem HMM-ANN hy-
brid architecture for speech recognition [3], but we use the poste-
rior probabilities generated from the MLP as confidence measures
instead of as observations for HMMs. MLP-based posteriors have
also been used to re-score hypothesis in continuous speech recogni-
tion [4].

In the following section, we first review the conventional
Bayesian confidence measure, and then in section 3 we present
the direct posterior-based confidence in detail. The experiments will
be presented and discussed in section 4, and conclusions drawn in
section 5.

2. BAYESIAN-BASED POSTERIOR CONFIDENCE

For posterior-based confidence measurements, the posterior proba-
bility p(Kt2

t1
|OT

1 ) is regarded as the confidence of search term K
appearing in the speech signal from frame t1 to t2. According to
the Bayesian formula, this posterior can be written as a product of
conditional and prior probabilities:

p(Kt2
t1
|OT

1 ) =
X
α,β

p(KαKt2
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, Kβ |OT
1 ) (1)
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X
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(3)

where Kt2
t1

is an occurrence of the search term starting at frame t1
and ending at frame t2. Kα and Kβ are any possible phone strings
before and after Kt2

t1
, with Kα starting at frame 1 and Kβ ending at



frame T . To avoid cluttering, Kα and Kβ are merged into CK in
Equation 3, representing the context of Kt2

t1
.

In Equation 3, the conditional probability p(OT
1 |Kt2

t1
, CK) is the

acoustic likelihood, and the prior p(Kt2
t1

, CK) is usually provided
by the language model. The denominator p(OT

1 ) a constant. The
Baum-Welch algorithm is usually employed to make computation of
p(OT

1 |Kt2
t1

, CK) efficient, so we denote this precise posterior-based
confidence measurement the Baum-Welch confidence. A further re-
duction in computational cost can be achieved by replacing the the
sum over all CK with the single best path, as in equation 4:

p(Kt2
t1
|OT

1 ) ≈
maxCK p(O|Kt2

t1
, CK)p(Kt2

t1
, CK)

maxKT
1

p(O|KT
1 )p(KT

1 )
(4)

This approximate confidence can be computed using the Viterbi
algorithm and thus we denote it the Viterbi confidence. Although
only an approximation, we observed no degradation in performance
compared to the Baum-Welch confidence in our experiments. Figure
1 illustrates the computation of the Viterbi confidence for a potential
detection of the search term google.

Fig. 1. Computing the Viterbi confidence for a candidate detection
of the search term google. The thick solid lines indicate the globally-
best path through the lattice and the thick dot-dash lines indicate the
best path containing the pronunciation of google. A dot line repre-
sents all possible paths between its two ends. The Viterbi confidence
is the ratio of the scores of these two paths.

3. DIRECT POSTERIOR-BASED CONFIDENCE

3.1. MLP-based posterior probabilities

It is well known that a standard 2-layer MLP network with softmax
output activation can be used to estimate class posterior probabilities
for a classification task. MLPs have been widely used in this fashion
for speech recognition, by estimating the posterior probabilities for
phone classes, given acoustic features as input [3]. Here, we use an
MLP to estimate the posterior probability p(Qt|O) for each frame t,
where Qt is the phone class of the search term K at frame t. Qt is
obtained from the sub-word unit lattice produced by the recogniser.
The structure of the MLP is shown in Figure 2.

3.2. Phone-independent posterior

Once we have the framewise posterior probability p(Qt|O), the
search term confidence is calculated simply by summing the frame
confidences, as shown in Equations 5-6. This confidence measure
is independent of the context CK , and only concerns acoustic prop-
erties. The MLP input is a window of 2W + 1 frames of acoustic
features. W = 4 in our experiments, meaning a 9-frame input
window.

Fig. 2. The MLP network for framewise posterior probability esti-
mation. The input layer consists of 9 frames, amounting to 351 input
nodes, and the outputs are phone categories, which for English in-
clude 40 vowels and consonants plus a short and a long silence. The
hidden layer, whose size is optimised by cross-validation, contains
5k hidden units. For Spanish, the output layer has 47 phones plus a
short silence and a long initial and a long final silence, and the hid-
den layer, whose size is also optimised to cross-validation, contains
1k hidden units.

