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Abstract
Our goal is to automatically learn a perceptually-optimal

target cost function for a unit selection speech synthesiser. The
approach we take here is to train a classifier on human percep-
tual judgements of synthetic speech. The output of the classifier
is used to make a simple three-way distinction rather than to es-
timate a continuously-valued cost.

In order to collect the necessary perceptual data, we syn-
thesised 145,137 short sentences with the usual target cost
switched off, so that the search was driven by the join cost
only. We then selected the 7200 sentences with the best joins
and asked 60 listeners to judge them, providing their ratings for
each syllable. From this, we derived a rating for each demi-
phone. Using as input the same context features employed in
our conventional target cost function, we trained a classifier on
these human perceptual ratings.

We synthesised two sets of test sentences with both our
standard target cost and the new target cost based on the classi-
fier. A/B preference tests showed that the classifier-based target
cost, which was learned completely automatically from modest
amounts of perceptual data, is almost as good as our carefully-
and expertly-tuned standard target cost.
Index Terms: speech synthesis, unit selection, target cost

1. Introduction
In previous work [1], we investigated the target cost used in the
Festival unit selection speech synthesis system, as a precursor
to the current work in which we have developed a technique
for automatically learning a target cost function from perceptual
data.

There have been a number of attempts to learn the target
cost for unit selection. In early work by Hunt and Black [2],
the weights in a conventional weighted-sum-of-factors target
cost function are learnt by linear regression, using the linguis-
tic context features as input variables and the acoustic distance
between natural and synthesised speech as the output variable.

Another approach to learning a target cost is to build a tree
which clusters the units in the database into acoustically simi-
lar sets, by querying their linguistic properties [3, 4, 5]. This
tree thus predicts acoustic qualities from only linguistic fea-
tures and, by controlling the tree depth, some generalisation is
achieved (i.e. not all linguistic features are queried along every
possible branch of the tree). The “cl-units” method of Black
and Taylor [5] does this, and uses the distance from the cluster
centroid as the target cost (i.e. the cluster centroid is considered
to be the ideal unit for the current linguistic context).

However, the use of natural target utterances and acous-
tic distance measures fails to acknowledge that there is always
more than one acceptable way to render a given utterance. It

is also overly restrictive: there will always be missing units in
terms of context feature combinations, but a missing unit is not a
problem if a perceptually equivalent unit exists elsewhere in the
database, and if we know how to select it based on its linguistic
features. The key challenge is to establish the relationship be-
tween the linguistic context features and perceptual acceptabil-
ity rather than acoustic similarity to somewhat arbitrary natural
target speech.

With a conventional weighted-sum-of-factors target cost
function using around 10 weights, a vast amount of perceptual
data would be required to learn the weights automatically [6].
Furthermore, these conventional cost functions are generally
linear combinations of factors, which is unlikely to be appro-
riate: the effects of the previous segment and syllable stress (for
example) probably do not combine in a linear way to contribute
to a unit’s acceptability in a given context.

But is it really necessary to place a fine-grained
continuously-valued cost on each candidate unit? It is widely
accepted that a single large error in the output speech will lead
to a very poor user rating, regardless of the quality of the re-
mainder of the utterance. Therefore, the primary goal during
synthesis should be (in combination with achieving impercep-
tible concatenation points) to have no unacceptable units in the
output, with a secondary goal of maximising the number of very
good units. This goal can best be achieved by a classifier rather
than a continuous function operating in a very sparsely popu-
lated high-dimensional input space.

Section 2 describes the collection of perceptual data re-
quired to train the classifiers. Section 3 describes experiments
with various classifier types and parameter settings. Section 4.1
describes how four SVNs constitute the new target cost func-
tion. Section 4 reports the results of two perceptual evaluations
of the new target cost function.

2. Collection of Perceptual Data

2.1. Pilot experiment

In a pilot experiment, we trained a target cost classifier for just
one phone in one particular context. Our perceptual data con-
sisted of a carrier sentence (“My name is Roger”) which was
synthesised using all 147,820 possible combinations of the di-
phones /n ei/ and /ei m/ found in our voice database. We se-
lected the 92 versions having nearly perfect joins (found by
shortlisting using the join cost, followed by final selection by
the authors) and had them rated by listeners. The classifiers
trained with these ratings worked very well for this particular
phone-in-context, but (as we would expect) did not generalise
well to other contexts, let alone to other phones.



