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Abstract

In speaker-adaptive HMM-based speech synthesis, there are
typically a few speakers for which the output synthetic speech
sounds worse than that of other speakers, despite having the
same amount of adaptation data from within the same corpus.
This paper investigates these fluctuations in quality and con-
cludes that as mel-cepstral distance from the average voice be-
comes larger, the MOS naturalness scores generally become
worse. Although this negative correlation is not that strong, it
suggests a way to improve the training and adaptation strate-
gies. We also draw comparisons between our findings and the
work of other researchers regarding “vocal attractiveness.”
Index Terms: speech synthesis, HMM, average voice, speaker
adaptation

1. Introduction

Until recently, developing a text-to-speech synthesis system for
a particular target speaker required a large amount of speech
data read from a carefully prepared script. However, with the
advent of HMM-based speech synthesis [1], statistical acous-
tic models for spectral, excitation, and duration features can
now be precisely adapted from an average voice model (derived
from other speakers) or a background model (derived from one
speaker) using only a very small amount of speech data from
the target speaker.

Recent experiments with speaker-adaptive HMM-based
speech synthesis have also demonstrated its robustness to non-
ideal speech data that have been recorded under varying con-
ditions and with varying microphones, that are not perfectly
clean, and/or that lack phonetic balance [2]. In fact, we have
demonstrated that we can create thousands of TTS voices from
non-TTS corpora such as ASR corpora [3, 4]. This technique
opens up new applications in various domains. For example,
medical voice banking or voice reconstruction for patients who
have, or are threatened, by throat cancer, or the creation of alter-
native communication aids for patients with conditions such as
Parkinson’s disease, whereby the patient’s original voice char-
acteristics can be preserved [5].

The many TTS voices we have built so fat are available
via an interactive online TTS demonstration system with a ge-
ographical interface'. The voices in this demonstration were
built using pre-defined training recipes for each corpus. Impor-
tantly, this demonstration provides an opportunity to compare
the quality of synthetic speech for many different speakers at
the same time.

Careful listening reveals that 1) the quality of synthetic
speech varies according to which corpus is used to train the
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average voice model, or according to the amount of adapta-
tion data used and 2) there are a few speakers whose synthetic
speech sounds worse than that of other speakers, even though
they have the same amount of adaptation data and from within
the same corpus.

With regard to the first issue, our previous analysis has
already shown that the minimum amount of adaptation data
required for reproducing speaker similarity to a certain level
varies by target speaker (and acoustic features) and ranges from
three minutes to six minutes [6] and also that the naturalness
of the synthetic speech generated from the adapted models is
closely correlated with the amount of data used for training the
average voice model [7]. We also know that gender-dependent
average voice models provide better speaker adaptation perfor-
mance than gender-independent average voice models for TTS
[7]. This directly explains the relatively low quality of voices
built from a small corpus (such as the RM corpus) since the
small corpus has neither a sufficient total amount of data to train
a good average voice model, or sufficient data per speaker to
perform high-quality adaptation.

The second phenomenon — those few speakers for whom
synthetic speech quality is much worse — is more interesting;
it is analogous to the familiar situation in ASR, where WER
varies widely across some speakers and is especially high for a
small number of speakers [8]. In this paper we investigate this
phenomenon from the point of view of TTS.

Initially we suspected the negative effects of recording con-
dition mismatch, because we have found that acoustic differ-
ences due to inconsistent recording conditions can be greater
than differences between speakers [3, 4]. During the analysis of
the recording conditions and sites, however, we stumbled upon
a correlation between the naturalness of synthetic speech and
the distance between the adapted speaker model and the aver-
age voice model.

2. HMM-based Speech Synthesis Systems
and Experimental Conditions

A speaker-adaptive HMM-based speech synthesis system com-
prises four main components: speech analysis, average voice
training, speaker adaptation, and speech generation.

In the speech analysis part, three kinds of parameters for
the STRAIGHT (Speech Transformation and Representation
by Adaptive Interpolation of weiGHTed spectrogram [9]) mel-
cepstral vocoder with mixed excitation (i.e., the mel-cepstrum,
log Fp and a set of band-limited aperiodicity measures) are ex-
tracted as feature vectors for the HMMs. In the average voice
training part, context-dependent multi-stream left-to-right tied-
state multi-space distribution hidden semi-Markov models are
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trained on multi-speaker databases in order to simultaneously
model the acoustic features and duration. A set of model pa-
rameters (mean vectors and diagonal covariance matrices of
Gaussian pdfs) for the speaker-independent MSD-HSMMs is
estimated using the EM algorithm. All EM re-estimation pro-
cesses utilize speaker-adaptive training based on constrained
maximum likelihood linear regression [10].

