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ABSTRACT
A major challenge faced by a spoken term detection (STD)
system is the detection of out-of-vocabulary (OOV) terms.
Although a subword-based STD system is able to detect OOV
terms, performance reduction is always observed compared to
in-vocabulary terms. One challenge that OOV terms bring to
STD is the pronunciation uncertainty. A commonly used ap-
proach to address this problem is a soft matching procedure,
and the other is the stochastic pronunciation modelling (SPM)
proposed by the authors. In this paper we compare these two
approaches, and combine them using a discriminative deci-
sion strategy. Experimental results demonstrated that SPM
and soft match are highly complementary, and their combina-
tion gives significant performance improvement to OOV term
detection.

Index Terms— stochastic pronunciation modelling, soft
match, confidence estimation, spoken term detection, speech
recognition

1. INTRODUCTION

Spoken term detection (STD), as defined by NIST [1], in-
volves the search of large, heterogeneous audio archives for
occurrences of spoken terms. Partly due to the evaluation se-
ries run by NIST, STD is receiving much interest. A typical
STD system comprises an ASR subsystem for lattice genera-
tion and a STD subsystem for term detection, as illustrated in
Figure 1. State-of-the-art STD systems include those reported
in [2, 3, 4, 5, 6, 7].

Fig. 1. The standard STD architecture: a speech recog-
niser converts speech signals to an intermediate representa-
tion (e.g., phoneme lattices); a term detector searches this
representation for putative occurrences of the search terms;
a decision maker ascertains whether each putative detection
is reliable.

STD systems have difficulty in detecting out-of-vocabulary
(OOV) terms. It is estimated that 20,000 new English words
are coined each year: 50 per day [8]. These novel words
and terms cause OOV challenges for STD systems in three

aspects: uncertainty in pronunciations, high diversity in prop-
erties, and weakness in acoustic and language modelling;
ironically, these ‘challenging terms’ are likely search terms
in practice. If a STD system is unable to handle OOV terms
well, it will be less useful to end users, no matter how well it
works on in-vocabulary terms.

Typically, a phoneme-based system is used to handle
OOV terms, e.g., [9, 4]. In this approach, search terms are
converted to pronunciations by letter-to-sound (LTS) models,
and the pronunciations are searched for in a phoneme lattice
generated by a speech recogniser. We take this approach in
the work reported here.

In a previous study [10], we proposed a stochastic pronun-
ciation model (SPM) which makes use of multiple pronunci-
ations of OOV terms predicted by a joint-multigram model
[11], thus compensating for the pronunciation uncertainty
when unfamiliar words are spoken. Another approach to
treating the pronunciation uncertainty is using a “soft match”,
which allows some mismatch in lattice search. Both SPM and
soft match have shown significant performance improvement
for OOV term detection; however their respective properties
and relative advantages have not been extensively studied.

Another issue with the uncertainty treatment approaches,
both SPM and soft match, is that they usually suffer from a
flood of false alarms (FA), which tends to hurt the overall per-
formance, thus limiting the application of these approaches.
In our previous work [12], we presented a term-dependent
discriminative decision strategy which employs discrimina-
tive models to integrate various decision factors, especially
term-dependent factors, into a discriminative confidence mea-
sure, leading to a decision strategy that causes minimum deci-
sion errors. In this paper, we borrow the discriminative power
of this decision strategy to control the overwhelming false
alarms caused by SPM and soft match, and combine these
two approaches to gain further improvement.

In the rest of the paper, we first describe the configura-
tions of our experiments, and then compare the SPM and soft
match. In Section 4, we apply the discriminative decision to
SPM and soft match, and combine them using discriminative
confidence measures.

2. EXPERIMENTAL CONFIGURATIONS

We conducted experiments on meeting speech in the condi-
tion of individual headset microphones (IHM), and focused
on OOV terms in English, using phoneme-based ASR and
STD systems.

To ensure the OOV terms in the experiment represent truly
novel terms, we defined OOV terms strictly as those contain-
ing no words existing in the dictionaries of the ASR system
and the term detector and not appearing in training material
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for acoustic or language models. In order to simulate real
cases of newly-coined terms, we compared the AMI dictio-
nary (in active use and assumed to represent current usage)
and the COMLEX Syntax dictionary v3.1 (published by LDC
in 1996 and therefore historical from a STD perspective). We
selected 412 terms from the AMI dictionary that do not occur
in the COMLEX dictionary. We also chose another 70 artifi-
cial OOV terms that occur more frequently and are plausible
search terms. This results in 482 search terms having a total
of 2736 occurrences in the evaluation data. We purged these
terms from the system dictionary and all training speech and
text data.

