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Abstract
We describe our work in building a spoken language interface
for a tutorial dialogue system. Our goal is to allow natural, un-
restricted student interaction with the computer tutor, which has
been shown to improve the student’s learning gain, but presents
challenges for speech recognition and spoken language under-
standing. We discuss the choice of system components and
present the results of development experiments in both acoustic
and language modelling for speech recognition in this domain.
Index Terms: spoken dialogue system, speech recognition,
computer tutoring, adaptation

1. Introduction
Most research in spoken dialogue systems has focussed on sys-
tems which are task-oriented, designed to help the user achieve
some fixed goal in a minimum number of dialogue turns, of-
ten using a slot-filling paradigm. We believe that spoken dia-
logue systems could be deployed more widely in the domain
of computer tutoring, where, in contrast, the primary aim is to
maximise the student’s learning gain from using the system.

A substantial body of research eg. [1, 2] has shown that an
effective tutoring technique is to encourage students to produce
their own explanations and generally to talk more about the do-
main during problem-solving. This motivated the development
of dialogue-based intelligent tutoring systems (ITS) which ask
students open-response questions (rather than multiple-choice
questions), and in particular explanation questions. However,
to date such systems have largely been limited to using typed
interactions; existing speech-enabled tutorial dialogue systems
such as [3, 4] have been constrained to small-vocabulary sce-
narios which restrict the student to a limited range of answers,
and therefore restrict opportunities for self-explanation.

Recently, typed systems attempted to encourage long, open-
ended student answers through asking explanation questions
and giving targeted feedback on explanations. While this ap-
proach was effective in some cases [5], there is evidence that in
human-human tutoring spoken dialogue is more effective than
typing [6]. There is also evidence that self-explanation can be
encouraged by the addition of a spoken language interface [7],
and this is also borne out by our experience during pilot data
collection, an example of which is shown below in Figure 4.

Therefore, we are investigating the feasibility of adding the
capability for natural, unrestricted spoken interaction to BEE-
TLE II, our existing typed tutorial dialogue system which sup-
ports open-ended explanation questions [8]. The BEETLE II
system teaches students basic electricity and electronics by in-
troducing them to the fundamental concepts, then challenging
their understanding by asking them to predict the outcome of
exercises in a circuit simulator and to explain their reasoning.
This approach encourages deep thinking, requiring the students
to articulate the causes and effects of the events they are ob-

serving. The version of the BEETLE II tutor deployed currently
uses typed interaction; it is capable of analysing complex stu-
dent utterances and automatically generating feedback using a
hand-coded feedback policy based on analysis of a corpus of
human-human tutoring dialogues. The example dialogue shown
in Figure 1 illustrates the natural language capabilities of the
system; a screenshot of the Graphical User Interface (GUI) is
shown in Figure 2.

Tutor: Why was bulb A on when switch Y was open and
switch Z was closed?

Student: because it had a closed path
Tutor: Right. There is a closed path. Keep going.
Student: it has a closed path with the battery
Tutor: You’re on the right track. Here’s the answer. Bulb A

is still contained in a closed path with the battery.

Figure 1: Example interaction with the system from the BEETLE
II corpus

Figure 2: Screenshot of the currentBEETLE II tutor with text-
based interaction

To our knowledge, the addition of speech modality to com-
plement the NLP capabilities of BEETLE II will make it the first
ITS capable of processing long spoken explanation answers.
Moving from typed to spoken interactions in this type of sys-
tem presents a number of challenges. This paper provides an
overview of our work in overcoming these, focussing primar-
ily on the construction of the capability for automatic speech
recognition (ASR) in this domain. We give a brief overview
of the system components in Section 2, describe our approach
to language modelling in Section 3, and discuss acoustic mod-
elling in Section 4, giving results on development data within
each section. Section 5 considers future work.



2. Architecture
The system is highly modular in design, illustrated in figure 3.
On the input side, the system employs a deep parser, TRIPS
[9] which provides a domain-independent semantic representa-
tion, followed by higher-level domain reasoning and diagnostics
components which determine the correctness of student expla-
nations. Based on this input, the tutorial planner module selects
which tutorial strategy to use, which is implemented via a deep
generation module which constructs tutorial feedback using a
domain-specific content planner together with relevant content
from the student’s own answer.
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Figure 3: The modules of the BEETLE II system

The new ASR module uses ATK1 to perform one-line
speech parametrisation, voice activity detection and speech
recognition in real-time using a multi-threaded design (though
dialogue-management functions are delegated to the existing
BEETLE II dialogue manager). We replaced ATK’s native
Viterbi decoder with our own online version of HTK’s HDe-
code, to allow efficient large-vocabulary recognition. Online
speaker adaptation is performed. The language modelling and
acoustic modelling design choices made are described in more
detail below. Spoken output is provided using the Festival text-
to-speech engine. Whilst the ASR operates in an online mode,
all speech is recorded for later analysis. In addition to the nat-
ural language components, the GUI includes an area to display
reading material and an interactive circuit simulator.

