
Synthesis of fast speech with interpolation of adapted HSMMs and its
evaluation by blind and sighted listeners

Michael Pucher1, Dietmar Schabus1, Junichi Yamagishi2

1Telecommunications Research Center Vienna (FTW), Austria
2The Centre for Speech Technology Research (CSTR), University of Edinburgh, UK

pucher@ftw.at, schabus@ftw.at, jyamagis@inf.ed.ac.uk

Abstract
In this paper we evaluate a method for generating synthetic
speech at high speaking rates based on the interpolation of
hidden semi-Markov models (HSMMs) trained on speech data
recorded at normal and fast speaking rates. The subjective eval-
uation was carried out with both blind listeners, who are used to
very fast speaking rates, and sighted listeners. We show that we
can achieve a better intelligibility rate and higher voice quality
with this method compared to standard HSMM-based duration
modeling. We also evaluate duration modeling with the interpo-
lation of all the acoustic features including not only duration but
also spectral and F0 models. An analysis of the mean squared
error (MSE) of standard HSMM-based duration modeling for
fast speech identifies problematic linguistic contexts for dura-
tion modeling.
Index Terms: speech synthesis, fast speech, hidden semi-
Markov model

1. Introduction
It is well known that synthetic speech at very high speaking
rates is frequently used by blind users to increase the amount
of presented information. In data-driven approaches, however,
this may lead to a severe degradation of synthetic speech qual-
ity, especially at very fast speaking rates. The standard HSMM-
based duration modeling [1] is already able to model certain
non-linearities between normal and fast speech units since it
uses explicit state duration distributions and can thereby take the
duration variance of units into account. But for very fast speak-
ing rates this is not sufficient. We therefore propose a duration
control method using a model interpolation technique, where
we can continuously interpolate HSMMs for normal and fast
speaking rate. The HSMMs for fast speaking rate are adapted
from HSMMs for normal speaking rate. In addition to inter-
polation between normal and fast speaking rate, we can also
use extrapolation between models to achieve very fast speak-
ing rates that go beyond the recorded original speaking rates.
A conventional study [2] already showed that an HMM-based
synthesizer with interpolated duration models can outperform
a synthesizer with rule based duration model. Their models
were, however, based on the so called Hayashi’s quantification
method I and were theoretically different from our methods that
are based on HSMM interpolation and adaptation techniques,
which are available from the HTS toolkit today [3].

Some studies have shown that the complex duration
changes between normal and fast speech are present at several
linguistic levels [4]. Therefore we employ context-dependent
linear regression functions for the HSMM duration adaptation
to model the duration changes at different linguistic levels. The

Table 1: Three duration modeling methods used in our evalua-
tion.

Method Description
SPO–SPO+F Interpolation between SPO voice and

SPO voice with fast duration model.
SPO–SPF Interpolation between SPO voice

and SPO voice with fast duration,
spectrum, and F0 model.

SPO HMM-based duration modeling using
acceleration coefficient ρ.

contexts we used also include high-level linguistic features such
as syllable information, phrase information etc. The use of
HSMM duration adaptation has another advantage. It makes
online processing of the proposed duration control technique
possible since normal and fast duration models have the same
tying structure and we can straightforwardly perform the inter-
polation online. This also makes the analysis of the modeling
error of standard duration modeling for fast durations easier.

For the evaluation we carried out a comprehension and pair
wise comparison test with both blind and sighted listeners. We
confirmed that both groups of listeners preferred sentences gen-
erated with our method than the conventional method. The pro-
posed method could also achieve lower word error rates (WER)
in the comprehension test. The blind listeners were especially
good in understanding sentences at fast speaking rates (8-9 syl-
lables per second) compared to non-blind listeners.

2. HSMM Duration Modeling
2.1. Duration modeling methods

All synthetic voices used are built using the framework of a
speaker adaptive HMM-based speech synthesis system. De-
tailed description of the system is given in [5]. Note that our
model adaptation is a two-step approach: the first adaptation
is for speaker transformation and the second adaptation is for
speaking rate adaptation. First we trained an average voice
model using several background speakers from speech data at
normal speaking rate [6]. We then adapted the average voice
model to two Austrian German male speakers (SPO, HPO) us-
ing speech data having the normal speaking rates. In the same
way we also trained adapted models from speech data with fast
speaking rate. We call the adapted models for the fast speaking
rates SPF and HPF, respectively. As adaptation data we used a
phonetically balanced corpus consisting of approximately 300
sentences for normal and fast speaking rate uttered by each
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Figure 1: WFST-like illustration of duration models used for
TTS systems. Duration probabilities pi are also transformed to
target speakers during speaker adaptation.

speaker. Table 1 shows the three methods that were used in
the evaluation. SPO–SPO+F and SPO–SPF are the proposed
methods that use interpolations of adapted HSMMs.

