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ABSTRACT

In this paper we introduce a new cepstral coefficient extraction
method based on an intelligibility measure for speech in noise, the
Glimpse Proportion measure. This new method aims to increase
the intelligibility of speech in noise by modifying the clean speech,
and has applications in scenarios such as public announcement and
car navigation systems. We first explain how the Glimpse Propor-
tion measure operates and further show how we approximated it
to integrate it into an existing spectral envelope parameter extrac-
tion method commonly used in the HMM-based speech synthesis
framework. We then demonstrate how this new method changes
the modelled spectrum according to the characteristics of the noise
and show results for a listening test with vocoded and HMM-based
synthetic speech. The test indicates that the proposed method can
significantly improve intelligibility of synthetic speech in speech
shaped noise.

Index Terms— cepstral coefficient extraction, objective mea-
sure for speech intelligibility, Lombard speech, HMM-based speech
synthesis

1. INTRODUCTION

This work focuses on compensating for background additive noise
by increasing the intelligibility of synthetic speech generated by a
parametric statistical model. Our method modifies clean speech be-
fore it is added to noise. Applications of such an approach include
car navigation systems and any public announcement system that
makes use of text to speech technology.

Intelligibility of state-of-the-art hidden Markov model (HMM)
generated synthetic speech can be comparable to natural speech in
clean environments [1] but in noisy environments the situation is
quite different and most often natural speech is more intelligible.
The statistical and parametric nature of HMM-based speech syn-
thesis however offers a high degree of control over the generated
speech. By modifying the models or extracted parameters we are
able to control the acoustic characteristics of the generated speech
without the need for new data. It is then possible to generate syn-
thetic speech that is more intelligible in noise than the natural speech
used for training [2]. One way to achieve this is to imitate the acous-
tic properties found in natural speech produced in noise, also known
as Lombard speech. However not all observed acoustic changes im-
prove intelligibility. It has for example been found that changes in
the fundamental frequency have little contribution to intelligibility
gains [3, 4]. What remains unknown is which acoustic modifica-
tions do in fact have a positive impact on intelligibility and how they
relate to the noise characteristics.

We believe that it is possible to increase the intelligibility of
speech in noise by modifying clean speech automatically according

to the noise characteristics. Because we do not know how speech
production and background noise are related, we need a model of
intelligibility, or just simply an objective measure for speech intelli-
gibility in noise, to control how speech should be modified. This is
what we refer here as an auditory perceptual based approach, as the
modifications are no longer inspired by speech production in noise
but by how the human auditory system perceives them. Previously
we have shown that simple changes in the spectral domain can result
in significant gains in intelligibility for HMM-generated synthetic
speech in noise and that some intelligibility measures can predict
these intelligibility gains [4]. Our idea here is then to use one of
these measures, the Glimpse Proportion (GP) measure [5], to modify
the spectral envelope of speech. To do this we alter the optimization
criterion of the cepstral coefficient extraction method [6] commonly
used in the HMM-based synthesis framework.

In Section 2 of this paper we outline the cepstral coefficient ex-
traction method and in Section 3 we describe the Glimpse Proportion
measure. In Section 4 we show how we can reformulate the Glimpse
Proportion measure to use as a cost function for cepstral extraction
and then we define the proposed cepstral extraction method, showing
how to solve the new optimization problem. Section 5 gives the ex-
perimental results on the acoustic analysis of the modifications and
intelligibility evaluation of vocoded and HMM-generated synthetic
speech.

2. UELS-BASED CEPSTRAL ANALYSIS

The cepstral coefficient extraction as described in [6] is a method
commonly used to extract spectral parameters for an HMM-based
speech synthesizer. The method is based on the Unbiased Estimator
of Log Spectrum (UELS) [7].

The cepstral coefficients {cm}M
m=0 define the spectrum of the

speech signal s(n) in the following way:
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where K=exp c0 and D(ejω) is the gain normalized version of
H(ejω).