In the speaker adaptation part, the speaker-independent
MSD-HSMMs are transformed by using constrained structural
maximum a posteriori linear regression [7]. In the speech gen-
eration part, acoustic feature parameters are generated from
the adapted MSD-HSMMs using a parameter generation algo-
rithm that considers both the global variance of the trajectory
to be generated and trajectory likelihood [11]. Finally an ex-
citation signal is generated using mixed excitation (pulse plus
band-filtered noise components) and pitch-synchronous over-
lap and add. This signal is used to excite a mel-logarithmic
spectrum approximation filter corresponding to the STRAIGHT
mel-cepstral coefficients, to generate the speech waveform.

Using the framework above, we built gender-dependent av-
erage voice models from short term, long term (excluding the
speakers from very long term), development, and evaluation
subsets of the WSJO corpus [12]. The number of training sen-
tences was 10847 and 12151 sentences ( 21.1 hours and 24.6
hours of speech) respectively.

3. Visualization using multidimensional
scaling

A useful way to investigate the distribution of these 120 voices
is to visualize them in a low dimensional space derived from
the properties of the speech. There are several conventional ap-
proaches for visualizing speakers or speaking styles based on
acoustic models or acoustic features [13, 14]. A similar visu-
alization can be straightforwardly achieved using multidimen-
sional scaling (MDS) [15].

Although we already gave parts of this result in [3], the
low dimensional space is very important for the analysis of the
listening tests presented later in the current paper, so we re-
produce the visualisation results here using more voices and a
three-dimensional space.

Using all test sentences from the Blizzard Challenge
2008, we generated a set of speech samples from the gender-
dependent average voice models and 120 HTS voices, each of
which was based on 100 adaptation sentences. We then cal-
culated the average mel-cepstral distance between the speech
for all pairs of voices, placing the values in mel-cepstral dis-
tance tables. For simplicity, the unadapted duration models
of the average voice model were used so that the number of
frames of synthetic speech for each speaker was the same. Then
we applied a classic multidimensional scaling technique to the
mel-cepstral distance table and examined the resulting three-
dimensional space, which is shown in Figure 1.

The axes of this space do not have any pre-defined mean-
ing, but MDS attempts to preserve the pairwise distances be-
tween speakers given in the mel-cepstral distance table. In
other words, similar speakers will be close to one another in
this space. On examining the figure in detail, we noticed that all
three-characters codes (corresponding to the names of speak-
ers) distributed in the bottom part start with O and the codes for
speakers distributed in top part start with 4. The first charac-
ter of the names represents recording site for these speakers (0:
MIT, 4:SRI, and 2:TT) [12].
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Figure 2: Standard box-plots are presented for evaluation scores
of each site where the median is represented by a solid bar
across a box showing the quartiles; whiskers extend to 1.5 times
the inter-quartile range and outliers beyond this are represented
as circles. In addition mean scores and their standard deviation
are shown using arrows next to the box-plots.

It is apparent that recording conditions were not consis-
tent among the recording sites even though the same micro-
phone was utilised. Acoustic differences due to the inconsis-
tent recording conditions are greater than acoustic differences
between speakers.

4. Subjective evaluations of 59 adapted
voices and an average voice

A natural next step is to perform listening tests and to eval-
uate whether the acoustic differences due to the inconsistent
recording conditions cause fluctuation of the quality of syn-
thetic speech generated from speaker-adapted models based on
the same average voice model and using the same amount of
adaptation data.

We used the same adapted voices and the same average
voice used for MDS in the previous section and evaluated their
naturalness using a MOS test in which four test sentences were
randomly chosen from all the test sentences used for MDS
above. The number of listeners was 40.

The score distributions for each site are shown in Figure 2;
we cannot see any clear differences between the results for each
site. In fact, the Pearson product-moment correlation coefficient
between the mean MOS scores obtained in the evaluation and
the first axis of MDS (which corresponds to recording site) is
just -0.13. In summary: the MOS naturalness scores are not
correlated with recording site and the associated recording con-
dition differences. Interestingly, the second axis of the MDS
figure had somewhat stronger correlation with mean MOS (-
0.38) than the first axis.

Therefore we decided we should examine other possible
distances and focus on mel-cepstral distance between average
voice and each voice, which can be viewed as a transformed
distance of the voice. This correlation was stronger and it was
-0.48. The fluctuation of the quality of synthetic speech was
somewhat correlated inversely with mel-cepstral distance from
the average voice. Its 95% confidence intervals are from -0.20
to -0.68.

