Using Bayesian Networks to find relevant context features for HMM-based
speech synthesis

Heng Lu, Simon King

The Centre for Speech Technology Research, The University of Edinburgh, UK

hlu2@inf.ed.ac.uk,

Abstract

Speech units are highly context-dependent, so taking contextual
features into account is essential for speech modelling. Con-
text is employed in HMM-based Text-to-Speech speech synthe-
sis systems via context-dependent phone models. A very wide
context is taken into account, represented by a large set of con-
textual factors. However, most of these factors probably have
no significant influence on the speech, most of the time. To
discover which combinations of features should be taken into
account, decision tree-based context clustering is used. But the
space of context-dependent models is vast, and the number of
contexts seen in the training data is only a tiny fraction of this
space, so the task of the decision tree is very hard: to gener-
alise from observations of a tiny fraction of the space to the rest
of the space, whilst ignoring uninformative or redundant con-
text features. The structure of the context feature space has not
been systematically studied for speech synthesis. In this paper
we discover a dependency structure by learning a Bayesian Net-
work over the joint distribution of the features and the speech.
We demonstrate that it is possible to discard the majority of
context features with minimal impact on quality, measured by a
perceptual test.

Index Terms: HMM-based speech synthesis, Bayesian Net-
works, context information

1. Introduction

Speech synthesis using HMM-like models is a well-established
field. The approach taken to modelling contextually-variant
speech units is a straightforward extension of the approach used
in automatic speech recognition (ASR). In ASR, the context
features are most commonly just the preceding and following
phonemes: the modelling unit is then called a triphone. In syn-
thesis, it is usual to add large numbers of additional context fea-
tures, both phonetic and suprasegmental. However, all of this
rich context information leads to an explosion of the full-context
acoustic model space. In order to avoid the consequent data
sparsity problem, it is usual to cluster the full-context acoustic
models into a much smaller number of groups, as is also done
in ASR. Widely used HMM-based speech synthesis systems,
such as HTS [1] use as many as 53 context features (c.f. just 2
in ASR). Model complexity control is achieved, as in ASR, by
limiting the size of the decision tree used to cluster the models:
in synthesis, the MDL (Minimum Description Length) criterion
is often used. However, whilst the MDL criterion itself might
be based on information-theoretic principles, the decision tree is
not necessarily the most effective way to discover model clus-
ters in this exceptionally sparse space: the number of models
with training examples available is a tiny fraction of all possible
models. Therefore, “what is the best criterion for clustering”
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and “what is the optimum number of clusters” are still open
questions. Going further, it is possible that clustering models
is not the most effective way to control model complexity and
deal with sparsity. One reason to think this is that the model
clustering decision tree is learned from a very poorly trained
set of unclustered models (with about 1 training example per
model). In this paper, we introduce a first step away from the
current approach, which, to summarise is: create a very sparse
model space, control complexity by model clustering, use a de-
cision tree to determine that clustering, and use tree size as the
controlling parameter of model complexity.

In the generative model paradigm, the core problem is to
model the joint distribution of all the context features and the
acoustic features. The current approach naively “multiplies out”
all the context features to create a vast state space with a cardi-
nality equal to the product of the cardinalities of all the context
features and the number of states per model. For the 26 context
features used in this work, that is O(107) !

It is to be hoped (and implicitly assumed in model cluster-
ing), that there are not really 10?7 different speech units to be
modelled. We must identify a subspace in which we do need
models. One way to think about that is: which combinations
of context features are possible; of those, which combinations
actually lead to differences in the acoustics. One way to inves-
tigate that is by learning a structured model of the joint prob-
ability distribution of context features and acoustics. Contrast
this to the current approach which merely “multiplies out” all
the context features, creating (even if only temporarily) an un-
structured and consequently very sparse model space, most of
which is not needed. Structure is then re-introduced by param-
eter clustering.