3. Language modelling
In many spoken dialogue systems, ASR is performed using
hand-crafted finite-state networks selected according to the di-
alogue state. This is not appropriate for our system, where it
is important to allow unrestricted speech, at least in principle,
because students often struggle with unfamiliar terminology:
effective tutoring requires knowing the words that the student
said, even if they are out of domain. Therefore recognition is
performed using an n-gram language model (LM).

We have a corpus available of domain-specific data com-
prising 90,000 words of typed interactions with the earlier
BEETLE II system, collected during 2009, which we denote
student09. However, we would expect the lexical content
of the spoken input to differ considerably from to the typed in-
puts: the switch to the spoken modality is likely to result in
more verbose responses, and furthermore, the speech may con-
tain disfluencies characteristic of spontaneous speech – filled

1http://htk.eng.cam.ac.uk

pauses, repetitions, deletions and repairs – particularly to be
expected since the users are presented with often challenging,
open-ended questions which may cause hesitation and uncer-
tainty. As an illustration of this, Figure 4 shows an example of
two different spoken student responses from our development
data, illustrating the contrast with typed answers.

Student one: Row one. If bulb A is out bulb B and C will
remain on. So number one is correct. Row two. Bulb B is
out therefore bulb C will be out so that is incorrect and vice
versa for row number three. If C is out B will also be out.
Student two: X is it open? Row two is incorrect. Um. Row
three is incorrect. Rows two and three are incorrect.

Figure 4: Two example responses to the question “Which rows
do you think are incorrect?” from our development collection
of spoken interaction. To make the text more readable here,
punctuation has been added based on features of the recordings.

To solve this problem, we used two further corpora. Firstly
the Fisher corpus, comprising around 1,000,000 words from
transcribed telephone conversations, was used to obtain natu-
ral speech data, and secondly we collected a small develop-
ment corpus of spoken interactions (labelled adapt11 here),
containing approximately 2,000 words. In development exper-
iments, a portion of this was held out and used as testing data,
using five-fold cross-validation.

We restricted the recogniser’s vocabulary to the complete
set of words from student09, plus filled pauses and com-
mon contractions such as “it’s”, “you’ve” etc. Models were cre-
ated by linearly interpolating models trained on the three cor-
pora. We also investigated an adaptation technique, which we
describe below.

3.1. Adaption of unigram marginals

Given a small set of adaptation data, the unigram probabili-
ties are more reliably estimated than those for higher order n-
grams. [10] proposed an adaption scheme to preserve the uni-
gram marginal probabilities estimated from the adaptation data,
A, whilst attempting to keep the conditional probabilities as
close as possible to the estimates from the background model,
B. Adaptation data probabilities and background model prob-
abilities are denoted pA(. . . ), pB(. . . ) respectively. Writing
p(w|h) for the probability of a word w, given its history h, and
p(w, h) for the joint probability of w and h, the scheme at-
tempts to satisfy constraints on the unigram marginals pA(wi)∑

h

p(wi, h) = pA(wi) (1)

for each word wi in the vocabulary, whilst minimising the KL-
divergence with probabilities from the background model, given
by:

DKL(p||pB) =
∑
h,w

p(w, h) log
p(w, h)

pB(w, h)
(2)

=
∑
h,w

p(w|h)p(h) log p(w|h)
pB(w|h)

(3)

The problem is equivalent to finding the maximum entropy dis-
tribution satisfying the constraints (1) and may be solved using
Generalized Iterative Scaling [11]. Following [10], the adapted



conditional probabilities are computed as

p(wi|hi) = pB(wi|hi)
(
pA(wi)

pB(wi)

)β
(4)

where β is a factor controlling the weight of the adaptation data,
empirically found in the previous studies to be 0.5.

3.2. Language modelling development results

Results of interpolating trigram language models trained on the
three data sets are shown in Table 1. All models were smoothed
using Modified Kneser-Ney smoothing. The perplexity is sub-
stantially reduced with all model combinations, with the in-
domain student09 data giving the most advantage to models
trained solely with the adaptation data. Including speech from
fisher provides a small additional improvement.

Model Perplexity
adapt 41.49
fisher 242.36
student09 82.46
student09 + fisher 37.71
adapt + fisher 37.47
adapt + student09 28.51
adapt + student09 + fisher 27.42

Table 1: Perplexity results for interpolated models, evaluated
on held-out data from adapt11.

The results of adapting to the unigram marginals of
adapt11 are shown in Table 2. The parameter β was opti-
mised separately for each case. There are consistent improve-
ments over the unadapted interpolated models in each case. We
therefore selected the model in the final row of the table for use
in the system.

Model Perplexity
student09 + fisher 31.67
adapt + fisher 34.22
adapt + student09 26.90
adapt + student09 + fisher 25.45

Table 2: Perplexity results for interpolated models with adapta-
tion of unigram marginals.

