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Abstract

We propose a method for synthesising head motion from speech
using a combination of an Input-Output Markov model (IOMM)
and Gaussian mixture models trained in a supervised manner. A
key difference of this approach compared to others is to model
the head motion in each angle as a series of templates of motion
rather than trying to recover a frame-wise function. The tem-
plates were chosen to reflect natural patterns in the head mo-
tion, and states for the IOMM were chosen based on statistics
of the templates. This reduces the search space for the trajecto-
ries and stops impossible motions such as discontinuities from
being possible. For synthesis our system warps the templates
to account for the acoustic features and the other angles’ warp-
ing parameters. We show our system is capable of recovering
the statistics of the motion that were chosen for the states. Our
system was then compared to a baseline that used a frame-wise
mapping that is based on previously published work. A sub-
jective preference test that includes multiple speakers showed
participants have a preference for the segment based approach.
Both of these systems were trained on storytelling free speech.

Index Terms: Head motion synthesis, GMMs, IOMM

1. Introduction
Head motion is an important communication channel. In ad-
dition to meaningful gestures such as nodding for agreement it
provides prosody and many social cues [1]. While it is known
that there is a link between acoustic features and head motion
[2, 3] so far synthesising natural synchronised head motion has
not been achieved.

Several approaches have been used thus far. Generally they
seek to determine a frame based function to map acoustic fea-
tures into head motion. Some examples include Yehia et al. [4]
who propose a regression model for a frame-wise mapping from
F0. Bussio et al. [5, 6] use a Hidden Markov Model (HMM)
to create sequences of head motions based on the idea of find-
ing optimal poses and combining them with first noise then in-
terpolating and smoothing the resulting trajectory. The theme
of HMM approaches continue with Sargin et al. [7, 8] who
use parallel HMM structures, and Hofer [9, 10] who attempts
to recover gestures using HMM based speech recognition tech-
niques and then synthesise motion with HMMs trained on those
gestures. Both Sagin and Hofer rely on the HMM’s structure to
create different types of motion and preserve the dynamic limi-
tations of the head motion. In Sargin’s case this is the different
parallel branches and in Hofer’s case it is the different mod-
els used for different gestures. A very recent approach by Le
et al. [11] uses a set of Gaussian mixture models to maximise
the probability of a frame’s trajectory, taking into account the
velocity and acceleration.

In the majority of the existing research rigid head motion is
often expressed as Euler angles, and as the head cannot rotate
past a certain point there are maximums in these angles. This
leads the angles to have a wave-like motion when plotted over
time with clear peaks and valleys. However, seldom in synthesis
is this prior knowledge exploited. This means that during syn-
thesis dynamic constraints become explicit, or the model may
create discontinuous movement. If, however, the motion is lim-
ited to only being able to move in patterns that are found in
source data then these constraints become implicit and the mo-
tion is limited to what is normally observed. As it seems that
there are only a limited number of these patterns they can be
used as templates for movement.

HMMs are capable of recovering highly complex patterns
in data. However, the trajectories of head motion are relatively
simple. So it is possible to use a less complex system such as a
Markov model. The input-output extension to Markov models
[12] allows for modification of the observables based on factors
other than states and other parts of the observation. For instance
the inputs could modify or ‘warp’ the templates. In this case
the inputs would come from acoustic features and other angle’s
movement. If the templates are chosen to be functions of time
then this also reduces the amount of computation needed, as
optimisation can be done less often.

In this paper we propose a system that uses a template func-
tion to generate head motion. The templates are warped to
match acoustic features and maintain realism. What follows
is a derivation of the probabilistic model. Then we show results
of both objective measures and subjective evaluations where we
compare our method to both the original trajectory and one syn-
thesised by a frame-based system. We do not attempt to recreate
the original head motion, rather we seek to create motion that
seems believable given just the acoustic features and so would
not have any semantic meaning.

2. Model description
In this paper we focus on the rotation of the head as a rigid body.
So head motion is described in terms of rotation vector compo-
nents α, β, and γ; these could be substituted for Euler angles
[13] but rotation vectors are independent of order of rotation.

We propose to represent head motion as templates. These
template are any function of time that can be changed or warped
by specifying a duration and amplitude. The duration can either
be a variable of the function or can change using a standard
time warping method. In essence the templates are functions of
duration and amplitude and should also have a constant offset.
While any template function is possible, a simple choice is to
use a sinusoidal function. In this paper each of these angles
are treated identically and therefore, to represent any individual
angle (but not all simultaneously) we introduce κ ∈ {α, β, γ}.
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Definition 1. A general head motion template is expressed as

g(t, d
(κ)
t , a

(κ)
t , c

(κ)
t ),

with duration d, amplitude a, and constant offset c for time t.