Figure 3 illustrates the relationship between naturalness
judgements in the listening test and the mel-cepstral distance
between the adapted voices and the average voice. We can
see that as the mel-cepstral distance from the average voice be-
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Female HTS voices and average female voice

Figure 1: Multidimensional scaling of 120 HTS voices trained on the WSJO corpus. The three characters at each point correspond to
the name of each speaker in the database. The left plot shows the the male adapted voices and male average voice and the right plot

shows the female adapted voices and female average voice.

Average Voice

Adapted Voices

Mean Opinion Score

T T T T T
2 3 4 5 6
Mel-cepstral distance between average voice and each voice [dB]

Figure 3: Scatter plot of mean MOS naturalness vs. mel-
cepstral distance from the average voice for 59 male speaker-
adapted voices and a male average voice model. Each point
represents either a male voice or the male average voice. A
linear regression and 95% confidence and prediction intervals
are also shown. For computation of the mel-cepstral distance
between the average voice and itself, a random-sampling-based
parameter generation algorithm [16] was used.

comes larger, the MOS score generally becomes worse. A simi-
lar correlation between transform distance and quality reduction
of output speech has been observed in voice conversion [17]. It
may come as a surprise to see that the average voice is rated as
the most natural by listeners (mean MOS score of 3.9.).

The correlation found is modest: it explains only 23% of
the behaviour of the adapted voices (the cause of the remain-
ing 77% of the variation is still unknown). However, it is still
an important factor to take into consideration when training av-
erage voice models from many speakers. The finding is also
consistent with the previous finding that gender-dependent av-
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erage voice models provide better speaker adaptation perfor-
mance than either gender-independent average voice models or
speaker-dependent models for TTS. In addition, for achieving
better quality synthetic speech, it also implies that we could use
multiple gender-dependent average voice models and choose
the nearest one as the basis for the adapted voice for particu-
lar target speaker (assuming sufficient data are available to con-
struct multiple average voice models). Note that the amount of
data for the average voice model is the dominant factor for the
quality of the resulting synthetic speech.

5. Average voice sounds more attractive
than individuals?

In addition to the transform distance mentioned in previous sec-
tion, we hypothesize that there is a psychological reason why
listeners prefer adapted voices which are closer to the average
voice.

In a well-known study, published in their paper “Attractive
Faces are Only Average” [18], Langlois and Roggman showed
that averaged faces are judged to be more attractive than indi-
viduals. In a similar fashion, a possible psychological expla-
nation for the higher naturalness score of the average voices in
our study is that attractive voices are also average. This is an
intriguing possibility with further implications for the statistical
parametric approach to speech synthesis, since the statistical av-
eraging effect, which is an acknowledged weakness of current
HMM-based speech synthesisers, might in fact have the poten-
tial to produce voices that sound more attractive than individu-
als.

A very recent psychoacoustic study by Belin and colleagues
[19], involving many speakers’ vowels and their averaged vow-
els, supports this hypothesis (for natural speech, not synthetic
speech). They found that their listening test scores for attrac-
tiveness are correlated with distance to the average vowel, as
shown in Figure 4.
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Figure 4: “In the logf0-logF1 space, Euclidean distance to mean
was negatively correlated to vocal attractiveness rating (r=-0.59,
adjusted R?=0.34, p<0.001).” This figure is taken from [19].

There are some differences between their experiments and ours:

e They used only vowels, whereas we used complete sen-
tences.

e We had only two average voices whereas they evaluated
various combinations of speakers for constructing sev-
eral average voices.

e They considered the Z score of attractiveness, rather than
MOS of naturalness.

e Log Fo/F; space was used instead of mel-cepstral space.

e There is a larger gap between the average voice and
adapted voices in our experiments. This may be ex-
plained by the recording condition inconsistency of our
data. Our average voice models are located at the cen-
tre of recording conditions rather than the centre of the
speakers due to the inconsistent recording conditions ob-
served in Fig. 1.

The striking similarity between our study and that of Be-
lin’s group, leads us to consider if there is a possibility that our
listeners were judging both vocal naturalness and attractiveness.
Whilst we cannot answer this question yet, there is already no
doubt that averaging across multiple speakers has a positive ef-
fect on the speech produced by the statistical parametric ap-
proach to speech synthesis.

6. Conclusions

In speaker-adaptive HMM-based speech synthesis, there are
typically a few speakers whose synthetic speech sounds worse
than that of other speakers who have the same amount of adap-
tation data and are from the same corpus. In this paper, we
presented an investigation into this fluctuation in quality which
found that, as mel-cepstral distance from the average voice be-
comes larger, the MOS naturalness score generally becomes
worse. Although the negative correlation found is not that
strong, we believe it gives a sufficient basis for developing
improved training and adaptation strategies for average voice
models. Furthermore, we have drawn comparisons with work
on “vocal attractiveness” and have identified an area worthy of
further investigation: the attractiveness of average voice-based
synthetic speech.
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