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Abstract

Automatic speech recognition depends on large amounts of transcribed speech recordings in order to estimate the parameters
of the acoustic model. Recording such large speech corpora is time-consuming and expensive; as a result, sufficient quantities of
data exist only for a handful of languages — there are many more languages for which little or no data exist. Given that there are
acoustic similarities between speech in different languages, it may be fruitful to use data from a well-resourced source language
to estimate the acoustic models for a recogniser in a poorly-resourced target language.

Previous approaches to this task have often involved making assumptions about shared phonetic inventories between the
languages. Unfortunately pairs of languages do not generally share a common phonetic inventory. We propose an indirect way
of transferring information from a source language acoustic model to a target language acoustic model without having to make
any assumptions about the phonetic inventory overlap. To do this, we employ tandem features, in which class-posteriors from a
separate classifier are decorrelated and appended to conventional acoustic features. Tandem features have the advantage that the
language of the speech data used to train the classifier need not be the same as the target language to be recognised. This is
because the class-posteriors are not used directly, so do not have to be over any particular set of classes.

We demonstrate the use of tandem features in cross-lingual settings, including training on one or several source languages.
We also examine factors which may predict a priori how much relative improvement will be brought about by using such tandem
features, for a given source and target pair.

In addition to conventional phoneme class-posteriors, we also investigate whether articulatory features (AFs) — a multi-
stream, discrete, multi-valued labelling of speech — can be used instead. This is motivated by an assumption that AFs are less
language-specific than a phoneme set.

Index Terms

Automatic speech recognition, Multilayer perceptrons

I. INTRODUCTION

Training acoustic models for automatic speech recognition (ASR) typically requires hundreds of hours of transcribed speech
data (e.g., [1]). Whilst such data exist for English and a handful of other languages, there are thousands of languages for which
there is only a little data [2].

In the work presented here, we focus exclusively on acoustic modelling and not other aspects of the recogniser — for
instance, we assume that a lexicon and language model exist for the language to be recognised. Our work examines ways
in which training speech data in one or more languages can be used to improve the accuracy of a recogniser in a particular
target language. This is achieved by encapsulating information learnt from data in the parameters of a classifier, which is then
applied to the target language. In this paper, we will use the term acoustic model to refer specifically to the hidden Markov
Models (HMMs) used to perform recognition; this is distinct from the classifier used to encapsulate information from data in
one language, in order to transfer it to another language.

This classifier — a neural network — is learned from data in one or more source languages and then applied to data in
a target language. The classes will be sub-word units, such as phonemes. To use the trained classifier directly to perform
ASR would require that the languages are labelled with a common set of sub-word units or that a mapping is learnt from the
sub-word units in the source language(s) to the target language. Neither of these is easy to achieve or entirely satisfactory. We
use the classifier output indirectly and thus avoid the need for any mapping between label sets.

An established method for cross-lingual acoustic model training is that of Polyphone Decision Tree Specialization (PDTS) [3].
In a standard mono-lingual context-dependent acoustic model, clusters of related contexts are treated as the same, according
to a decision tree learnt from source language data. Where PDTS differs is that the tree is then further grown with target
language data. We pursue an alternative, tandem feature-based approach in order to avoid difficult decisions about phoneme
correspondences across languages; however, it would be possible to use our approach in combination with PDTS.

Phonemes are the most common sub-word unit used in ASR but, since our proposed indirect method does not depend on
using any particular set for the classifier, we can consider alternatives. The properties we might look for in a sub-word unit
set include:
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Realized in the same way in different languages
This means that a classifier trained in one language is more likely to produce useful classifications on data from some
other language. Since nominally identical phonemes (e.g. sharing the same IPA symbol) can in fact be realized differently
in different languages [4], phonemes may not be the best choice for cross-lingual recognition.

Evenly distributed across languages
For instance, we if we trained a classifier on a language which has few, or zero, instances of a unit that occurs frequently
in the target language, this may result in poor performance.

Easily labelled
Speech data usually have only word level transcriptions — the lexicon is then used to derive a phone-level transcription.
Any alternative to phonemes must also be somehow derived from words.

Few in number and acoustically distinct
This makes the classification problem easier.

The alternative to phonemes that we consider here is a set of articulatory features (AFs), described in more detail in Section
V-A, which are a discrete multi-stream labelling of speech that encodes some properties of speech production. AFs have most
of the desirable properties listed above: the concept applies to all languages; they have similar coverage in different languages
( [5, page 98] and Section IV-D1); individual AF classifiers use fewer classes than phonemes. Previous work (e.g. [6]) has
shown that AFs can be recognised from acoustic observations alone. Whilst manual labelling of AFs is not easy, we can derive
an approximate AF labelling from phoneme labels. Note that the acoustic models will still be of conventional phone-like [7]
sub-word units.