We trained acoustic models (AM) and language models
(LM) on the corpora used by the AMI RT05s system [13].
After OOV term purging, there were 80.2 hours of speech for
AM training and 521M words of text for LM training. The
development set was the RT04s dev set, which contains 67
OOV terms for system development; the evaluation set con-
sisted of the RT04s and RT05s eval sets and a new meeting
corpus recorded recently at the University of Edinburgh in the
AMIDA project, amounting to 11 hours of speech, containing
all the OOV terms.

39-dim MFCC features were used with cepstral mean
and variance normalisation (CMN + CVN); 3-state triphone
HMMs and 6-gram phoneme LMs were employed. HTK was
used to train acoustic models and conduct phoneme decoding;
the SRI LM toolkit was used to train graphone and phoneme
n-gram models. The term detector was implemented with Lat-
tice2Multigram provided by the Speech Processing Group,
FIT, Brno University of Technology. Word-dependent thresh-
olds were applied to improve decision quality [3, 14]. STD
performance is reported in terms of ATWV [1]. Detection
Error Tradeoff (DET) curves are used to show behaviour at
different hit/FA ratios.

3. STOCHASTIC PRONUNCIATION MODELLING
AND SOFT MATCH

3.1. Stochastic pronunciation modelling (SPM)

The basic idea of SPM [10] is to employ multiple pronun-
ciations predicted by a joint-multigram model in OOV term
detection. For a clear description, we first define a detection
d as a tuple

d =
(
K, Q, s = (t1, t2), va, vl, . . .

)
(1)

where K denotes the search term, Q denotes its pronuncia-
tion, and s represents the speech segment from t1 to t2 within
which the detection resides. va and vl are the acoustic likeli-
hood and language model score respectively. Other informa-
tive factors could be included in d, as denoted by “. . .”.

Then the confidence score of a detection d is written as
Equation 2

cfp(d) = (1− γ)cf (d) + γcp(d) (2)

where γ is an interpolation factor optimised with the develop-
ment set, cp(d) is a pronunciation confidence, calculated as a
posterior probability of the pronunciation when predicted by
the joint-multigram model,

cp(d) = p(Q|K) (3)

and cf (d) is a lattice-based confidence given by Equation 4,

cf (d) = p(Kt2
t1 , Q(d)|O) (4)

=

∑
ζK

p(O|ζK ,Kt2
t1 , Q(d))p(ζK ,Kt2

t1 , Q(d))
∑

ζ p(O|ζ)p(ζ)
(5)

where Kt2
t1 denotes the event that K occurs between frame

t1 and t2 of speech O, ζ is any complete path in the lattice,
and ζK is any complete path passing through the partial path
representing the detection of K.

In the implementation, all the possible pronunciations
predicted by the joint-multigram model are searched within
the lattices, and all putative detections are collected with
confidence scores measured according to Equation 2.

3.2. Soft match

Soft match is another approach widely used to handle pronun-
ciation uncertainty. The basic idea is to allow some mismatch
between the lexical form of the search term and the detected
form in the lattice. To extend our discussion to soft match, we
write detection d as

d =
(
K, Q, Ql, s = (t1, t2), va, vl, . . .

)
(6)

where Ql denotes the detected form in the lattice.
Similar to the reasoning behind SPM, the confidence

score of a detection is written as a linear interpolation

cfm(d) = (1− ν)cf (d) + νcm(d) (7)

where ν is an interpolation factor optimised with the develop-
ment set, and cm(d) is a match confidence of the lexical form
and the detected form, derived from an acoustic confusion
matrix.

In the implementation, all the putative detections that
meet some ‘mismatch constraints’ are collected, with confi-
dence scores measured according to Equation 7.

3.3. Experimental results

Experiments were conducted with SPM and soft match indi-
vidually. The baseline system used the 1-best pronunciation
predicted by the joint-multigram model. In the SPM-based
system, the maximum number of predictions were limited to
50 for sake of efficient computation; in the soft match-based
system, only one substitution was allowed in term search, as
allowing more mismatches produced too many false alarms
without additional performance gain.

Table 1 shows the experimental results. We see that both
SPM and soft match substantially improved the STD perfor-
mance in terms of ATWV. A t-test shows that and both im-
provements are statistically significant (p < 0.01). Another
observation is that the soft match approach achieved better
performance in terms of ATWV, although it is not the case
in terms of max-ATWV. This looks like a tuning issue, if we
notice that the interpolation weight ν is highly biased .

The DET curves shown in Figure 2 reveal more informa-
tion. We can see the soft match-based system performs the
best with a high FA rate, but does not work well when high
precision is crucial. In contrast, the SPM-based system pro-
vides a consistent performance improvement with a range of
precision values. This behaviour can be attributed to the pho-
netic constraints imposed by the joint-multigram model when
predicting alternative pronunciations.
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System γ/ν ATWV max-ATWV

Baseline -/- 0.2761 0.2770
SPM 0.7/- 0.3153 0.3303
Soft match -/0.9998 0.3275 0.3300

Table 1. The STD results with SPM and soft match. max-
ATWV is the maximum ATWV with an ideal decision thresh-
old; γ and ν are interpolation weights for SPM and soft match
respectively.
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Fig. 2. The DET curves of the baseline system, SPM-based
system and soft match-based system.