The authors in [6] propose to extract cepstral coefficients by
minimizing the criterion defined for the unbiased condition as de-
scribed in [7]. Since H(ejω) as defined in Eq. (1) is a minimum
phase system it is possible to prove that minimizing the unbiased
criterion with respect to {cm}M

m=1 is the same as minimizing the
following cost function:
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where IN (ω) is the modified periodogram of a wide-sense stationary
process s(n). Likewise we find that K=

√
εmin, where εmin is the

minimum value of ε.

3. THE GLIMPSE PROPORTION MEASURE

The Glimpse Proportion (GP) measure for speech intelligibility in
noise [5] is based on the idea that in a noisy environment humans fo-
cus on glimpses of speech that are not masked by noise. It correlates
well with subjective scores for intelligibility in noise of both natural
[5] and HMM-based synthetic speech [8] and also when the spec-
tral envelope of HMM-based synthetic speech is modified [4]. The
GP measure outperforms most existing measures for intelligibility
of speech in noise and it does not require any time delays.

The measure is the proportion of spectral-temporal regions, so
called glimpses, where speech is more energetic than noise. This
comparison takes place in the Spectro Temporal Excitation Pattern
(STEP). In order to represent a signal in this domain the follow-
ing operations are performed over the speech and noise waveform
separately: Gammatone filtering into frequency channel, envelope
extraction, envelope smoothing, average over time frame and level
compression. The centre frequencies of the Gammatone filters are
linearly spaced in the equivalent rectangular bandwidth (ERB) scale
[9].

4. PROPOSED CESPTRAL ANALYSIS
INCORPORATING THE GP MEASURE

In this section we show how we can approximate the GP measure
and integrate it to the existing cost function for cepstral coefficient
extraction shown in Section 2.

4.1. Proposed GP approximation

To obtain a closed and differentiable formula that relates spectral pa-
rameters to the Glimpse Proportion measure we have to make some
approximations and correspondences. We first replace the hard deci-
sion for counting glimpses by a soft one defined by a sigmoid func-
tion. The proposed approximated Glimpse Proportion measure is
then given by:

GP =
100

NfNt

NtX
t=1

NfX
f=1

L(ysp
t,f − yns

t,f ) (3)

where ysp
t,f and yns

t,f are the approximated STEP representation for
speech and noise respectively at analysis window t and frequency
channel f ; Nt and Nf are the number of time frames and frequency
channels respectively; L(.) is the logistic sigmoid function of zero
offset and slope η.

We approximate the calculation of the STEP signal for speech
and noise by performing it over the magnitude spectrum of speech
and the discrete Fourier transform representation of the noise respec-
tively. The absolute value operation representing the envelope ex-
traction step is replaced by a circular convolution of the signal with
itself. The filtering operations are replaced by truncated multiplica-
tions and the level compression is no longer considered. The STEP
approximation as shown in Fig. 1 is given by:

ysp
t,f =

1

N
(Gfht N© Gfht)

> S b (4)

where N is the number of frequency bins of the spectrum, N© is the
circular convolution operation dimension N and:
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Fig. 1. Proposed approximation for the Spectro Temporal Excitation
Pattern (STEP) calculation.

ht =
h
|Ht(ω1)| . . . |Ht(ωN )|

i>
is an Nx1 vector contain-

ing the magnitude spectrum of windowed speech signal at analysis
window t;

Gf = diag
“ˆ
gf,1 . . . gf,N

˜”
is an NxN diagonal matrix

whose diagonal contains the Gammatone filter frequency response
for frequency channel f ;

S = diag
“ˆ
υ1 . . . υN

˜”
is an NxN diagonal matrix whose

diagonal contains the frequency response of the smoothing filter;
b =

ˆ
b1 . . . bN

˜
is an Nx1 vector containing the coefficients

of average filter.
The approximated version of the GP measure proposed here ob-

tains correlation coefficients that are smaller but still comparable to
the ones obtained by the original GP measure and higher than the
ones obtained by any other spectrum-based measure when using the
subjective data from the experiment described in [4].

