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Regularized Subspace Gaussian Mixture
Models for Speech Recognition

Liang Lu, Arnab Ghoshal, Member, IEEE, and Steve Renals, Senior Member, IEEE

Abstract—Subspace Gaussian mixture models (SGMMs) pro-
vide a compact representation of the Gaussian parameters in an
acoustic model, but may still suffer from over-fitting with insuffi-
cient training data. In this letter, the SGMM state parameters are
estimated using a penalized maximum-likelihood objective, based
on £; and £ regularization, as well as their combination, referred
to as the elastic net, for robust model estimation. Experiments
on the 5000-word Wall Street Journal transcription task show
word error rate reduction and improved model robustness with
regularization.

Index Terms—Acoustic modeling, £, /£,-norm penalty, elastic
net, regularization, sparsity, subspace Gaussian mixture models.

I. INTRODUCTION

COUSTIC modeling for large vocabulary speech recog-

nition often needs to address the problem of robust model
estimation from limited acoustic data. As such, there has re-
cently been a renewed interest in regularization approaches to
address the problem of data sparsity and model complexity.
For instance, Sivaram et al. [1] introduced an approach to ob-
tain sparse features from an auto-associative network using an
£7-norm regularization function, and Sainath et al. [2], [3] com-
bined ¢; and ¢ regularization to obtain a sparse exemplar-based
representation for phoneme recognition. Regularised maximum
likelihood linear regression (MLLR) for speaker adaptation is
proposed in [4].

Conventional automatic speech recognition (ASR) systems
use hidden Markov models (HMMs) whose emission densities
are modeled by mixtures of Gaussians. The subspace Gaussian
mixture model (SGMM) [5] is a recently proposed acoustic
modeling approach for ASR, which has been demonstrated to
outperform conventional systems while providing a more com-
pact model representation [5], [6]. Similar to the joint factor
analysis (JFA) model for speaker recognition [7], the SGMM
uses a globally shared model subspace to capture the major
model variations such that the Gaussian parameters in each
HMM state are inferred subject to this subspace constraint, as
opposed to the conventional approach of direct estimation. This
leads to a significant decrease in the total number of parameters.
Povey and coworkers [6] used maximum likelihood estimation
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(MLE) to train the state-specific and the global subspace pa-
rameters. While this approach works well in practice, it may
still lead to overfitting with insufficient training data, despite
the inherent compactness of the model.

In this letter, we investigate the regularized estimation of
state-specific parameters in the SGMM acoustic model, by pe-
nalising the original maximum likelihood (ML) objective func-
tion using a regularization term. We investigate ¢; - and #>-norm
regularization [8] in this context, as well as a combination of ¢;
and /5, sometimes referred to as the elastic net [9]. After giving
a brief overview of the SGMM acoustic model in Section II,
we describe the use of regularization for SGMM state vector
estimation in Section III, and the optimization of such regu-
larised objective functions in Section IV. Finally, in Section V,
we present experiments on the 5000-word Wall Street Journal
(WSJ-5k) speech transcription task.

II. OVERVIEW OF SGMM ACOUSTIC MODEL

The basic form of the SGMM acoustic model can be ex-
pressed using the following equations [5]:

o
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where 0; € R¥ denotes the t-th F'-dimensional acoustic frame,
p(o¢|j) is the emission density function for j-th HMM state
modelled by a GMM with C' Gaussians. v; € R? is referred
to as the state vector, where S denotes the subspace dimen-
sion. The matrix M = (Mf, . .,Mg)T of size CF x §
(typically § <« C'F') spans the model subspace for Gaussian
means and the CI" x 1 vector w = (Wf, ceey wg)T denotes
the weight projection vector from which the mixture weights
are derived. Together with M and w, the covariance matrices
Y = {3;,..., X} are globally shared between all the HMM

The training of SGMM acoustic model can be decoupled into
two main stages: the estimation of the globally-shared param-
eterset@; = {M, w, X} and the estimation of the state-specific
parameters 83 = {vi,..., v} where J is the total number of
states. Povey et al. [6] presented an EM algorithm to estimate
these two interdependent parameter sets using an ML criterion.