Fig. 3. The graphical representation of the phones-are-independent
model for posterior confidence calculation. Q(t) is the phone class
at frame t, and o(t) is the observed acoustic feature at time t.

p(Kt2
t1
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t2Y
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p(Qt|OT
1 ) (5)

=

t2Y
t=t1

p(Qt|ot−W , ..., ot, ...ot+W ) (6)

3.3. Phone-dependent posterior

The strong phones-are-independent assumption above means that
some useful information from linguistic constraints is not used. To
remedy this, dependence should be added between phones, as shown
in Figure 4. We tried two ways of implementing the phone depen-
dency: direct LM score integration and Baum-Welch LM posterior.

Fig. 4. The graphic representation of the phones-are-dependent
model for posterior confidence calculation. Q(t) is the phone at
frame t, and o(t) is the observed acoustic feature at time t. In this
model, the phone dependency is described by a bigram LM.

3.3.1. Direct LM score integration

To model linguistic constraints, we introduce the variable Kl which
represents the search term K in the word layer. If we assume that
Kl determines K’s phonetic form, i.e.,p(Kl, K) = p(Kl) and that,



given phonetic form K, Kl is independent of acoustic observation
O, i.e., p(Kl|K, O) = p(Kl|K) then there is a best context C′

Kl ,
which accounts for most of the probability mass of the accumulated
linguistic evidence, i.e.,

P
C

Kl
p(Kl|CKl)p(CKl) ≈ p(Kl|C′

Kl)

then the posterior probability of a detection will be the product of
the acoustic score and LM score, as shown by Equation 7-10.

p(K, Kl|O) =
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Kl

p(K, Kl, Cl
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= p(K|O)

P
C
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p(K|CKl)p(CKl)

p(K)
(9)

≈ p(K|O)
p(Kl|C′

Kl)

p(K)
(10)

Note that the LM score p(Kl|C′
Kl) has been stored in the lattice

and the unigram probability p(K) can be obtained by table look-
up, therefore the searching procedure is the same as for the phone-
independent case.

3.3.2. Baum-Welch LM posterior

To integrate linguistic constraints into the term confidence, we can
also regard the confidence estimation as a two-step process: in the
first step, only acoustic confidence is considered, which comes from
the MLP structure; in the second step, we test the linguistic confi-
dence assuming all allowable phone alternatives have been included
in the phone lattice. Finally the real confidence is computed as the
product of the acoustic and linguistic posterior. This approach can
be formulated as Equation 11-13, where L denotes the entire phone
lattice.

p(K, Kl|O) = p(K|O)p(Kl|L) (11)

= p(K|O)
p(Kl, L)

p(L)
(12)

= p(K|O)

P
C

Kl
p(Kl, CKl)

p(L)
(13)

Note that the linguistic confidence p(Kl|L) is a true probability,
and relates to linguistic constraints only. In addition, this is a global
score and therefore requires a forward-backward computation. For
this reason, we call p(Kl|L) a Baum-Welch LM confidence.

4. EXPERIMENTS
We tested the proposed confidence measurement on both English
and Spanish tasks: in English, the test was performed on data from
the meetings domain; for Spanish, the test data is read speech.

In all experiments, we used the HTK toolkit to build the acous-
tic models. The Lattice2Multigram tool from Brno University of
Technology (BUT) was used for term searching and Bayesian-based
confidence measuring. The ICSI toolkit QuickNet was used for MLP
training and posterior generation.

Standard 13-dim MFCCs plus their first and second deriva-
tives (39-dim vectors in total) were used as acoustic features for
the HMMs and standard 13-dim PLPs plus their first and second
derivatives were used as MLP input features.

Results will be presented in terms of average term weighted
value (ATWV) as defined by NIST [1]. We also present detection
curves (DET) to examine different operating points with various re-
call and false-alarm rates.

Viterbi Baum-Welch Post(DLM) Post(BW)
ATWV 0.57 0.57 0.55 0.59

Table 1. STD results in terms of ATWV with four confidence mea-
surements. All these measuring are performed on the same lattices
generated by a speech recogniser using 7-gram phone LMs.

4.1. English experiments

The first experiments are on meeting domain data for English. The
acoustic model, based on triphone HMMs, was trained on over 100
hours meeting data which were collected from several sites. The in-
dependent headset microphone (IHM) channels were used. 7-gram
phoneme LMs, which were trained on a text corpus of 51M words
using the SRILM toolkit, were used for speech recognition and lat-
tice generation. The results are reported on test data from the NIST
Spring 2004 Rich Transcription (RT04s) evaluation, and the corre-
sponding RT04s development set was used for parameter tuning.