II. BACKGROUND

A. Tandem features for automatic speech recognition

1) Phoneme-based Tandem Features: Tandem features were introduced in [8] for a noisy digits task and then in [9] for a
noisy, medium-vocabulary spontaneous speech task (both in English). Tandem features are the concatenation of conventional
acoustic features (e.g. MFCCs) to posterior-based features; the posterior-based features are typically posterior probabilities
provided by a discriminatively-trained classifier, processed by a dimensionality reducing transform — see Section IV. In
[9], phone-classifying MLPs were used to generate the posteriors. Substantial improvements were found in conjunction with
context-independent acoustic models, and smaller but still significant gains with context-dependent models plus Maximum
Likelihood Linear Regression (MLLR). In general, tandem features consistently improve accuracy, compared to conventional
acoustic features alone, e.g. [10].

2) Articulatory Feature-based Tandem Features: Since the posterior probabilities from the classifier are processed and then
effectively considered as just another form of acoustic feature, there is no requirement for the classes over which the posteriors
are estimated to be consistent with any other component of the system (specifically, the sub-word units used in the acoustic
models and pronunciation dictionary). They can use a different phoneme inventory or any other set of classes. Articulatory
features (AFs) are an obvious alternative to phonemes for tandem features, as first reported in [11] where, on a small/medium
vocabulary spontaneous speech task, they performed as well as phonemes.

B. Cross-lingual ASR using Tandem Features

Because the posterior-estimating classifier is effectively acting as a sophisticated form of acoustic feature extraction, it is
possible to use a classifier trained on one data set to estimate posterior-based features for other data. The earliest example of
this is [12], in which data from a spontaneous speech corpus is used to train tandem features that are then used in a continuous
digit recognition task. The effect of adding various amounts of task-specific data to the training set was also investigated.

That work used English language corpora, the English part of the OGI Multilingual Corpus [13] and the Spine corpus [14],
with the transfer being between different tasks. The first instance of tandem features used cross-lingually is [15] — MLPs were
trained with conversational telephone speech data in English and then used to generate MLP features for use in Mandarin and
Levantine Arabic recognisers. Consistent improvements in word error rate were observed in both cases and the authors state
that phonetic distinction shared at the level of articulatory features may explain why the MLP features represent the acoustic
space well.

Following on from [11], [16] reports the use of AF-based tandem features from a classifier trained on English continuous
telephone speech data to generate tandem features for a Mandarin broadcast news task. However, whilst phoneme-based tandem
features (from an MLP trained on English data) reduced WER on the Mandarin task from 21.5% to 21.2%, AF-based tandem
features (also from MLPs trained on English data) actually increased WER.

In the work we present in this paper, we demonstrate consistent WER reductions using both phoneme- and AF-based tandem
features in cross-lingual settings.
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Another example of tandem features being used cross-lingually is [17], in which English phoneme MLPs and English AF
MLPs1 are used to generate tandem features for a Hungarian telephone speech recognition task. As well as those two cross-
lingual systems and monolingual tandem and non-tandem baselines, a system that used an adapted MLP was produced. The
adapted MLP took the English phoneme MLP and retrained some model parameters with Hungarian data.

Some results from that work include
• Both English phoneme and AF MLPs provide an improvement over the non-tandem baseline but do not perform any better

than using tandem features from the Hungarian phoneme MLP. Domain and channel differences may have contributed to
this result.

• Using the adapted MLP resulted in word error rates statistically significantly better than all other systems.
In [19] tandem features are used but the cross-lingual element comes about through retraining of the MLP. The task addressed

is the challenging Callhome corpus of conversational telephone speech. An MLP was trained to classify German and Spanish
speech using a pooled phoneme set. It was then applied to English — output activations were observed as English speech
was passed forward through the net and the mutual information between English phoneme labels and pooled German-Spanish
phonemes was calculated. That information was used to learn a mapping between English and German-Spanish phonemes
and the MLP underwent further training with a limited amount of target language data, now relabelled with German-Spanish
phonemes.

Recognition accuracy improved with the use of non-target language speech data. The main differences between that work
and ours is in their use of MLP training as the tool for cross-lingual transfer as well as their use of novel acoustic features.
Our method does not require retraining of the classifiers or relabelling of the MLP outputs with a new phone set.

[20] features the use of AF posteriors in a Kullback-Leibler divergence-based HMM (KL-HMM). A typical KL-HMM takes
phoneme posteriors at each frame and computes the KL-divergence between them and a reference multinomial distribution
defined for each state. The state sequence that minimizes the total KL-divergence is found by Viterbi decoding.