We use the bracketed superscript to refer to the angle and

the subscript to time. Let λ
(κ)
t be the combined set of parame-

ters. The template determines the value of λ
(κ)
t for time t.

What follows is a formal derivation of the model but infor-
mally one can think of it as generating a sequence of motions
that follow a template for each angle. The template parameters
for each angle are generated sequentially and when determining
the parameters of the next template in the sequence it uses infor-
mation from the acoustic features and the other angles’ template
parameters at that time. The distribution of durations observed
in the data led to the decision to use a three state Markov model
which divides motion into slow, medium, and fast. Because the
states are known and the observations and transitions are based
on both the state and external features, this is essentially a sim-
plified Input-Output Hidden Markov Model (IOHMM) [12].

The problem of finding an optimal head motion trajec-
tory Y = [Yt]

T
t=1 given speech can be expressed as finding

the trajectory Y ∗ for a given trajectory of acoustic features
X = [Xt]

T
t=1 that maximises the p.d.f. such that

Y∗ = argmax
Y

p(Y|X), (1)

where Yt is a tuple of the angles at t. Let the trajectories of the

angles over time be −→α ,
−→
β , and −→γ .

As we are treating head motion as a series of templates we

denote the start of each template t
(α)
m for −→α , t

(β)
n for

−→
β , and

t
(γ)
o for −→γ , where m ∈ {1, . . . ,M}, n ∈ {1, . . . , N}, and
o ∈ {1, . . . , O} denote template indices. We also define i ∈
{m,n, o} to be the indices for the associated κ.

We now constrain head motion to follow a template for its
entire duration by stating that

λ
(κ)
t constant for t ∈ [t

(κ)
i , t

(κ)
i+1), (2)

where
t
(κ)
i+1 = t

(κ)
i + d

(κ)
i . (3)

As the parameters are constant throughout the template motion

let Λ
(κ)
i denote the parameter set for template i and angle κ, i.e.

Λ
(κ)
i = (d (κ)

i , a(κ)
i , c(κ)i ),

where d (κ)
i , a(κ)

i , and c(κ)i are the duration, amplitude, and off-

set of template Λ
(κ)
i respectively. The complete trajectory of

the constant template parameters are
−→
Λ (κ). To ensure the head

motion is continuous, the first value of the new frame should be
the same as what the previous frame would have predicted. In

other words c(κ)i must satisfy

g(d (κ)
i−1,Λ

(κ)
i−1) = g(0,Λ

(κ)
i ). (4)

Returning to the original optimisation problem, (1) can be
expressed as

Y∗ = argmax
Y=Y0...YT

p(Y0|X)

T∏
t=1

p(Yt|Yt−1, Yt−2, . . . , Y0,X)

(5)= argmax
−→α ,
−→
β ,−→γ

p(α0, β0, γ0|X)

×
T∏

t=1

p(αt, βt, γt|αt−1, βt−1, γt−1,

. . . , α0, β0, γ0,X) (6)

By using definition (1) this can be rewritten as

argmax
−→
λ (α),

−→
λ (β),

−→
λ (γ)

p(g(0,λ
(α)
0 ),g(0,λ

(β)
0 ),g(0,λ

(γ)
0 )|X)

×
T∏

t=1

p
(
g(t,λ

(α)
t ),g(t,λ

(β)
t ),g(t,λ

(γ)
t )

|g(t−1,λ
(α)
t−1 ),g(t−1,λ

(β)
t−1),g(t−1,λ

(γ)
t−1),

. . . ,g(0,λ
(α)
0 ),g(0,λ

(β)
0 ),g(0,λ

(γ)
0 ),X

)

(7)

To compact the notation we denote

g(t,λ
(K)
t ) =

(
g(t,λ

(α)
t ), g(t,λ

(β)
t ), g(t,λ

(γ)
t )

)
(8)

λ
(K)
t =

(
λ

(α)
t , λ

(β)
t , λ

(γ)
t

)
(9)

and similar for Λ
(K)
t

We segment the time sequence such that τ1 . . . τT ′ are the
start indices of each segment. These we constrain to being

drawn from the set (t
(α)
m ∪ t

(β)
n ∪ t

(γ)
o ). We now optimise

argmax
−→
λ (α),

−→
λ (β),

−→
λ (γ)

p(g(0,λ
(K)
0 )|X)