4.2. Cost function reformulation

In order to keep a compromise between the minimization of the cost
function defined in Eq. (2) and the maximization of the intelligibility
measure given by Eq. (3) we need to define a parameter β that con-
trols the weight given to each criterion. The redefined cost function
is:

Et = εt − β GPt (5)

where εt is the value of the function described in Eq. (2) in time
frame t and GPt is the time evolution of the GP as defined in Eq.
(3):

GPt =
100

Nf
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The cepstral coefficient vector ct = [ct,1 . . . ct,m . . . ct,M ]>

is given by:

ct = argmin
ˆ
εt − β GPt

˜
(7)

It is clear that when β=0 the proposed cepstral extraction
method becomes the original method of Section 2.

4.3. Solving the optimization problem using Steepest Descent

The update equation for cepstral coefficients using Steepest Descent
is:

c
(i+1)
t = c

(i)
t − µ∇E

(i)
t (8)



where µ is the step size and the i index refers to iterations. From
now on we are dropping the i index for clarity reasons.

According to the definition of the error given by Eq. (5) the
gradient vector is:

∇Et = ∇εt − β∇GPt (9)

The formula expressing the value of ∇εt can be found in [6].
Considering the definition of the STEP function and the GPt as
given by Eqs. (4) and (6) we have that:
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where Hct is an MxN matrix whose elements are {Hct}m,j =
∂|Ht(ωj)|

∂ct,m
and the operation (ΓN N© Gfht) defines anNxN matrix

of the following form:26664
e1 N© (Gfht)

>
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>

...
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>

37775
where en is the n-th column of the identity matrix ΓN .

When spectrum is modeled by cepstral coefficients as defined in
Eq. (1) the elements of the matrix Hct are given by:

∂|Ht(ωj)|
∂ct,m

= |Ht(ωj)| cos(mωj) (11)

4.4. Energy normalization

In order to avoid the trivial solution of maximizing the number of
glimpses by increasing the overall energy level and to see how much
we can improve intelligibility given a fixed Signal to Noise Ratio
(SNR) we need to make sure that the optimization does not change
the total energy of the signal at each time frame.

We assume that the excitation signal has power one, with mag-
nitude response constant over all frequency range for both voiced
(single pulse) and unvoiced (white noise) segments. Under this as-
sumption and considering that the cepstral extraction method does
not modify the excitation signal we can say with the help of the Par-
seval theorem that in order to keep the energy in the time domain
constant it is sufficient to keep the following constant:

ψ =

NX
j=1

|H(ωj)|2 (12)

An alternative solution to explicitly adding a constraint to the
optimization problem is to normalize the spectrum at each iteration
so that the signal in that frame has fixed energy. For this solution the
only term that needs changing in the gradient vector ∇Et is the one
given by Eq. (11), that for m 6=0 becomes:
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where |H ′
t(ωj)| is the energy normalized magnitude spectrum. It

is possible to prove that there is no need to update the first cepstral
coefficient c0 in this solution as the normalization operation updates
c0 at each iteration to a certain value regardless of an additional ∆c0
term.

5. EVALUATION

We conducted experiments with vocoded and synthetic speech. The
results for HMM-synthetic speech can show us the impact of the
acoustic modelling on the effectiveness of the method.

5.1. Experimental conditions

The speech material we used to generate vocoded speech was the
semantically unpredictable sentences (SUS) set from the Blizzard
Challenge 2010. The samples were of a British male speaker sam-
pled at 20kHz. To train the models we used 1000 other sentences
from the same speaker also at 20kHz. The same sentences used to
generate vocoded speech were used as test sentences for the HMM-
generated synthetic speech. We used as synthesis filter the log spec-
trum approximation filter [6] with simple excitation as input.