2.2. Creation of Stimuli

In the main experiment, we required stimuli covering a wide
variety of phones in a rich set of contexts. We decided to use
short sentences so that we could ensure “nearly perfect” joins
throughout – i.e., with a join cost of nearly zero (we discuss
this further in section 5) – but a wide variety of context feature
mismatches. We paid listeners to mark any “bad” syllable – i.e.,
any syllable within which a problem occurred.

We synthesised 145,137 short sentences with the target cost
switched off, i.e. the search was driven by the join cost only.The
sentences were chosen from the British National Corpus, were
between two and four words long and did not contain numbers,
abbreviations or words not covered by our lexicon.

We knew from previous experiments that a mismatch in the
context features “boundary tone” or “emphasis” is always un-
acceptable to listeners, therefore we excluded these cases from
the stimuli candidates. We selected the 7,200 sentences with the
smoothest joins (33,546 syllables; 99,131 phones).

2.3. Perceptual Rating

The stimuli were presented on a web page, showing the syllab-
ified orthography with a check box under each syllable. The
listeners were able to play each stimuli as often as they wished
(although they were mostly played only once) and their instruc-
tions were to “mark every syllable which you think sounds
wrong” and if there was a problem at a syllable boundary, to
mark the syllable thereafter, or, if in doubt, both. Some words
were syllabified in a non-standard way, e.g. “clu -tter” instead
of “clut-ter”, so that if – in this example – something is wrong
with the “t”, there was no need to mark both syllables. Eight
pre-marked examples were given, along with an explanation for
each mark.

The advantage of a binary rating of syllables, as opposed
to MOS rating of phones, is that it is much quicker and can be
done by non-experts, as is does not require a phonetic transcrip-
tion. The disadvantage is of course that there is not a one-to-one
mapping between the perceptual acceptability of syllables and
the perceptual acceptability of their constituent demiphones.

We recruited 60 undergraduate students, very few of whom
were familiar with phonetics or speech synthesis. All used
headphones and were native English speakers. The 7,200 stim-
uli were split into 12 subsets of 600. Five listeners were allo-
cated to each subset, and each listener heard each of their 600
stimuli twice, in a random order. The rating session took each
listener on average 72 minutes.

Since there were 5 listeners per stimuli and two repetitions
per listener, each syllable received between 0 and 10 “bad”
marks. Rather than use this directly, we converted it to a bi-
nary distinction (“good” or “bad”); for most experiments, the
category boundary (threshold) was set to 5.5.

The repeated stimuli allowed us to measure the consistency
of each listener: with x being the number syllables marked in
only one of the duplicates and y the number syllables marked
in both, the ratio x/y can be used to judge the inconsistency of
the listener.

The percentage of syllables marked as bad by each indi-
vidual listener is an indicator for that listener’s generosity or
tolerance for imperfect synthesis. Figure 1 shows the listeners’
inconsistency and intolerance.

The mean±stddev of the ratio x/y is 1.4± 0.8; which cor-
responds to an F-score of 0.72 ± 0.06, assuming that for each
speaker all y were true positive identifications of bad syllables,
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Figure 1: Inconsistency (vertical axis – smaller values indi-
cate more consistent listeners) and intolerance (horizontal axis
– smaller values indicate more tolerant listeners) of individual
listeners.

half of the x are false positives and there were an equally large
number of false negatives.

3. Classification Experiments
3.1. Input Feature Vectors

Most of our classifiers were trained to predict the perceptual
acceptability of phones. Thus, each feature vector comprises
the set of 12 context features used in our standard target cost
for the target phone, the left candidate demiphone and the right
candidate demiphone.

For some of the classifiers we experimented with, the fea-
ture space must be real-valued. Therefore, we transformed the
categorical features into a 1-of-n numerical encoding (n being
the number of possible values for that feature). For phone iden-
tities we used a compact feature description: the first feature
is “vowel or consonant”. Vowels are described by 4 numerical
features for frontness, height, rounding and length (which take
a default value for consonants). Consonants are described by 14
binary features which fall into 3 orthogonal categories: place of
articulation (7), consonant type (6) and voicing (1).