×
T ′−1∏
s=0

τ(s+1)∏
t=τs+1

p
(
g(t,λ

(K)
t )

|g(t−1,λ
(K)
t−1), . . .g(0,λ

(K)
0 ),X

)
. (10)

We now also define the indices of start times closest to τd
but not equal to τd and the indices that may equal τd as

j
(κ)
d = argmin

i
t
(κ)
i , s.t. t

(κ)
i > τd, (11)

j
(κ)
d∗ = argmin

i
t
(κ)
i , s.t. t

(κ)
i ≥ τd, (12)

with j
(K)
d for the three separate angles in (8). Omitting the

κ where it would be unambiguous and using the constraints
above, (10) is equivalent to

argmax
−→
λ (α),

−→
λ (β),

−→
λ (γ)

p(g(0,λ
(K)
0 )|X)

×
T ′−1∏
s=0

τ(s+1)∏
t=τs+1

p
(
g(t,Λ

(K)
js∗ )|g(t−1,Λ

(K)
js

),

. . . ,g(τs,Λ
(K)
js

), . . . ,g(τd−x,Λ
(K)
jd

),

. . . ,g(0,Λ
(K)
0 ),X

)
,

0 ≤ d < s, x ∈ (τd, τd + 1]. (13)

If we make the assumption that each segment is only de-
pendant on the previous τ and a window Xs of X around τs,
then this reduces to

argmax
−→
λ (α),

−→
λ (β),

−→
λ (γ)

p(g(0,λ
(K)
0 )|X)

×
T ′−1∏
s=0

τ(s+1)∏
t=τs+1

p
(
g(t,Λ

(K)
js∗ )|g(t−1,Λ

(K)
js

),

. . . ,g(τs,Λ
(K)
js

), Xs

)
. (14)
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We then assume that this is similar to optimising just the param-
eters, instead of the actual trajectory, and this becomes

argmax
−→
Λ(α),

−→
Λ(β),

−→
Λ(γ)

p(Λ
(K)
0 |X0)×

T ′∏
s=1

p
(
Λ

(K)
js∗ |Λ

(K)
js

, Xs

)
.

(15)

However at each time interval only one Λjs is changing. This
can thus be rephrased as

argmax
−→
Λ(K)

p(Λ
(K)
0 |X0)×

T ′∏
s=1

p
(
Λ

(κ)
js∗ |Λ

(K)
js

, Xs

)
. (16)

With a simple application of Bayes’ Theorem this reduces to
maximising the joint probability,

argmax
−→
Λ(K)

p(Λ
(K)
0 , X0)×

T ′∏
s=1

p
(
Λ

(κ)
js∗ ,Λ

(K)
js

, Xs

)
. (17)

This probability density can be modelled by a Gaussian mixture
model.

2.1. Extension based on empirical data

The choice of template function was based on the idea of seg-
menting the trajectories based on when they reached local max-
ima and minima. Fig. 1 shows sample trajectories of the seg-
ments when they are normalised to have a duration of one sec-
ond and an amplitude of one. The trajectories were also mod-
ified so that those going from minima to maxima are inverted.
Our choice of template function was

g(t,Λ
(K)
i ) = (−1)i+1ai cos

(
2π

1

4di
t
)
+ ci, (18)

which is also shown on Fig. 1. The amount of warping was
predicted using the instantaneous log-energy and F0 at the time
of change.

The distribution of template function frequency from the
training data is shown in Fig. 2. It is clear that there are three
identifiable categories. This is a repeat of what Hader et al.
found [14] but each angle is evaluated separately. This means
that the system can be split into a three state model. So for syn-
thesis the joint distribution of each of the states are estimated
and then one is picked based on its likelihood. Because the
distribution has high variance it is better to sample under the
probability distribution rather than maximise, though in the big
data case with a large amount of mixture components this is
equivalent. In practice it was also found that estimating first
the duration, then the amplitude separately did not have a sig-
nificant change on the results but was more efficient computa-
tionally. Through testing it was also found that three mixture
components for amplitude and one for frequency was sufficient.

3. Evaluation and discussion
To compare our system to a frame-based method we chose to
modify Le et al.’s system [11]. Their model assumes inde-
pendence between the angles, so to make the comparison fair
we changed the model so that it would take this into account
while still maintaining their choice of acoustic features. In other
words while in their system there are essentially three optimi-
sation problems, one for each of the angles while we chose to
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Figure 1: Samples from m1 (thin lines) and template function
(thick line).
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Figure 2: Average distribution of frequency for all angles from
all speakers.

maximise them within one GMM. So αt, βt, γt, angular veloc-
ity vt, and angular acceleration at are determined by solving
sequentially for

(α∗t , β
∗
t , γ

∗
t ) = argmax

(α,β,γ)

p(α, β, γ, v, a, F0t,Loudnesst)

(19)
We also compared our system to the original motion capture.