Bayesian Networks (BNs) offer a useful framework for
learning the structure in a set of variables. Each variable is a
node in the network and dependencies between variables are
represented by arcs between pairs of nodes, with missing arcs
indicating conditional independence. In the BNs we use here,
each context feature is a discrete variable in the network. The
dependency structure between context features is what we wish
to discover, and this can be learned automatically from data us-
ing BN structure learning algorithms. Assuming that the struc-
ture is sparse (i.e., not a fully connected graph), the joint dis-
tribution over all features (which is too large to ever learn from
data directly) is factorized into the product of a number of sim-
pler (i.e., smaller) conditional probability distributions. We
have previously applied BN structure learning successfully to
the problem of predicting phone duration, which also involves a
relatively large number of context variables [2]. There, we used
the K2 algorithm [3] to learn the structure.

In this work, we used 26 commonly-used context features.
Separate Bayesian Networks are constructed for the spectral, FO



D Context Information Card.
p1 phoneme identity before previous phoneme 50
P2 previous phoneme identity 50
3 current phoneme identity 50
P4 next phoneme identity 50
5 phoneme after the next phoneme identity 50
D6 position of current phoneme in syllable (forward) 7
p7 position of current phoneme in syllable (backward) 7
b1 whether current syllable stressed or not 2
ba whether current syllable accented or not 2
b3 the number of phonemes in current syllable 7
ba position of current syllable in word (forward) 4
bs position of current syllable in word (backward) 4
be position of current syllable in phrase (forward) 16
by position of current syllable in phrase (backward) 16
big name of vowel of current syllable 21
el gpos (guess part-of-speech) of current word 9
es the number of syllables in current word 4
e3 position of current word in phrase (forward) 11
eq position of current word in phrase (backward) 11
h1 number of syllables in current phrase 16
ho number of words in current phrase 11
hs position of current phrase in utterance (forward) 4
hy position of current phrase in utterance (backward) 4
J1 number of syllables in utterance 30
J2 number of words in utterance 17
73 number of phrases in utterance 4

Table 1: Context features for speech synthesis and their cardi-
nalities (Card.)

and duration acoustic features. Various BN structure learning
algorithms are tested. The structure of the learned networks are
examined and used to perform feature selection. This is a simple
first step, and our experiments are intended to test whether the
BN structure learning is indeed discovering which the most im-
portant context features are. We then build HTS-based speech
synthesis models using only the selected features. A listening
test is conducted to compare these models with conventional
“full context”” models, which use all 26 features.

2. Bayesian Networks
2.1. Fundamentals

LetU = {z1,...,zn},n > 1 be a set of variables. A Bayesian
network B over a set of variables U is a network structure Bg,
which is a directed acyclic graph (DAG) over U and a set of
probability tables Bp = {p(u|pa(u))|u € U} where pa(u) is
the set of parents of v in Bs. A Bayesian network represents
the factorisation of the joint probability distribution P(U) =
[Luev p(ulpa(u)).

In many statistical modeling problems, we wish to perform
computations with the joint probability distribution (JPD) of a
number of variables, for example P(A, B, C). If the cardinali-
ties of the random variables A, B, C are M, N, K respectively,
then the size of the joint probability table for P(A, B, C) will
be M x N x K. In many interesting real-world applications,
the number of discrete variable is large, and they may also have
high cardinalities: this is true for the context features in speech
synthesis models — se table 1. Such a large JPD causes data
sparsity: it is not possible to obtain training examples corre-

sponding to every cell in this table. The BN solution to this is
to factorise the JPD; the particular factorisation is represented
by the BN topology. This can be designed by hand (e.g., using
expert knowledge or intuition), or automatically learned using
one of a number of established BN learning algorithms.

In the case of automatic structure learning, a Bayesian Net-
work is constructed in two steps. First, the BN structure is
learned according to some score metric. Then, with the struc-
ture fixed, the conditional probability tables are learned. In this
paper, we are only interested in the structure.