To make the differences between the three methods clearer,
we explain the temporal structure of the HSMMs [7] and
its adaptation. In addition to observations such as the mel-
cepstrum and fundamental frequency, each semi-Markov state
has a stack of states with associated duration probabilities pi,
illustrated in Figure 1. The duration probabilities pi are char-
acterized by Gaussian pdfs, and the mean and variance of the
pdfs

pi(d) = N (d; µi, σ
2
i ). (1)

In the HSMM-based parameter generation [1], we use the mean
sequence (µ1, · · · , µN ) of the Gaussian pdfs corresponding to a
given input unit sequence as the most likely sequence. Here N
represents the number of states. The easiest and simplest way
to control duration is to manipulate the mean of each state using
the variance of the state

µ̂i = µi + ρσ2
i (2)

and to use a sequence (µ̂1, · · · , µ̂N ) as a state sequence for the
parameter generation. Here ρ is an acceleration coefficient and
ρ > 0 makes synthetic speech slower and ρ < 0 makes syn-
thetic speech faster.

Another way is to transform model parameters for the
Gaussian pdfs using a small amount of data for fast speech.
There are several possible ways for the transformation and here
we employ the CMLLR transform [5], which is given by

µfast
i = Aiµi + Bi, (3)

σ2 fast
i = A2

i σ
2
i . (4)

Here linear regression coefficients Ai and Bi are context-
dependent and they are tied through context decision trees hav-
ing a lot of linguistic questions. To produce speech at various
speaking rates, the adapted mean vectors are further interpo-
lated with the original mean vectors

µ̃i = (1 − w)µi + wµfast
i (5)

= (1 − w + wAi)µi + wBi, (6)

where w is the interpolation ratio to control the speaking rate.
This interpolation is performed along the state-dependent lin-
ear functions obtained from the normal and fast speech. Then
a sequence (µ̃1, · · · , µ̃N ) is used as a state sequence for the
parameter generation. The same idea may use other acoustic

Figure 2: Spectrum of fast sentence with duration interpolation
(SPO–SPO+F, top), normal duration (SPO, ρ = 0, middle), and
fast duration (SPO, ρ < 0, bottom).

features and system SPO–SPF uses this idea for all the features
(spectrum, F0, and duration). System SPO–SPO+F uses this
interpolation only for duration pdfs.

Figure 2 shows spectra for the utterance “Ich will keine Zeit
durch weitere nutzlose Bemühungen vergeuden (I do not want
to spend time on additional useless efforts.)”. Especially the
last word is squeezed with standard duration modeling of fast
speech (SPO), which makes it hardly audible. With interpola-
tion this word is much better modeled (top image). Through
interpolation we can achieve a better non-linear modeling of
duration since we take into account the duration changes from
normal to fast speech for contextually modeled units. Speech
samples for all three methods can be found on [8].

2.2. Comparison of adapted duration models

It is important for us to analyze the differences between dura-
tion values generated by (2) and (6). For such an analysis, the
acceleration coefficient ρk that is necessary to change from du-
ration µk (normal duration) to duration µfast

k (fast duration) may
be calculated by

ρk =
µfast

k − µk

σ2
k

. (7)

Using (7) , we can define the mean-squared-error of model k
that would be produced by using this acceleration coefficient
for all models (leaf nodes in the duration clustering tree) by
comparing fast duration models and durations produced with
ρk from normal duration models as follows:

ek =
1
M

M∑

i=1

((µi + ρkσ2
i ) − µfast

i )2. (8)

This value tells us something about the duration errors that a
model produces and thereby about the quality that we have
achieved in modeling that specific context. Furthermore we de-
fine the error for each non-terminal node n as the average error
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Figure 3: Top of the duration clustering tree. Nodes filled in a
darker shade of red have greater average error defined by Equa-
tion 9.

of all leaves under n:

ēn =

∑
k∈leaves(n) ek

|leaves(n)| . (9)

Figure 3 shows the top of the duration clustering tree with
the nodes colored according to their error (Equation 9) for
speaker SPO. Looking at the entire tree (which has 1897 leaves
and hence 1896 inner nodes) reveals that the subtree rooted at
the node labeled “R-Vowel” (“right phoneme is a vowel”) has
particularly many problematic models. Each node in the figure
is labeled with the corresponding question as well as the ratio
of the errors of its children, ei→no : ei→yes. For example, the
root node question “C-Vowel” asks whether the central phone
is a vowel. We see that the average error for non-vowels is
135 times as big as for vowels. Among the non-vowels, phones
which belong to the class “C-Neither F or L” (“central phone
is neither fortis nor lenis”) are particularly error-prone, and of
these, current unvoiced consonants (“C-Unvoiced Consonant”)
are not quite as bad.

During the construction of the tree, the class “C-
Neither F or L” was defined as containing the phones /l/, /m/,
/n/, /N/ and /h/. Of these, only /h/ belongs to the unvoiced
consonants, hence the central phone for all models under the
node labeled “R-vowel” must be one of /l/, /m/, /n/, /N/. We
can see how bad this subtree really is by looking at the cumula-
tive error made by all its leaves (without averaging): The sub-
tree rooted at “R-Vowel” accounts for more than 98% of the
total error in the whole tree, but it only accounts for about 13%
of the number of leaves.

