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ABSTRACT
The accuracy of speaker diarisation in meetings relies

heavily on determining the correct number of speakers. In
this paper we present a novel algorithm based on time dif-
ference of arrival (TDOA) features that aims to find the
correct number of active speakers in a meeting and thus aid
the speaker segmentation and clustering process. With our
proposed method the microphone array TDOA values and
known geometry of the array are used to calculate a speaker
matrix from which we determine the correct number of active
speakers with the aid of the Bayesian information criterion
(BIC). In addition, we analyse several well-known voice
activity detection (VAD) algorithms and verified their fitness
for meeting recordings. Experiments were performed using
the NIST RT06, RT07 and RT09 data sets, and resulted in
reduced error rates compared with BIC-based approaches.

Index Terms— Speaker diarisation in meetings, micro-
phone array, time difference of arrival (TDOA), speech seg-
mentation and clustering, BIC, voice activity detection (VAD)

1. INTRODUCTION

Speaker diarisation aims to find the number of active speakers
in a recording and identify when each speaker was talking.
Speaker diarisation is typically carried out in three steps:
(i) Detecting when speech is present in the recording; (ii)
Splitting the speech segments where the speaker changes
mid-segment; (iii) Identifying and clustering speech seg-
ments from the same speaker. Current speaker diarisation
systems, when evaluated on meeting recordings such as those
used for the NIST RT evaluations1, achieve speech activity
detection error rates of less than 10% and diarisation error
rates of less than 15%. These results are, however, highly
dependent on the system correctly identifying the number
of active speakers in the meeting—if too few or too many
speakers are detected, the error rates increase significantly.

Pardo et al. [1], Sun et al. [2] and Vijayasenan et al. [3]
have successfully demonstrated how microphone array beam-
forming features can be used to improve the speaker diarisa-
tion performance in meetings. These systems do not use the

1http://www.itl.nist.gov/iad/mig/tests/rt/

speaker location information which may be estimated from
the array to explicitly identify the number of speakers. In-
stead they implicitly estimate the active speaker count dur-
ing the clustering process. This may in part be due to the
fact that knowledge of the array geometry, which is required
for speaker localisation, may not be used in the NIST evalu-
ations. This constraint is somewhat artificial and unrealistic,
since microphone arrays of known geometry—such as that
used in the AMI/DA recordings [4] and a number of commer-
cial products—are increasingly used for meeting recording.
Lathoud [5] has previously used array geometry information
for segmenting multiple concurrent speakers in meetings.

In this paper we use time difference of arrival (TDOA)
features from an array of known geometry to determine act-
ive speaker locations. We then use this information with the
Bayesian information criterion algorithm to explicitly determ-
ine the number of active speakers in a meeting, and this in-
formation is used for diarisation. As a precursor to this, we
analyse several well-known voice activity detection (VAD)
algorithms on the RT corpus from 2006, 2007 and 2009, since
VAD is a pre-processing stage to our diarisation system.

2. VOICE ACTIVITY DETECTION

2.1. VAD algorithms

Accurate VAD is a crucial first stage for many speech pro-
cessing algorithms. A number of approaches to VAD have
been developed, and we have compared the accuracy of five
systems on the RT meeting data: ITU-T P.56 [6], Sohn [7],
Aurora [8], SHOUT [9] and AZR [10]. When tuning the
thresholds of our implementation of the AZR algorithm, we
found that the maximum peak of the normalised autocorrela-
tion (MaxPeaks) component was ineffective and performance
improved using only the zero-crossing rate of the autocorrela-
tion (CrossCorr). The results reported for the AZR algorithm
therefore only include the CrossCorr algorithm. In addition
to the five algorithms mentioned, as a baseline, we present
results for classifying all segments as speech.

http://www.itl.nist.gov/iad/mig/tests/rt/


Fig. 1. Voice activity detection error rate for all algorithms

2.2. VAD results

Voice activity detection systems are evaluated in terms of
the VAD error rate (VER). The VER penalises both missed
speech and false alarms, and is fully described in [11]. For
these experiments, Wiener-filter-based noise reduction [8]
was first applied to the individual microphone signals. The
BeamformIt2 microphone array processing toolkit was then
used to perform delay-sum beamforming on the signals, after
which VAD was carried out. Scoring was performed using
the standard NIST VAD scoring tools and Figure 1 shows the
voice activity detection error rate for each of the algorithms
when tested on the complete NIST RT06, RT07 and RT09
data sets.

On the RT06 test set, perhaps surprisingly, classifying
all segments as speech outperforms all the other algorithms
with 6.8% VER. This implies that for this particular set of
meetings there are very few non-speech intervals leading to
few false alarm errors for the ‘all-speech’ algorithm. For
RT07 and RT09, which contain more non-speech segments,
the all-speech, ITU, Sohn and AZR algorithms have similar
results, and are consistently outperformed by Aurora and
SHOUT, with Aurora having the lowest overall error when
averaged over all three test sets.