2.2. Score metrics

Let the entropy metric H(Bg, D) of a network structure Bg
and database D be defined as
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and the number of parameters K as
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where 7;(1 < ¢ < mn) is the cardinality of x;, ¢ =
sz epa(e;) T is the cardinality of the parents set of z; in Bs.
And we use N;;(1 < i < n,1 < j < ¢) to denote the
number of records in D for which pa(x;) takes its jth value.
Nijr(1 <i<n,1<j<gq,l<k<r;) denotes the num-
ber of records in D for which pa(azl) takes its jth value and x;
takes its kth value. So Ni; = 31 | Nijr. Weuse N to denote
the number of records in D.

e The AIC metric Qarc(Bs, D) of a Bayesian network
structure By for a database D is

Qarc(Bs,D) = H(Bs,D) + K 3)

e The  Minimum  Description  Length  metric
Qupr(Bs,D) of a Bayesian network structure
Bgs for a database D is defined as

K
Qupr(Bs,D) = H(Bs,D) + 5 logN (4)

e The Bayesian metric of a Bayesian network structure Bg
for a database D is

@Bayes(Bs, D) =
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where P(Bg) is a prior on the network structure and
I'(-) is the gamma-function.

2.3. Structure learning algorithms

Structure learning attempts to maximise these metrics. We tried
the LAGD Hill Climbing, Tree Augmented Naive Bayes (TAN)
[4][5] and K2 [3] methods. LAGD Hill Climbing performs hill
climbing [6] with look ahead on a limited set of best scoring
steps. In TAN, a tree is formed by calculating the maximum
weight spanning tree using the Chow and Liu algorithm [7].
K2 is also a hill climbing approach, adding arcs with a fixed
ordering of variables. We used the Weka [8] implementation of
these algorithms.



Figure 1: Bayesian Networks for (from left to right): (a) Mel-Cepstrum (LAGD), (b) FO (TAN), (c) duration (LAGD)

3. Experiments

Since the dependency structures for spectral, FO and duration
features are likely to differ, three separate BNs were learned au-
tomatically using the structure learning algorithms introduced
in Section 2.3. The three scoring metrics introduced in Section
2.2 were used to score the resulting BNs. The structure with the
best score was then chosen in each case.

3.1. Database

A British English corpus with manually checked labels contain-
ing a total of 2969 utterances was used in our experiments. The
speaker is male. The sampling rate is 48kHz at 16 bits and the
acoustic features we used were 59th order Mel-cepstrum, log
F0, and phone duration.

To learn the BN structure, we need to create a data set in
which each item (‘record’) comprises the context features and
the acoustic features. One choice that needs to be made is the
temporal resolution of this dataset. We chose to use the HMM
state as the basic temporal unit for BN learning in the case of
spectral and FO features: the average value of the speech fea-
tures was calculated for each basic unit. For duration, we used
the phone as the basic unit.

The BN structure learning algorithms we used are only
available for discrete variables, so we quantised the acoustic
features using LBG-based Vector Quantization (VQ) [9]. For
the 59th order Mel-cepstral features, a codebook of size 512
was created. For log FO and phone duration, codebooks with
8 and 16 classes were used. Note that the quantisation is only
used for BN structure learning: the HMMs for synthesis use
normal, continuously-valued features.

3.2. Context features

The 26 categories of context information most commonly used
in the HTS system were used - they are listed in Table 1 along
with their cardinalities. Each context feature is a discrete vari-
able in the BN.

Learning algorithm/Scoring Metric AIC MDL Bayesian
LAGD Hill Climbing -1.149E7 | -1.187E7 | -1.139E7

TAN -1.373E7 | -2.127E7 | -1.052E7

K2 -1.364E7 | -1.419E7 | -1.355E7

Table 2: Log scores for the spectrum BNs, for various structure

learning algorithms

Learning algorithm/Scoring Metric AIC MDL Bayesian
LAGD Hill Climbing -1.112E7 | -1.115E7 | -1.111E7
TAN -1.096E7 | -1.127E7 | -1.087E7

Table 3: Log score for FO BN structure learning algorithms

Learning algorithm/Scoring Metric AIC MDL Bayesian
LAGD Hill Climbing -1.906E6 | -1.924E6 | -1.903E6
TAN -2.010E6 | -2.447E6 | -1.815E6