Using the proposed method we extracted 52 cepstral coefficients
for different β values, including the β=0 case for comparison. The
periodogram was set to be the smoothed spectrum extracted using
STRAIGHT [10]. We initialize the algorithm with the first M +1
values of the minimum phase cepstrum. The step size was set to
µ(i) =1/||∇E

(i)
t ||. We used both error convergence and maximum

distortion as stopping criterion.
The acoustic model we used for synthetic speech was a hidden

semi Markov model. The observation vectors for the spectral and ex-
citation parameters contained static, delta and delta-delta values. We
used one stream for the spectrum and three streams for the logF0.
We used the Global Variance method [11] to compensate for the
oversmoothing effect of the acoustical modeling.

For these experiments we added vocoded and HMM-generated
synthetic speech to two different types of stationary noise, speech
shaped noise (ssn) and high frequency noise (hf). Each noise type
was added at a different SNR: 0 dB for ssn and and −20 dB for hf.

For the listening test we played all signals over headphones to
participants in soundproof booths. Each individual sentence could be
played only once before the participant had to type in what he or she
heard. A total of eight native English speakers participated in the
experiment with vocoded speech and other eight participants were
assigned to the experiment with synthetic speech. Each participant
heard twelve different sentences per listening situation.

5.2. Results and discussion

Fig. 2 shows the Long Term Average Spectrum (LTAS) of vocoded
speech generated using the original and the proposed method when
noise is speech shaped and SNR is 0 dB. In the figure we can also
see the LTAS of the noise. We can see that on average the proposed
method reallocates energy mostly to the frequency range between
800 Hz and 4.8 kHz, the band where the auditory human system is
more sensitive. The attenuation occurs mostly in the lower frequency
regions below 800 Hz. For the high frequency noise the energy boost
occurs in a similar region and we also observed some attenuation in
the high frequency region, as this region is highly masked by noise.

We observed that the proposed method improves not only the ap-
proximated GP measure introduced above but the original GP mea-
sure as well. This improvement was observed for all noise types and
for both vocoded and synthetic speech.

Fig. 3 shows the word accuracy rates obtained in the listening
test with vocoded (left) and synthetic speech (right). Each group
mean is represented by a circle; two means are significantly different
at a 0.05 level only if their intervals are disjoint.
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Fig. 2. Long term average spectrum curves extracted of vocoded
speech generated using the original method (β=0) and the proposed
method (β 6=0) for speech shaped noise at 0 dB SNR.

We can see that the proposed method does not produce any sig-
nificant differences in word accuracy for vocoded speech. However
for synthetic speech and speech shaped noise there is a significant
improvement of word accuracy from 31% to 44% (a gain of 44%).

For the high frequency noise case it seems that, although not sig-
nificantly, the proposed method decreases the word accuracy rates.
We believe this happens because the modifications imposed by such
noise leads to less natural speech which in turn degrades intelligi-
bility. This could be solved by changing the acceptable amount of
distortion and GP improvement or by stating the amount of distor-
tion as a constraint instead of a stopping criterion.

The impact of the proposed method seems to be stronger for syn-
thetic speech although the GP gains were smaller or similar for syn-
thetic speech, most probably because in harder tasks smaller glimpse
variations lead to stronger effects.

6. CONCLUSION

In this paper we showed how to use a measure of speech intelligi-
bility in noise to modify HMM-synthetic speech and make it more
intelligible for a certain noise. We proposed a new cepstral extrac-
tion method that aims not only to minimize the mismatch between
periodogram and modelled spectrum but also to maximize speech
intelligibility in noise, as defined by the Glimpse Proportion mea-
sure, given that the noise is known and SNR is known and fixed.
The listening tests with vocoded and synthetic speech showed the
effectiveness of the method for speech shaped noise but not for high
frequency noise, which might indicate that the amount of distortion
introduced into the speech by the modification was too large. Our
next step is to handle distortion in a better way and then consider
other types of constraints as well, for instance loudness. It is also
in our plans to compare our approach to natural Lombard speech,
in particular for those situations where humans are not fully able to
change their own voice to successfully avoid the background noise.
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Fig. 3. Word accuracy rates of listening test with vocoded (left) and
synthetic (right) speech.
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