We also added features to indicate which context features
mismatch between target and candidate, because this improved
performance in some cases. The length of the resulting feature
vector is 231.

For integration with Festival’s existing unit selection mod-
ule, it is necessary to place a target cost on each demiphone,
not each phone, since the basic unit employed is the diphone.
The input features then consist of the context features for target
and candidate demiphone plus the added mismatch features; af-
ter converting categorical to numeric features the feature vector
length is 151.

3.2. Target labels

The label of each phone or demiphone is simply taken from the
syllable it belongs to. This is a pessimistic assumption: that
every constituent phone or demiphone in a bad syllable is itself
bad. Listener scores above 5.5 (on a scale of 0 to 10) lead to the
label “bad” and scores lower than this lead to the label “good”.

In early experiments using the “Wagon” tool from the Edin-
burgh Speech Tools Library [7] to learn Classification and Re-
gression Trees (CARTs), we investigated the effect of using a
threshold other than 5.5 but could not improve results. Higher



threshold values mean that the phones or demiphones labelled
as “bad” are more likely to be consistently bad, but skews the
data and reduces the already small number of “bad” examples in
the training set. Attempts to account for individual listener’s in-
consistency and intolerance also did not improve the classifier’s
accuracy. Dropping the 50% least consistent listeners did give
small improvements, but again at the cost of data sparsity. Sub-
sequent experiments therefore used all the data and a threshold
of 5.5.

3.3. Comparison and Tuning of Classifiers

In the main experiment, we compared three classifiers: Classi-
fication Tree (a CART implemented using Wagon), Timbl [8],
which is basically an n-next-neighbourhood classifier, and Sup-
port Vector Machines (implemented using SVM Light [9]).

Settings and parameters were optimised semi-
automatically, although computational cost limited the
amount of tuning that was possible. Table 1 presents the best
results for CART, Timbl and SVM.

accuracy (%) CART Timbl SVM
phone /t/ 64.1 63.0 71.5
all phones 63.9 ± 8.2 56.2 ± 3.0 66.6 ± 7.5

Table 1: Comparison of three different classifiers. The means
and standard deviations here were calculated over the results
for individual phones (rather than over 9 folds).

The best result were for the SVMs and were achieved using
a polynomial kernel of order 2 and parameter s = 0.06. Since
training time grows quadratically with data size, we trained
classifiers for each individual phone in parallel and combined
the test results afterwards. By splitting the training data into
vowels and consonants i.e. training only two classifiers, the ac-
curacy increased from 66.6 ± 7.5 to 71.9 ± 1.5% – see Figure
2.

3.4. Size of Training Data

Collecting perceptual data is rather slow and expensive, so it
is important to consider how much data is required. Figure
2 shows the accuracies of the SVMs in two test conditions:
closed-set testing on the training data (“learn==test”) and open-
set testing with unseen test data (“learn!=test”).
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Figure 2: Effect of training data size on classification accuracy.
Arrows point to the estimated range of accuracy at 8 times the
amount of training data.

The errors bars show the means and standard deviations

computed over the folds of the data (9 folds for all data, 18 for
50% of the data, 36 for 25% and 72 for 12.5%). As expected,
the closed and open set accuracies converge with increasing
amounts of training data. The figure suggests that even with
the limited data we used, we are surprisingly close to conver-
gence. 72 person hours of perceptual data does not seem very
much, considering the vast number of possible context feature
value combinations.

4. Perceptual Evaluation of the New Target
Cost Classifier

After learning a classifier from the perceptual data and eval-
uating it using held-out data, we proceeded to implement it
within the Festival speech synthesiser, to replace the standard
weighted-sum-of-factors target cost. Two sets of test sentences
were synthesised: the 400 Blizzard 2008 test sentences [10] and
540 short sentences (two and four words) of the same type as the
training data.