That paper showed that by using a multi-stage series of AF MLPs to estimate AF posteriors it is possible to perform
phoneme recognition as accurately as with phoneme MLPs on the TIMIT corpus. Furthermore, AF posteriors can easily be
combined with phoneme posteriors in a KL-HMM system to give an improvement in accuracy relative to a phoneme posterior
only system.

C. Novel contributions of our work

In the context of the prior work described in this section, the novel contributions of this work can be summarised as:
• We show that tandem features can be used cross-lingually and can result in a statistically significant improvement over a

non-tandem baseline
• We demonstrate that a set of MLPs classifying articulatory features can generate better tandem features than an MLP

classifying phonemes, resulting in reduced word error rates
• We investigate the use of cross-lingual tandem features when only limited amounts of target language data are available.

In some situations, pooling data from multiple source languages to train a language-independent MLP is shown to be
more effective than an MLP trained exclusively on the limited target language corpus.

III. DATA

We need a multilingual transcribed speech corpus with which to train our MLPs and GMM-HMMs. The GlobalPhone corpus
was chosen because it contains enough data in each language for baseline recognisers to be built and because it covered a
wide range of languages. Ten of the available languages were selected such that a wide range of phonetic phenomena are seen
and some groups of similar languages exist. So far, experiments have only been performed with six of those languages, due
to a lack of language models for the other four.

Our choice of languages covers a range of language families — their relation to each other is described in Figure 1. The
phonetic characteristics of each of the language families included, in particular those aspects that differ between families,
are briefly given below. Variation in the set of phonetic phenomena exhibited in source and target languages is one of the
challenges faced in cross-lingual speech recognition and so choosing a set of languages with a diverse range of properties
should provide more widely-applicable results from experiments.
Chinese In Mandarin Chinese, syllables consist of a vowel nucleus, which can be a monophthong, diphthong or triphthong,

and optionally have an onset and coda. The tone of the vowel is phonemic. Consonant clusters are rare in the syllable
onset. In Mandarin, only /n/ and /N/ are valid codas. [21]

Germanic Swedish features a unique voiceless palatal-velar fricative realization of /Ê/ [22, pages 171–2, 330; 173–6]. It also
possibly has more than one type of lip rounding gesture in vowels [22, page 295]. Both German and Swedish have
phonemic vowel length. German and Russian have broadly similar movement patterns for labiodental fricatives [22, page
140].

1Again, the AF MLPs from [18] that were trained on 2000 hours of Fisher corpus data were used.



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING

• Sino-Tibetan → Chinese
• Indo-European

– Germanic
∗ North → East Scandinavian → Danish-Swedish → Swedish
∗ West → High German → German → Middle German → East Middle German → German

– Balto-Slavic → Slavic → East-Slavic → Russian
– Italic → Romance → Italo-Western → Western → Gallo-Iberian → Ibero-Romance → West Iberian
∗ Portuguese-Galician → Portuguese
∗ Castilian → Spanish

Fig. 1. The placement of the languages used in our experiments within the Ethnologue language hierarchy.

Number of speakers
Language Training Development Evaluation Total

(hours)M F Σ M F Σ M F Σ
Chinese 53 58 111 6 5 11 5 5 10 31
German 62 3 65 4 2 6 4 2 6 18
Portuguese 45 41 86 4 4 8 4 3 7 26
Russian 51 44 95 5 5 10 5 5 10 22
Spanish 34 45 79 5 5 10 4 4 8 22
Swedish 40 39 79 5 4 9 5 5 10 22

TABLE I
THE NUMBER OF SPEAKERS IN GLOBALPHONE IN EACH CORPUS SPLIT, WITH GENDER, AND THE TOTAL SIZE OF THE CORPUS IN HOURS.

Romance Spanish has an alveolar trill /r/ that also appears in Russian [22, page 218]. Spanish is unusual amongst the world’s
languages in having dental fricatives [23]. An uncommon aspect of Portuguese is that, whilst laterals in most languages
have some place of articulation, it has completely unoccluded laterals [22, page 193].

GlobalPhone consists of recordings of speakers reading from a newspaper in their native language. Recordings were made
under a range of ‘quiet’ conditions using identical recording equipment although recording location varied. The amount of
data available in each language, as well as the standard partitioning into training, cross-validation (development) and test
(evaluation), plus the gender split of the speakers is described in Table I. The sizes of the available GlobalPhone lexica in each
language are given in Table II. The phoneme inventory for each language is described in Table III.