For STD evaluation, we selected 90 words as search terms, in-
cluding frequently used terms, people and city names, and some
compound words. 45 of these words are out-of-vocabulary (OOV)
words whose pronunciations were predicted by the letter-to-sound
module of the Festival system [5]. More details of the experimental
setup can be found in [6].

In Table 1, we present the experimental results in terms of
ATWV with four confidence measurements:

• Viterbi: the most commonly-used Viterbi implementation of
the Bayesian confidence measure, as per Equation 4.

• Baum-Welch: a standard Baum-Welch implementation of the
Bayesian confidence measure, as per Equation 3.

• Post(DLM): direct posterior-based confidence measure with
direct LM score, as per Equation 10.

• Post(BW): direct posterior-based confidence with Baum-
Welch LM posterior, as per Equation 13.

The results presented in Table 1 show that the direct posterior-
based confidence with Baum-Welch LM posterior achieved the best
performance, with the two Bayesian approaches performing almost
the same. The direct posterior confidence with direct LM scores did
not work well, which we suppose is because a single LM score is
not sufficient to account for the context information required in this
experiment.

Figure 5 shows the DET curves of these four measures. Again,
the direct posterior-based confidence with Baum-Welch LM poste-
rior gave the best performance, and the two Bayesian-based confi-
dence measures performed nearly the same.

4.2. Spanish experiments

For the Spanish experiments, we used the ALBAYZIN geographical
domain database [7]. More details of this corpus can be found in [8].
For the STD evaluation, we selected 80 words in the geographical
domain as our search terms, based on their high frequency of occur-
rence in the development and test sets. All of them are OOV words.
In Table 2 we present the results for the same four confidence mea-
sures as for English. The results demonstrate that the direct posterior
confidence with direct LM score gave the best performance.

Figure 6 shows DET curves for these four measures. It is seen
that the direct posterior-based confidence with direct LM posterior
gave the best performance. As in English, the two Bayesian-based
confidence performed nearly the same.



Viterbi Baum-Welch Post(DLM) Post(BW)
ATWV 0.18 0.18 0.26 0.15

Table 2. STD results in terms of ATWV for four confidence mea-
sures. All results are obtained from the same lattices, which were
generated by a speech recogniser using a 2-gram phone LM.

4.3. Discussion

By inspecting the DET curves in Figures 5 and 6, we observe that,
although the direct posterior-based confidence performs better than
the Bayesian-based confidence, it behaves differently in English and
Spanish. In English, the Baum-Welch LM posterior helped improve
the quality of the confidence. However, in Spanish, direct LM score
integration performed better, and the LM posterior in fact reduced
the performance. This discrepancy might stem from the differing
length of linguistic context used: for English we used a 7-gram
phoneme LM, while for Spanish we used a 2-gram. A short-span
context may be well represented by a single LM score, while for
a long-span context a real posterior considering competing paths
would be helpful.

Another observation is that the benefits achieved by using the di-
rect posterior approach (either with direct LM score or Baum-Welch
LM posterior) are greater for Spanish than for English. This may
be due to the fact that the experimental condition in Spanish is read
speech while in English it is spontaneous conversation from meet-
ings.

Finally, we mention that, although the Baum-Welch LM posteri-
ors help improve the performance in the long linguistic context sce-
nario, this requires a forward-backward computation. On the other
hand, direct LM scores are easily integrated into the acoustic con-
fidence, and no extra lattice computation is required. In the case
of low-order LMs, this direct posterior confidence with direct LM
scores is good enough, and more efficient.

5. CONCLUSIONS
We attribute the success of the MLP-based confidence to three
things. (1) Acoustic confidence is a local score, which is highly
dependent on the current frame and its near neighbours; the neigh-
bouring frames are themselves highly correlated. The MLP network
is able to model this frame-wise dependency. (2) With sufficient
training data, the MLP structure can represent any posterior distri-
bution, whereas Gaussian-based systems converge to the assumed
model, instead of the true distribution. (3) Combined with the Baum-
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Fig. 5. DET curves for four posterior-based confidence measures.
P(Miss) and P(FA) are the miss rate and false alarm rate respectively,
as defined in the NIST STD 2006 evaluation plan [1].

Welch LM posterior, the local acoustic posterior might be efficiently
refined by the long-span linguistic confidence, thus becoming a
global posterior.
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