3. SEGMENT SPLITTING AND THE BAYESIAN
INFORMATION CRITERION

The speech segments identified by the voice activity de-
tection algorithms may contain speech from more than one
speaker. In order to avoid the entire segment being incor-
rectly assigned to a single speaker during diarisation, we
must determine whether a segment contains one or more
speakers, and the Bayesian information criterion (BIC) [12]
has been found to be reliable and has been used in a number
of state-of-the-art diarisation systems (e.g. [13]).

2http://www.xavieranguera.com/beamformit/

The Bayesian information criterion for an audio cluster Ck
is defined as

BIC(Ck) =

k∑
i=1

{
− 1

2
ni log |Σi|

}
− λP, (1)

where ni is the number of samples in the cluster and Σi is the
sample covariance matrix. The penalty P is defined as

P =
1

2
(d+

1

2
d (d+ 1)) logN, (2)

where N =
∑

i ni is the total sample size and d the number
of parameters per cluster. Note that λ, the penalty weight, is
usually set to 1.

The Bayesian information criterion can now be used to
calculate whether a speech segment contains one or more dif-
ferent speakers and to determine whether two speech seg-
ments are from the same speaker. Using the BIC for both
is best explained for the latter. The increase in the BIC value
for merging two segments s1 and s2 is defined as:

BIC = n log Σ− n1 log Σ1 − n2 log Σ2 − λP. (3)

If the BIC value is greater than zero then the information con-
tent of the merged segments is higher than the individual seg-
ments and the two segments are likely to belong to the same
speaker and should be merged. Similarly, a speaker change is
indicated by a positive peak of the BIC value when calculat-
ing a series of BIC values for a sliding split point of a speech
segment.

4. SPEAKER DIARISATION

Speaker diarisation is the process of determining ‘who spoke
when’. As mentioned previously, identifying the correct num-
ber of speakers is important for good diarisation performance,
and here we present a novel method for speaker diarisation
which explicitly calculates the number of speakers by estim-
ating their location using a microphone array.

4.1. Speaker diarisation using TDOA analysis

TDOA estimation seeks to identify the time difference between
signals from a given sound source arriving at two different
microphones. An established method for performing TDOA
estimation from the microphone signals is the generalised
cross correlation with phase transform (GCC-PHAT [14, 15]),
and the estimates produced may be further improved by Vi-
terbi smoothing [16]. If the relative location of the micro-
phones is known then, given the TDOA values for a pair of
microphones, simple geometry may be used to calculate the
angle of arrival of the signal in relation to the microphones.
In fact, due to rotational symmetry, for two microphones, a
single delay estimate results in 2 angles of arrival—the correct
one, and another reflected on the axis of the two microphones

http://www.xavieranguera.com/beamformit/


A subset of the NIST RT meetings (those recorded at the
University of Edinburgh, IDIAP and TNO) were recorded us-
ing an 8 element circular microphone array of 20 cm diameter.
These are the only meetings in the NIST RT data set for which
the relative locations of the microphones is known, and there-
fore our diarisation results are presented for this subset.

The directivity pattern of a MVDR superdirective beam-
former [17] for an 8-element microphone array with a dia-
meter of 20 cm and a sample rate of 16 kHz (the conditions
used in the NIST recordings), shows a main lobe width of
10 ◦. In order to identify the angle of the speakers in relation
to the array, we therefore created a sector activity (SA) map
ofN = 36 possible sectors, one every 10 ◦. Every 256ms, the
TDOA values for each microphone pair are estimated and the
angle of arrival values calculated. A count in the sector cor-
responding to that angle is then incremented. We accumulate
counts in 5s windows with 1s overlap, and the highest scoring
sector for each window is recorded, so that for every second
of recording we have the sector with the most activity (the
active sector) calculated over 5s.

We then take the segmentation output of a VAD, and as-
sign each speech segment to the active sector corresponding
to the window. If the speech segment overlaps two windows,
and the windows have different active sectors, then the seg-
ment is split and the resulting two segments assigned the cor-
responding active sectors from the two windows.

Having assigned each speech segment to a sector, the
longest segment for each sector is selected as that sector’s
reference segment. We then make a second pass over the
data—for each speech segment, we calculate its BIC score
(cf. Eq.3) with each of the reference segments, and increment
a count in a size N2 sector matrix (SM) at location (i, j),
where i corresponds to the sector the segment was originally
assigned to, and j to the sector of the reference segment with
the highest BIC score. Ideally, this matrix would only have
entries on its diagonal because the originally assigned sector
would be the same as the sector with the highest BIC score;
the indices of the entries would then correspond to sectors
with speakers. In reality this is not the case, however we have
observed that entries do tend to cluster around locations on
the diagonal. In order to identify the sectors with speakers
we look for peaks in the entries on the diagonal of the sector
matrix. The indices of the peaks correspond to the sector
number in which we estimate a speaker is located—these are
the speaker sectors. Finally, we make a third pass over the
data and assign each speech segment to the speaker sector
closest to the sector it was originally assigned. The complete
process is shown in Figure 2.