4.1. Integration with Festival

As the units of speech in Festival are diphones, we needed clas-
sifiers for left and right demiphones, just as Festival’s default
target cost components check for both demiphones constituting
a diphone. Therefore we trained SVMs with the perceptual data
split four ways: left/right demiphones of vowels/consonants.
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Figure 3: SVM predictions for vowels, fold 1 of 9. The pre-
diction consists of the signed distance to the hyperplane; the
sign is the class label. Correlation between perceptual badness
and SVM prediction (positiveness) is -0.340215. Later, a third
class “fair” between “good” and “bad” was defined as signed
distances being between dn and dp.

For simplicity of integration with the existing Festival unit
selection architecture, the output of the classifier was trans-
formed into a continuously-valued cost.

As noted in Section 2.2, we excluded stimuli in which the
context features “emphasis” or “boundary tone” mismatch, be-
cause these are always perceptually bad. If a mismatch is found
in one of these features, a very large target cost of 999 (“very
bad”) is assigned and the SVM is not used. Otherwise, the out-
put of the appropriate SVM is transformed to a cost of either 0
(“good”) or 99 (“bad”). These costs are somewhat arbitrary but
achieve our primary goal of avoiding very bad units and sec-
ondary goal of maximising the number of good units.

Although correlation between distance to the hyperplane
and perceptual badness is weak, some gain may be had by using
an intermediate class of “fair” between “good” and “bad”; we
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Figure 4: Distribution of the class labels as means and standard
deviations, calculated over the 600 test sentences. The signed
distance to the hyperplane is translated into either 2 classes
(good/bad) or 3 classes (good/fair/bad). The ”very bad” class
label is assigned upfront when the emphasis or boundary tone
feature mismatches.

defined this class as signed distances between dn = −0.5 and
dp = 0.5 and assigned it a target cost of 9. In a pilot preference
listening test, this 3-way classification was preferred over the 2-
way classification. Figure 4 shows the distribution of the class
labels whilst synthesising 600 sentences, for both the candidate
and selected units, and for both the 2-way and 3-way classifiers.

We also investigated the effect of the target cost on the join
cost distribution. Figure 5 shows that the distributions are quite
similar. The largest difference is the frequency of zero costs
(which are assigned when two units are consecutive in the data
base) between 2-way and 3-way classification. In other words,
slightly more concatenations take place when using the 3-way
classification.

4.2. Listening Test

40 listeners were each presented with all 400 Blizzard 2008 test
sentences in random order (average length 8.4 words; maximum
15 words) in pairs consisting of the same sentence synthesised
using Festival with the default target cost and with the new tar-
get cost. Order of the pairs was randomised and the stimuli were
presented via a web page interface which allowed them to listen
repeatedly if they wished. All used headphones and were native
English speakers. The listeners were asked to base forced pref-
erence on overall quality. No further instructions were given.
On average, the listeners preferred the default target cost 53.4%
of the time. The difference is statistically significant, but small.

To examine the affect of the test sentence type, we con-
ducted a second listening test, using 540 short (2-4 words) sen-
tences of the same type as the training sentences. Each listener
was presented with half of the stimuli, repeated twice, in ran-
domised order. The average consistency (i.e. whether a listener
expressed the same preference for both repetitions of a pair) was
68.2% with a standard deviation of 6.5% and a range from 52%
to 83%. The average preference for the default target cost was
54.3%, almost the same as for the previous test set. The correla-
tion between the listener’s consistency and their preference for
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Figure 6: The 400 Blizzard-2008 test sentences were synthe-
sised with Festival’s default and new target costs. 40 listeners
were asked for their preference. The average preference for the
new target cost is 46.6%.

the default target cost is very low (0.27). We conclude that the
type of test sentence has no effect.

5. Discussion
The automatically-learned target cost is nearly as good as our
manually-tuned standard target cost. Considerable expertise
and time is required to tune a standard target cost; our method,
employing a classifier, is automatic and eliminates this effort,
albeit at the expense of collecting perceptual data.

There are several advantages of using a classifier trained
on perceptual data, compared to a weighted-sum-of-factors cost
function. It would be straightforward to incorporate any num-
ber of additional factors into the classifier whereas adding new
factors to a conventional cost function involves retuning the
weights; there is also a limit on how many weights can real-
istically be tuned by hand. The classifier approach also requires
less expertise and therefore this approach would be useful when
building voices in languages where speech synthesis expertise
is scarce, but where native listeners are available.
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