A. Cross-corpus normalization

Whilst the GlobalPhone corpus benefits from the fact that the same recording equipment was used throughout (and sampling
rates, bit depths etc. were also consistent), recording sessions were conducted at different locations around the world, in
different sized rooms and occasionally under different noise conditions. This will inevitably result in acoustic differences that
are independent of the words being spoken. This section describes efforts to address this issue.

Prior work in this area includes [24], which involved estimating a corpus-normalizing feature transform for each corpus.
Training maximised the likelihood of the training data by alternately updating the transforms and the GMM means and variances,
until convergence.

Here we focus on the point at which the data from the different corpora meet, that is, when target language acoustic
observations are passed through the source language MLP. We apply a linear transformation to those features before feeding
them through the net. Note that, whilst the PLPs used by the MLP are transformed, the MFCCs modelled with a GMM are
unchanged. The MLP itself remains unchanged throughout this process. We derive the transform as follows:

1) Use two single state HMMs to model the source language training data — one HMM models all speech frames and the
other models silence (initial labels are derived from the existing word-level transcriptions). Each HMM state uses a 128

Language Pronunciations Words
Chinese 73388 73387
German 48979 46037
Portuguese 54163 51987
Russian 28818 27062
Spanish 41286 28803
Swedish 25402 25257

TABLE II
GLOBALPHONE LEXICON SIZES FOR EACH LANGUAGE.
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Shared
by this
many
languages

Number of
phonemes

Polyphonemes

Consonants Vowels
All 10 f, k, l, m, n, p, s,

t
i, u

5 7 b, d, g, r a, e, o
4 5 j, S, v, x, z
3 4 N, ð, ts y
2 29 ç, dj, L, ù, tj, ü,w E, ai, a:, ä, 5, au,

ei, e:, ë, 9, eu, i:,
ï, O, ø, ø:, o:, ö,
y:, u:, ü

Language Number of
monophonemes
(total phonemes)

Monophonemes

Chinese 24(45) kh, C, th, tsh, tù,
tùh, tC,tCh

A,AU, AI, ia, iAU,
iE, iO, iou, ou, 7,
ua, uaI, uei, yœ,
uO

German 1(44) - 5
Portuguese 15(48) K ã, "ã, 5, ẽ, "ẽ, ĩ, "̃i,

I, õ, "õ, ũ, "ũ, U
Russian 16(49) bj, lj, mj, pj, P, rj,

sj, C:, C:j, zj, üj, Sj,
ts, tsj, vj

W

Spanish 8(43) D, G, ð, R, T, tS, B oi
Swedish 14(52) ã, ks, í, ï, ú A:, E:, æ, æ:, O, œ,

œ:, 8, 0:
Σ 78

TABLE III
PHONEME DISTRIBUTION ACROSS LANGUAGES. THIS TABLE IS IN FACT A VERSION OF [5, TABLE 4.3] LIMITED TO THE SIX LANGUAGES USED HERE.

POLYPHONEMES ARE PHONEMES APPEARING IN MORE THAN ONE LANGUAGES, MONOPHONEMES APPEAR IN ONLY ONE.

component GMM to model a 39 dimension PLP feature vector
2) Treat the target language training data as if it were adaptation data and compute an MLLR transform that brings it closer

to source language speech2

3) Apply that transform to all target language data before it is passed through the source language MLP
We are able to apply a model transform as if it were a feature transform here because all speech data is modeled with one

HMM. The same transform is applied to all frames even though it would have been preferable to apply the transform learnt for
silence to silent frames and the transform learnt for speech to speech frames. Since speech is significantly different to silence,
this mistreatment of silent data is assumed to have little effect.

To evaluate the effectiveness of the transform we considered the following methods:
1) measure the reduction in MLP frame error rate when the transform is applied or
2) compare the accuracy of tandem systems built from original vs transformed PLPs or
3) measure the increase in mutual information (MI) between target language labels and acoustic features before / after

applying the transform
The first of these isn’t a viable option — it is difficult to draw meaningful conclusions from MLP frame error rates when the
MLP is being used cross-lingually. Even if there is some overlap in the source and target phoneme sets, the error rate observed
still appears to be high even though the MLP can be used to produce useful tandem features3. The second option would be
ideal, except that is is computationally expensive. The third option was therefore selected.

The comparisons of MI are shown in Table IV — all features were speaker normalized to zero mean and unit variance, only
the development set was used to compute the results in this table. We can see that applying the adaptation method described
above generally results in an increase in MI between acoustic features and reference phoneme labels and that this holds true
for both the PLP features themselves and the transformed MLP features (the one exception being German).