4.2. Diarisation results

Diarisation system are evaluated in terms of the diarisation
error rate, or DER. In addition to missed speech and false
alarms, DER (see [11]) also takes into account the speaker
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Fig. 2. Processing diagram for VAD and speaker diarisation

Fig. 3. Diarisation error rate DER for all algorithms

to whom each segment is assigned, and penalises segments
assigned to the wrong speaker. In order to account for errors
in the reference labels and slight variations in automatic pro-
cessing, a tolerance of ±250ms is permitted at the edge of
each speech segment.

Four diarisation experiments on the EDI, IDI and TNO
meetings from the RT06, RT07 and RT09 data sets were con-
ducted, using the output from the Aurora [8] VAD process.
First the DER of the direct output of the sector activity map
(VAD+SA) was calculated, i.e. diarisation with fixed num-
ber of 36 speakers. Next the new algorithm (VAD+SA+SM)
was evaluated. Finally, in order to provide baseline results,
two open source diarisation systems—the SHOUT speech re-
cognition toolkit3 and the LIUM speaker diarisation system4

were used. The results are given in Figure 3 and Table 1.
The results show that the basic VAD+SA method achieves
an improvement of 26% / 15% absolute compared to the
LIUM tool. The VAD+SA+SM outperforms both SHOUT
and LIUM, giving an improvement of 51% relative / 29%
absolute compared to LIUM and 22% relative / 8% absolute
compared to SHOUT. In addition, the number of speakers
estimated by the VAD+SA+SM system is significantly closer
to the actual number of speakers in the meeting than either of
the other systems.

3http://shout-toolkit.sourceforge.net/
4http://lium3.univ-lemans.fr/diarization/doku.

php

http://shout-toolkit.sourceforge.net/
http://lium3.univ-lemans.fr/diarization/doku.php
http://lium3.univ-lemans.fr/diarization/doku.php


Table 1. VER, DER, and estimated number of speakers for each meeting. FA denotes false alarm, MS denotes missed speech.

VAD+SA (basic) VAD+SA+SM SHOUT LIUM
Meeting spkrs DER VER FA MS spkrs DER spkrs DER spkrs DER spkrs

RT06-R123 EDI 20050216-1051 4 48.06 9 2.9 6.1 32 31.02 4 45.28 10 65.68 7
EDI 20050218-0900 4 53.18 8.9 2.5 6.4 32 30.37 5 49.84 9 67.2 7
TNO 20041103-1130 4 65.26 8 1.8 6.2 32 57.07 7 46.81 12 61.65 2
avg (RT06) 55.50 8.64 2.40 6.24 39.41 47.35 64.87

RT07-R123 EDI 20061113-1500 4 44.63 4.7 4.2 0.5 32 31.82 4 56.74 14 72.49 1
EDI 20061114-1500 4 27.45 6.3 5.7 0.6 32 20.34 4 23.43 10 64.06 6
avg (RT07) 35.33 5.57 5.01 0.55 25.61 38.71 67.93

RT09-R123 EDI 20071128-1000 4 34.63 3.9 3.2 0.7 32 16.65 4 23.43 8 56.2 3
EDI 20071128-1500 4 45.95 5.3 4.7 0.6 32 35.11 5 30.95 13 82.32 2
IDI 20090128-1600 4 27.81 1.6 0.7 0.9 32 11.96 4 23.82 9 19.74 19
IDI 20090129-1000 4 41.73 4.9 4 0.9 32 25.54 4 34.38 14 41.67 12
avg (RT09) 37.18 3.85 3.07 0.78 21.89 28.02 48.68
avg (all) 42.27 5.59 3.23 2.36 27.78 35.75 57.06

5. DISCUSSION AND FUTURE WORK

We have proposed a TDOA-based algorithm to determine the
number of active speakers in a meeting, and applied this to the
diarisation task. The proposed algorithm outperforms BIC-
based diarisation tools, due to its improved estimation of the
number of speakers in the meeting. The algorithm is com-
putationally less expensive than BIC based methods and can
be easily adapted to require only a single pass over the data,
making it applicable to online processing.

The algorithm performs well on NIST RT data, in which
speakers are typically in a fixed location and do not move
around. Such a restriction is not realistic, and moving speak-
ers would significantly increase the error rate for TDOA-
based systems, such as ours. Future work will include ex-
periments involving moving speakers and combining our
proposed method with BIC segmentation and clustering.
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