For speaker HPO, we do not see such clearly distin-
guished subtrees, however the general trend of consonants hav-
ing greater average error is confirmed also here. This could be
due to more inconsistency of speaker HPO in terms of duration.

3. Evaluation
We evaluated two different male speaker’s voices namely SPO
and HPO. The duration modeling methods for one voice are
described in Table 1. We generated utterances with 7 differ-
ent durations using the standard HSMM-based synthesis dura-
tion method (SPO), interpolation between normal and fast du-
ration model (SPO–SPO+F), and interpolation between normal
and fast duration, spectrum, and F0 model (SPO–SPF). In the
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Figure 4: Syllables per second for SPO sentences.

Table 2: Overall word-error rate (WER) and sentence-error-rate
(SER) for blind and sighted listeners.

Listeners WER / SER in % # sent.
Blind listeners 19.5 / 57.4 108
Sighted listeners 24.4 / 70.4 216

pair wise comparison we compare the same utterance with the
same duration and speaker using different modeling methods.

For the evaluation we had 18 sighted listeners (24 to 55
years; 9 female / 9 male) and 9 blind listeners (28 to 56 years;
4 female / 5 male). Within the group of blind listeners we had
2 visually impaired listeners. The users first had to listen once
to 12 sentences and write down what they have heard (compre-
hension test). Afterwards they had to listen to pairs of sentences
and decide which sentence they prefer in terms of overall qual-
ity. In the pair wise comparison each pair was listened to at least
two times by some user.

3.1. Duration of prompts

The duration of prompts is determined by the interpola-
tion ratio and therefore depends on the speaker’s duration
model. As interpolation ratio we used the following values
[0.0, 0.4, 0.8, 1.0, 1.2, 1.3, 1.4]. With 0.0 and 1.0 no interpo-
lation is done and only the normal or fast duration model is
used. [1.2, 1.3, 1.4] are extrapolation ratios to achieve very fast
speaking rates. For the evaluation we had 12 different prompts.
Figure 4 shows how many syllables per second are realized for
the different sentences by speaker SPO. The fastest sentences
contain up to 9 syllables per second.

3.2. Comprehension

Table 2 shows the error rates for blind and sighted listeners.
Blind listeners are better in understanding fast speech than
sighted listeners. This can also be seen from Figure 5 where
we plotted the word-error-rates for the different interpolation ra-
tios. One can see that blind listeners are especially good at rec-
ognizing fast speech [1.3, 1.4] where the error rate for sighted
listeners is much higher. While the WERs for sighted listeners
are almost monotonically increasing, WERs for blind listeners
are flat from 1.2 to 1.4. Table 3 shows that in general we can
also achieve lower WERs using our interpolation method SPO–
SPO+F compared to the standard method.
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Table 3: Word-error rate (WER) and sentence-error-rate (SER)
per method.

Method WER / SER in % # sent.
SPO–SPO+F 16.4 / 61.1 54
SPO–SPF 21.1 / 66.7 54
SPO 23.2 / 66.7 54
HPO–HPO+F 24.3 / 66.7 54
HPO–HPF 25.3 / 63.0 54
HPO 26.3 / 72.2 54
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Figure 5: Word-error-rate for blind and sighted listeners per in-
terpolation ratio.

Other work [9] has shown that the error rate for non-blind
listeners increases fast from a rate of 10.5 syllables per seconds
onwards. In that study, comprehension was subjectively mea-
sured by asking listeners how much they could understand of
the text. As shown by Figure 4 and 5, the division between blind
and sighted listeners concerning understanding can already be
seen at around 8 syllables per second when using the objective
word error rate measure.

3.3. Pair wise comparison

Figure 6 shows the preference rates for the different methods
for all listeners. We see that the adaptive interpolation method
where just the duration model is interpolated outperforms the
other methods. SPO–SPO+F and HPO–HPO+F are signifi-
cantly different from the other two methods (p < 0.05). The
difference is smaller for the HPO voices, since these voices are
of a general lower quality than the SPO voices. This lower qual-
ity makes the subtle differences of duration modeling more dif-
ficult to perceive.

4. Conclusion and future work
We have presented a HSMM-based method for the synthesis of
fast speech that outperforms other standard methods on under-
standing and overall quality. Especially for blind users it is im-
portant to have high quality synthesis techniques for fast speech.
The adaptive method that we presented can be used with limited
amounts of fast speech adaptation data.

In future work we want to investigate the duration rates that
are used by blind users of speech synthesis in their everyday
use. Furthermore we want to analyze the error of duration mod-
eling on the basis of corpora not only with a comparison of com-
plete models. We also want to investigate the use of fast speech
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Figure 6: Overall pair wise comparison results per method for
speaker SPO (top) and HPO (bottom).

background models and the use of fast duration models from
one speaker for another speaker.
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