4. Acoustic modelling
Due to the limited quantities of development audio data avail-
able, we did not attempt to train acoustic models on in-domain
data, but instead used models available to us from the AMIDA
corpus ([12]), which were trained on approximately 130 hours
of speech from multiparty meetings. They are a reasonable
match for our domain in terms of the recording conditions,
speaking style and speaker demographic. The models were
standard HMM-GMMs, trained on PLP features using MPE
training. A global HLDA transform was used. Online CMN
was performed using ATK’s standard method.

4.1. Online speaker adaptation

We considered it important to perform online speaker adapta-
tion in order to improve the ASR performance as quickly as

possible. We used CMLLR adaptation [13] for this purpose,
which may be formulated as a feature-space transform:

ôt = Aot + b (5)

We applied the forward-backward algorithm over the lattices
for each utterance created by HDecode, to accumulate CMLLR
statistics in an online manner. After returning the one-best hy-
pothesis to the dialogue manager, the system performs back-
ground estimation of a new set of transforms using the updated
statistics. Sufficient statistics for CMLLR estimation for the
GMM are given by:

G
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∑
m∈r

1
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where ot denotes the observation at time t, µ(m), σ(m)2 are the
mean and variance of Gaussian m respectively, and γ(m)

t de-
notes the posterior probability of ot being generated by Gaus-
sian m.

Since it is important to perform adaptation rapidly, we
would ideally begin estimating transform sets after as few
frames as possible. However, when few frames have been seen
the transforms are unlikely to be estimated robustly, and in the
worst scenario, this would quickly create a cycle of poor ASR
performance, and further poor transform estimation. To avoid
this, we investigated the use of a count smoothing technique
proposed by [14] to obtain more robust statistics for online op-
eration.

Given prior statistics G(r)
pri, k(r)pri and a prior weight τ , the

final statistics used are

G(r)
sm = G(r) +

τ∑
m∈r γ

(m)
G

(r)
pri (8)

k(r)sm = k(r) +
τ∑

m∈r γ
(m)

k
(r)
pri (9)

The prior statistics are obtained by estimating a simpler prior
speaker transform and then computing expected statistics in the
speaker-specific feature space by applying the prior transform.
We investigated the use of two priors transforms: the identity
transform, and a transform with the matrix A constrained to be
diagonal.

4.2. Online adaptation development results

WER (%)
no adaption 48.8
full covariance 53.7
block diagonal 45.8
diagonal 47.6

Table 3: Baseline WER results on the adapt11 set with online
adaptation limited to 10 utterances

We carried out experiments in the use of count smoothing
to improve the robustness of online speaker adaptation. Firstly,
we artificially limited the amount of data available for trans-
form estimation by resetting the accumulated statistics to zero
after every ten utterances. Table 3 show the performance of



standard full covariance, block diagonal and diagonal trans-
forms. Two transforms – one for speech and one for silence
– were estimated. In all cases we imposed a minimum count
threshold on the statistics before estimating a transform. Fig-
ure 5 shows the change in performance when full covariance
adaptation transforms are smoothed using diagonal and identify
prior transforms, for varying prior weight τ . It can be seen that
the smoothing gives a clear improvement to the full covariance
transforms, reducing the WER to 43.0%, significantly below the
results from using a diagonal or block diagonal transform. We
found that the identity prior outperformed the diagonal prior for
all values of τ .
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Figure 5: WER (%) on the adapt11 set using online adapta-
tion limited to 10 utterances. Results are shown with adaptation
with diagonal transforms (green dashed); and full covariance
transformed smoothed with a diagonal prior (solid blue) and
identity prior (dashed blue), with varying prior weight.

Following these experiments, we applied smoothing with
the identity prior to incremental online adaptation on the
adapt11 full data set, where each user’s session with the sys-
tem has around 75 utterances. We first used two transforms, as
above, and also investigated the use of regression class trees.
Results are shown in Table 4. We found that the smoothing
method improves the effectiveness of online adaptation, even
when relatively large amounts of data were available for each
speaker.

base r32
no adaption 48.8
block diagonal 44.6 41.7
full covariance 41.9 39.2
smoothed 41.6 37.7

Table 4: WER results (%) for recognition of the full dev11
set with online speaker adaptation on full dev11 set with a
transforms for speech and silence (base); and with a regression
class tree (r32)

5. Future work
In this paper we have described the design choices made in im-
plementing ASR for an open-input intelligent tutoring system,

but a number of other problems must be solved to create an ef-
fective spoken language system. Clearly a major challenge is
ensuring robust spoken language understanding when the WER
is relatively high, given that the student utterances often have a
complex semantic representation. The TRIPS parser is designed
to provide robust parses over lattices; however, since the higher-
level modules are deterministic in nature, we are not yet able to
use the deep domain knowledge available to them to re-score
ASR lattices. Furthermore, the parser is tuned to maximise the
chance of finding a complete spanning parse, rather than to dis-
criminate between alternative hypotheses. We plan to address
this in future work.

Additionally, the system does not yet use statistical dia-
logue management. We propose to employ reinforcement learn-
ing in a future version of the system. Major unsolved issues to
consider will be determining a suitable low-dimensional state-
space for the dialogue, and selecting which measures of system
or student performance should be optimised.
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