4. DISCRIMINATIVE DECISION-MAKING FOR
SPM AND SOFT MATCH

4.1. Discriminative decision-making

A critical problem of the uncertainty treatment approaches,
both SPM and soft match, is that they often generate a
large number of false alarms, increasing the difficulty of
the decision-making task. To improve the detection perfor-
mance, we need a more powerful decision strategy that can
pick up correct detections from the flood of false alarms.

In a previous study [12], we have proposed a discrimina-
tive decision strategy which utilises discriminative models to
integrate some term-dependent factors into classification pos-
terior probabilities, thus enhancing the discriminative power
of the decision. We can use this technique to control the false
alarms introduced by the uncertainty treatment.

Specifically, we want to build a mapping function f which
converts some decision factors into a discriminative confi-
dence measure which is in fact the classification posterior
probability. For the SPM-based system, the function has the
form

cdisc(d) = f(cfp(d), cf (d), cp(d), R0, R1) (8)

where cdisc(d) represents the discriminative confidence of de-
tection d, and cfp has been defined in Equation 2. R0 and R1
are two occurrence-derived term-dependent factors defined as
follows,

R0(K) =
∑

i cf (dK
i )

T
(9)

and

R1(K) =
∑

i (1− cf (dK
i ))

T
(10)

where dK
i is the i-th detection of term K, and T is the length

in seconds of the audio.
Similarly, the discriminative mapping function for the soft

match-based system is defined as follows,

cdisc(d) = f(cfm(d), cf (d), cm(d), R0, R1) (11)

where cfm is defined as in Equation 7.

4.2. Detection combination

An advantage of the discriminative decision approach is
that the scores from different systems are normalised to be-
come classification posterior probabilities, and therefore can
be merged directly. Supposing a term is hypothesised as
detection d1 and d2 by two systems respectively, and the
hypothesised detections are overlapped, we then merge them
as a single detection d which has the earliest and latest hy-
pothesised start and end times, and a confidence computed as
Equation 12,

cdisc(d) = 1− (1− cdisc(d1))(1− cdisc(d2))α (12)

where α is a tunable scale factor. Note that detections from
individual systems are duplicated to the final result directly,
along with the confidence scores. A useful property of the
discriminative confidence-based combination is that the con-
fidence score of the merged detection is still discriminative.

4.3. Experimental results

We experimented with two alternative discriminative methods
to construct the discriminative mapping function f : a multiple
layer perceptron (MLP) and a support vector machine (SVM)
[15]. To prevent data sparsity, STD experiments were first
conducted on the development set with both OOV terms and
in-vocabulary (INV) terms. Afterwards, each detection was
labelled according to whether it was a hit or a false alarm,
and these were employed to train the MLP and SVM. In ex-
periments, we found that the SVM model worked better with
SPM, and the MLP worked better with soft match. This may
be attributed to the bias training with SPM1, and the robust-
ness of the SVM against this problem.

Table 2 shows the experimental results of the SPM and
soft match -based systems with the discriminative decision,
as well as their combination. We can see that the discrimina-
tive decision strategy improved both the SPM and soft match
-based systems, although the improvement is more substantial
for the soft match-based system. In addition, when these two
systems are combined, further improvement was obtained. A
t-test shows that the combined system outperformed both in-
dividual systems significantly (p < 0.01).

The DET curves are shown in Figure 3. This confirms
again that the discriminative decision approach enhances the
soft match-based system more than the SPM-based system.
Again, this may be due to the biased training with SPM.

1The discriminative models were largely trained on INV terms for which
the SPM tends to model very differently from OOV terms, thus providing
biased training data.
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System ATWV Model max-ATWV

SPM (disc) 0.3235 SVM 0.3352
Soft match (disc) 0.3379 MLP 0.3409
SPM (disc)+soft match (disc) 0.3593 - 0.3604

Table 2. The STD results of the SPM and soft match -based
systems with discriminative decision, as well as their combi-
nation.
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Fig. 3. The DET curves of the SPM-based system and soft
match-based system with discriminative decision, as well as
their combination.

5. CONCLUSIONS

We compared two approaches, SPM and soft match, for
dealing with the pronunciation uncertainty of OOV terms in
spoken term detection, and employed a discriminative deci-
sion strategy to control the overwhelming false alarms with
both approaches. Experimental results demonstrated that the
SPM approach works well with a low FA rate while the soft
match approach is superior with more false alarms. Applying
the discriminative decision enhanced the soft match-based
system significantly, and the discriminative confidence-based
combination of SPM and soft match gave additional and
significant performance improvement.
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