Table 4: Log scores for the learned structures for modelling
duration

3.3. Automatic structure learning
3.3.1. Spectrum

The best BN learned for the spectral acoustic features is shown
in Fig 1(a), with the corresponding scores in Table 2. Those
context features that are not connected directly to the acoustic
feature are conditionally independent of it (at least, sufficiently
independent to produce a good score for this structure), given
the intervening context features. Another interpretation of the
graph structure is that the further a context feature is from the
acoustic feature, the less influence it has over the acoustics. We
take this interpretation and select only those few features which
are “close” to the acoustic feature. This is done by inspection
of the graph structure.
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Figure 2: Results of the forced-choice subjective preference lis-
tening test.

3.3.2. FO

The best BN learned for the FO acoustic feature is shown in Fig
1(b), with the corresponding scores in Table 3. For FO, only
voiced speech was used to learn the network structure. In con-
trast to Fig 1(a), the FO acoustic feature is mainly related to
the vowel identity. The current phone and stress status are also
closely related to FO.

3.3.3. Duration

The best BN learned for duration is shown in Fig 1(c), with
the scores given in Table 4. The structure reveals that phone
duration is close related to the current phoneme (p3), current
vowel (b16) and part-of-speech (el); position of current sylla-
ble in word (backward) (b5) is also closely related. [10] gives
an example of within-word position and stress factor confound-
ing. Durations of vowels turn out to be shorter in word-final
syllables than in non-word-final syllables, if stressed and un-
stressed vowels are analysed together. But, unstressed vowels
are shorter than stressed vowels and word-final syllables are five
times more likely to be unstressed than stressed. So, if stressed
and unstressed vowels are analysed separately, the vowel dura-
tion in final syllables (all other factors being equal) is longer
than in non-final syllables, as we would expect. Therefore, one
needs to take into account the vowel, stress and word-finality
when predicting duration. This is consistent with the network
shown in Figure 4.

3.4. Subjective listening test

A subjective preference listening test was conducted in order to
test whether the structures learned do indeed predict which con-
text features matter the most. For each acoustic feature (spec-
trum, FO, duration), we removed most of the context features —
those least related to the acoustic feature according to the BN
structure for that acoustic feature. We built two HMM synthesis
systems using HTS [1]. One used all context features listed in
Table 1. This is the topline. We built a second system using
only those context features selected using the BNs, for spec-
trum (p2,p3,p4,p6,bl6.,el), FO (p2,p3.p4,p6,p7.b1,b4,b16,e1)
and duration (p2,p3,p4,p6,b1,b2,b5,b16,e1). Table 5 sum-
marises the topline and the reduced-feature systems.

25 newspaper sentences were synthesised for the listening
test. 27 native speakers of English took part in a forced-choice
preference test. The same sentence, synthesised by both sys-
tems, was presented as a pair, in randomised order. Sentence or-
der was also randomised per listener. The listeners very slightly
preferred the topline (all features) system at a rate of 55% to
45%. We can conclude that the quality hardly degrades, even
though most context features were removed (down from 26 to
just 6 or 9).

Context features | Questions | Clusters
Topline 26 2211 1573
Mel-Cepstral [ cduced 6 642 1470
FO Topline 26 2211 4687
Reduced 9 860 3251
Duration Topline 26 2211 1013
Reduced 9 691 890

Table 5: The number of context features used in the topline
and reduced-feature systems, along with the number of question
nodes in the state clustering decision tree and the number of
parameter clusters.

4. Conclusions and Future work

We find that the automatic BN learning algorithms are able to
discover useful structure in the data. Our first attempt to use this
information is very simple: we simply perform feature selection
on the large set of context features (26), reducing it to just 6 or 9
features. The next step is to make fuller use of the BN structure,
and incorporate that directly into the acoustic models used for
synthesis. Ultimately, one goal is to replace decision tree pa-
rameter clustering that operates in the very sparsely-populated
“full-context” model space with something that avoids ever op-
erating in this somewhat artificial model space.
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