3.1. Data set

Data from four participants, consisting of 2 males (m1 and m2)
and 2 females (f1 and f2), were used in the following experi-
ments. The participants were all university students, native En-
glish speakers, raised in the U.K., and aged between 18 and 24.
The participants were given five classic fairy-tales with which
they should be familiar ahead of the recording. Each participant
read a story for five minutes from a teleprompter, then retold
the story in their own words, if they exceeded five minutes they
were stopped. They were instructed to tell the story as though
to an adult native English speaker. They were not given any
instruction about body language or head motion. The available
free speech total approximately 14, 25, 17, and 24 minutes for
m1, m2, f1, and f2, respectively. Four stories were used for
training and validation and the last was left for testing.

3.1.1. Head motion capture

The recordings were performed with the NaturalPoint Opti-
Track1 motion capture system. Four markers were placed on

1http://www.naturalpoint.com/optitrack/
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the head and five markers were placed on the body. Recording
was done at 100Hz. In front of the person was a teleprompter
for read stories (not used in this research). The recorder sat
in the room with them so that they could focus their speaking
when not reading. Audio was recorded with a free standing mi-
crophone at 44.1 kHz. Rotation matrices for the head and body
were estimated from maker data using singular value decom-
position, and then the relative head motions to the body were
estimated by removing the effect of body motion. The obtained
relative head motions were converted into rotation vectors [13].

3.1.2. Acoustic feature extraction

Prior to feature extraction the audio was down-sampled down to
16 kHz. The combined features of the fundamental frequency
F0 (extracted via autocorrelation and cepstrum based methods),
log-energy, loudness contours, voicing probability, and voice
quality were extracted using OpenSmile [15] . From these log-
energy, its first derivative and loudness and were smoothed with
a moving average window of 13 frames. These features were
computed from the audio signal over 25 ms windows at a frame
rate of 10 ms to match the frame rate of the motion capture
system. F0 was extracted for the base-line system.

3.2. Objective evaluation

To objectively measure the system we first determine how well
the frequency and amplitudes were recovered. In Fig. 3 the
predicted frequency and amplitude are shown along with the
training data’s for one sample. The second was to determine
the system’s performance in predicting the states. The system’s
confusion matrix for state prediction is given in Table 1.

Table 1: Confusion matrix for state prediction over all speakers,
columns give the prediction

Slow Medium Fast Number of Samples

Slow 81% 8% 11% 30180
Medium 47% 46% 6% 3471

Fast 67% 8% 25% 1374

As indicated by Fig 3, our system is capable of recovering
the same template parameters that were given by the speech.
However, the system does not have a good performance when
predicting states.

3.3. Subjective evaluation

For the testing, 14 subjects were shown one minute long sam-
ples of videos of each type in an A-B type test on a model that
does not show eye or lip motion. They were each given 10 com-
parisons to make, with the pairings being balanced so that mo-
tion capture and the template were compared to each other one
more time than they were compared to the frame based model.
Each comparison of methods was done so that they would show
each method on the left and right an equal amount of times.
They were able to view both motions simultaneously and repeat
the video as many times as they liked and stop when they had
made a decision. The subjects of the experiment included two
speech technology experts. The preference results are given in
Fig. 4.

3.4. Discussion

On the objective measures it would seem that in all but one re-
spect the system would be a good predictor of head motion. It
was able to recover similar distributions of frequency and am-
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Figure 3: Average distribution for the difference angles of fre-
quency and amplitude for an example trajectory.

Figure 4: Preference of types of motion, blue indicates prefer-
ence of left method over method on right shown by red.

plitude to the original trajectory. However, the state prediction
has high confusion especially for predicting fast motion. This
implies that either a better classifier is needed or that a different
feature set may be more appropriate.

In the subjective test there was a strong preference for the
template model over the frame-based one. When asked partici-
pants reported that the movement of the frame based model was
jerky. Over a long clip like those that the participants watched,
this would be very noticeable.

4. Conclusion and future work
Our system has shown a lot of promise for synthesising head
motion. It outperformed frame-wise synthesis and in a sub-
jective test people had difficulty telling it apart from motion
capture. The main open question is how to improve the state
prediction. Some possible options are the use of other acoustic
features or using windows of samples.

The use of templates has many advantages, they limit head
movement to what would be believable, they greatly reduce the
amount of optimisation operations that need to take place, and
they can maintain the dependencies between angles.
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