Extensions to this basic model are also presented in [5], [6]
which include substate splitting and speaker-specific subspaces.
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In this letter, we use substate splitting, where each state j is
represented by a mixture of state vectors v;,,, such that

ZWj (&
p(0f|J) = Z Gime Z wjmc-/\/r(ot“l'jmcv EC) (4)
m=1 e=1

Although such a formulation significantly reduces the total
number of parameters [6], ML training may still suffer from
overfitting with insufficient training data. This is especially true
for the state-dependent parameters, as the amount of acoustic
data attributed to each state tends to be small. To be specific,
the log-likelihood function of a particular (sub-)state vector v
is approximated by a quadratic funciton which comes from the
EM auxiliary function of state vectors as [6]

1
logp(O|v.8:) ~ —§VTHV + b’y + const (5)

where O denotes the set of all acoustic observations; b is a
S-dimensional vector and H is a § x § matrix, representing
the first- and second-order statistics respectively.! Although the
state vectors are normally low-dimensional, the amount of data
for computing the statistics H and b may still be insufficient.
Some heuristic approaches may be applied, for instance H and
b may be smoothed by the global statistics:

H=H + 7H", b= b+ 7h*™ (6)
where H*”* and b*™ denotes the smoothing term calculated
based on all the HMM states (see [10] for details), and 7 € R is
the tuning parameter. Povey et al. [6] also discuss some numeric
controls to tackle the poor condition of H. In this letter, we
address the problem using an explicit regularization function.

III. REGULARIZED STATE VECTOR ESTIMATION

To regularize the estimation of the state vectors, we introduce
an element-wise penalty term to the original ML objective func-
tion in order to smooth the output variables, giving

v = arg maxlog p(O|v.01) — Jr(v). @)

Jx(v) denotes the regularization function for v parametrized
by A. We may interpret .Jy(v) as a negative log-prior for the
state vector, in which case we can interpret (7) as a MAP esti-
mate. However, in this letter, we treat the problem more in terms
of the design and analysis of regularization functions, rather
than giving an explicit Bayesian treatment as used in JFA-based
speaker recognition where Gaussian priors are applied to both
speaker and channel factors [11].

We may formulate a family of regularization penalties in
terms of a penalty parameter A, and an exponent ¢ € R:

Ia(v) = /\Z ;|4 st A>0. 3)

ITf the state is split, (5) should be the objective function of substate vec-
tors—regularization is employed at the substate level in this work.
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The case ¢ = 1 corresponds to £;-norm regularization, some-
times referred to as the lasso [12], and the case ¢ = 2 corre-
sponds to £5-norm regularization, which is referred to as ridge
regression [8] or weight decay.

Both #;- and £2-norm penalties perform an element-wise
shrinkage of v towards zero in the absence of an opposing
data-driven force [8], which enables more robust estimation.
The #;-norm penalty has the effect of driving some elements
to be zero, thus leading to a kind of variable selection, and
inspiring its application in sparse representation of speech
features [1], [2]. It is possible to seek a compromise between
the /1 and #5 penalties by simply setting 1 < ¢ < 2 which is
sometimes referred to as a bridge penalty. However, the non-
linearity of the bridge penalty brings increased computational
complexity. Alternatively, the ¢1- and £s-norm penalties can
both be applied, as in elastic net regularization [9]:

J,\(V) =X\ Z ‘U7| + Ao Z ‘Uq

2 2

s.t. )\17 Ag 2 0. (9)

2

2

This is much less computationally demanding than the bridge
penalty. In this letter, we investigate the 1 -norm, £5-norm and
elastic net regularization for the estimation of SGMM state vec-
tors.

IV. OPTIMIZATION

Given the regularized objective function for state vector es-
timation (7), a closed form solution is readily available for the
£3-norm penalty:

1
v = arg maxfivTHV + bV = AlIv]le,
=(H+ D) 'b.

However, there is no such closed form solutions for the £; -norm
and elastic net penalties. In both the optimization and signal pro-
cessing fields, there have been numerous approaches proposed
to solve the #1 -norm penalty problem and here we adopt the gra-
dient projection algorithm of Figueiredo et al. [13]. The same
approach may be applied to the elastic net penalty as it can be
formulated in terms of the #; penalty:

1
v = argmaxf§vT(H + XDV +bTv — A[v]le,  (10)

given the regularization parameters A; and Ao. A proper scaling
factor should applied to the result of (10) to get the exact elastic
net solution, but we did not do it in this work which corresponds
to the naive elastic net [9].
Expressing (7) with the #; penalty results in the following
objective function:
V:argn&n %VTHV—bTV-i-/\HVH@l, A>0. (1D
As the derivative of the objective function is not continuous,
which makes the search of global optimum difficult, we intro-
duce two auxiliary vectors x and y such that:

x>20y=>0 (12)

vVv=X-Y%,
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where x = [v]; which takes the positive entries of v while
keeping the restas 0, i.e., z; = max{0,v;} foralli =1,...,S.
Similarly, y = [—v]+. In this case, (11) can be rewritten as

1
(X,¥) = argmin §(x -y)'H(x - y)
x.y
—-bl(x—y)+ Mix+ A1ly

$.x20,y>0 (13)

where 15 denotes an S-dimensional vector whose elements are
all 1. We can reformulate (13) further as a more standard bound-
constraint quadratic program

1
Z = arg min EZTBZ +cfz st z>0 (14)
where we have set
x -b H -H
z—[y],c—/\12s+[b],andB—[_H H}

The objective function (14) does not suffer the nonlinearity
problem of the original objective function (11), and its gradient
is readily available as

G(z)=Bz+c (15)
which forms the basis of the gradient projection algorithm (see
[13] for details).

The regularization parameters in (8) or (9) should vary
according to the size of training data and the model complexity,
however, in order to simplify the model training procedure,
we adopt global and constant regularization parameters in this
work. Since the state vector v; and the subspace parameters are
interdependent, the shrinkage of state vectors by regularization
may be undone by a corresponding scaling of M or w. This can
be addressed by the renormalizing the phonetic subspaces, as
described in [10, App. K], such that the state vectors v; always
have unit variance after each iteration.

V. EXPERIMENTS

We use the WSJ-5k data for our speech transcription exper-
iments. We follow the setup described in [14]. The training set
contains 7137 utterances with a total duration of about 14 hours
(after removing silence). For testing, we use a subset of the
WSJ1-5k development set obtained by deleting sentences with
out-of-vocabulary words giving a total of 248 sentences from
ten speakers. We use the standard 5 k nonverbalized punctua-
tion bigram language model (LM) for decoding. Standard 13-D
MFCC + A + AA features were used with cepstral mean and
variance normalisation. The following results were obtained by
tuning the LM scaling factor and word insertion penalty to get
the best word error rate (WER).

A. Baseline System

We first train a conventional HMM-GMM baseline recog-
nizer using the HTK speech recognition toolkit [15]. The base-
line system has 3093 tied cross-word triphone states, each with
a 16-component GMM with diagonal covariance. Our baseline
result of 10.3% WER on the test set is comparable to the 10.48%
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TABLE I
WORD ERROR RATES OF SGMM ACOUSTIC MODEL WITH
AD-HOC SMOOTHING OR RENORMALIZATION, S = 40

GMM baseline: 10.3
SGMM with ad-hoc smoothing or renormalization

#Substates | R(v) 7=0 =5 7=10 7=20

3k 9.7 9.8 9.9 10.0 10.1
4.5k 9.7 9.6 9.7 9.7 9.8
6k 9.7 94 9.4 9.5 9.6
9k 9.2 9.1 9.2 9.2 9.2
12k 9.0 8.8 8.9 9.1 9.1
16k 8.8 8.6 8.8 8.9 8.6
20k 8.8 8.7 8.7 9.3 8.9
24k 8.3 8.8 8.6 9.1 8.8
28k 85 8.7 8.7 9.1 8.8
32k 8.7 9.0 8.5 9.4 9.7

WER reported in [14] using a similar configuration. Starting
from the HTK baseline system, we train the SGMM system ac-
cording to the recipe using the Kaldi software described in [6],
using 400 Gaussian components in the universal background
model (UBM) and 40-D phonetic subspace (i.e., S = 40). State
splitting was applied to increase the number of substates for
large model capacity. The best performance of SGMM base-
line is 8.6%, which gives more than 15% relative improvement
compared to the conventional system.

B. SGMM Results With Smoothing and Renormalization

We first compare the performance of ad-hoc smoothing
shown in (6). The results are given in Table I for different
values of the smoothing parameter 7. We also present the re-
sults by renormalization denoted as R(v) in Table I. While we
do not observe much improvements from the ad-hoc smoothing
approach, from the results of using a small smoothing term
(tr = 3) compared to the nonsmoothed case (7 = 0), the
smoothing terms can indeed help to address the overfitting
issue, albeit rather mildly. Renormalization, however, is bene-
ficial to both system performance and model robustness. While
theoretically, renormalization does not change the model, in
practice it makes a difference due to issues like numerical
stability of the updates, flooring, condition limiting of matrices,
etc.

C. SGMM Results With Regularization

Here the regularization is applied at the substate level for sys-
tems with substate splitting. The regularization parameter is set
to be global and constant for different numbers of substates,
and except for regularized estimation of the substate vectors,
the SGMM training follows the recipe in [6].

Table IT shows the results of regularization with £1, £5 as well
as elastic net penalty for systems with and without renormaliza-
tion. For the systems without renormalization, the regularization
parameters are set to be ten for all £, £5 and elastic net sys-
tems (i.e., A1 = A2 = 10 in (9)). Compared to the baseline, the
SGMM system with regularization is less likely to suffer from
overfitting, as the best results are achieved by models with large
capacity, and also obtain moderate improvement, which agrees
with the argument of regularization in this letter. We do not ob-
serve a significant difference between £; and £>-norm penalty in
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TABLE 11
COMPARISON OF SGMM ACOUSTIC MODEL WITH REGULARIZED
(SUB-)STATE VECTOR ESTIMATION), 5 = 40

#Sub | without renormalization  with renormalization
-states | - 01 12 eNet - 0 o eNet
3k 9.8 97 99 99 9.7 102 9.7 99

terms of performance, and elastic net do not give further gains.
In our experiments, #; penalty does not give a sparse solution
when the number of substates is small, however, with further
substate splitting, a considerable amount of substate vectors are
driven to be sparse, e.g., the proportion of zero entries can be
10%-20% for some of them.

With renormalization, the regularization is still efficient in
avoiding model overfitting with larger models, as shown by the
results in Table II. However, we do not observe performance
gains in this case. This shows that, in the previous setting, reg-
ularization was providing better performance by improving the
numerical stability of the updates. It is worth noting that with
renormalization, the regularization parameters need to be much
smaller, for example we use Ay = Ay = 2 for these experiments.
Also, the system is more sensitive to the choice of the reg-
ularization parameters. This corroborates with the assumption
that without renormalization, the updates of the globally-shared
parameters M and w can ameliorate over-penalization of the
state-vectors to an extant.

D. Extensions

In this letter, we focused on the regularized estimation of the
state-dependent parameters. However, this approach can be ex-
tended to the estimation of the global shared parameters, i.e., M,
w and X, which we will explore in future work. As in our exper-
iments, we observe that except for the state vectors, these state
independent parameters may also suffer from the data sparsity
problem which limits the model capacity, especially for higher
dimensional subspaces.

Table III shows the results of SGMM model with #;-norm
regularization (without renormalization), in which the dimen-
sion of state vector is increased to 60. Compared to the 40-D
subspace SGMM systems in Table II, we do not achieve any
improvement but notable degradation for both baseline and #;
regularized systems, which is partly due to the poor estimation
of the globally shared parameters. Based on the approach pre-
sented in this letter, extending the regularized estimation to the
state independent parameters is not difficult, as we can refor-
mulate the objective functions of these parameters into their
quadratic forms, by which the code used for state vector reg-
ularization can be shared.
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TABLE III
RESULTS OF SGMM SYSTEM WITH £; -NORM REGULARIZATION, S = 60

#Sub-states | 3k 45k 6k 9k 12k 16k 20k
Baseline 96 95 91 93 92 92 93
£1-norm 96 92 90 90 90 89 89

VI. CONCLUSION

In this letter, we have investigated regularized state model
estimation for the subspace GMM acoustic model. Given the
original ML based objective function, we added regularization
penalties based on the #; -norm and the #5-norm, as well as their
combined form, the elastic net. From our experimental results
on WSJ-5k speech transcription task, we have observed reduc-
tions in word error rate and improved model robustness by all
the three types of regularization. While the performance gains
are found to be mostly due to improved numerical stability of the
updates, which can also be achieved by renormalizing the pho-
netic subspaces, regularization is shown to prevent overfitting
with larger models. This may prove helpful in training acoustic
models with lesser resources. In future, we plan to study the ef-
fect of regularization on the global subspace parameters, as well
as in a low resource setting.
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