Note that the use of MI is not contingent on any aspect of the normalization method and so other cross-corpus normalization
methods could be compared in the same way.

As a final check that the increases in MI due to cross-corpus normalization do result in improvements in WER, we built
recognisers for Spanish using tandem features from each of the languages. Results (for the development set) are shown in

2Only means are adapted in this work, i.e. MLLRMEAN in HTK
3For example, tandem features for a Portuguese recogniser generated with a Spanish phoneme MLP give a 17% relative drop in WER compared to baseline.

However, passing Portuguese data through the Spanish phoneme MLP gives a misleadingly high frame error rate of 67.1%.
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Target
Lang.

relative increase in mutual information (%)
PLP MLP features

Chinese 9.5 6.8
German 37.9 -6.0
Portuguese 6.1 4.8
Russian 12.1 4.4
Spanish 18.5 12.7

TABLE IV
MUTUAL INFORMATION INCREASES OBTAINED BY USING MLLR FEATURE NORMALISATION FOR BOTH THE PLPS THEMSELVES AND THE RESULTANT

MLP FEATURES. FOR THE 2nd AND 3rd COLUMNS, THE MEAN ACROSS ALL SIX SOURCE LANGUAGES IS SHOWN.

Source Language Word error rate (%)
normalized baseline

Chinese 26.0 27.3
German 25.7 26.3
Portuguese 25.3 25.9
Russian 25.6 25.8
Spanish 22.8 23.2
Swedish 28.5 25.3

TABLE V
WORD ERROR RATES FOR A SPANISH RECOGNISER USING VARIOUS SOURCE LANGUAGE TANDEM FEATURES, WITH AND WITHOUT CROSS-CORPUS

NORMALIZATION.

Table V. Apart from when the Swedish MLP is used, cross-corpus normalization always results in an improvement in word error
rate for all source languages when applied to Spanish. This is consistent with the predictions made by the mutual information
measure.

Because of the order in which our experiments was conducted, the normalised features generated by this method were not
arrived at in time for use in subsequent experiments — no cross-corpus normalization is performed in the work that follows.
However, we would predict a small decrease in WER across the board by adding normalization.

IV. PHONEME TANDEM FEATURES

The steps required to create a recogniser that uses tandem features are now described.

1) Train the MFCC baseline system, as described in Section IV-A

Training
Data

Dev.
Data

Train Tune GMM-
HMM

2) Generate a frame-level phoneme labelling for the corpus by forced-alignment of the MFCC baseline model.
This step also requires a word-level transcription and a lexicon that maps to phonemes.

GMM-
HMM

Data

Labels

Forced
Alignment Labels

MFCC

word

phoneme



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

LAL AND KING: CROSS-LINGUAL ASR USING TANDEM FEATURES 7

3) Train an MLP using frame-level targets obtained from the previous step. PLPs4 are extracted from the acoustic
data instead of MFCCs.

Labels

Training
Data

Dev.
Data

Train
Convergence

Test
MLP

phoneme

4) Generate tandem features:
a) Apply that trained classifier to the corpus, estimating phone posteriors at each frame.
b) Take logs of those posteriors. This is equivalent to omitting the softmax function that is usually applied in

the output layer of the net. Taking logs results in features that have a more Gaussian distribution.
c) Transform them using, for example, PCA. PCA is used to decorrelate and reduce the dimensionality of the

features that are going to be concatenated; using HLDA (Hetroscedastic Linear Discriminant Analysis, [25]),
or some other similar scheme would be an option here. The PCA transform is estimated using the training
set5.

d) The massaged MLP output vector is now concatenated to a vector of acoustic features; these could be
the same as those input to the MLPs but a further gain in performance can be attained if complementary
acoustic features are used, e.g. the MLPs are trained with PLPs, and then MFCCs are used in this step.

MLP
MLP

forward
pass

Data

PCA Concatenate

Data

PLP

MFCCPOSTERIORS

TANDEM

5) The new features can be modelled with a GMM-HMM again using the training schedule described in Section IV-A

Training
Data

Dev.
Data

Train Tune GMM-
HMM

A. GMM-HMM Training
A conventional GMM-HMM training workflow was used — HTK [26] was used for this and the tutorial recipe in HTKBook

was used as a starting point. The same training schedule was used for all GMM-HMMs including the baseline MFCC-based
model (which is also used for generating training labels for the MLP) and all tandem models. There are a handful of model
parameters that are tuned on the development set of the relevant corpus:

• the average number components per Gaussian mixture
• the number of triphone models
• word insertion penalties and grammar scales

The language models were provided by Tanja Schultz (creator of the GlobalPhone corpus). During decoding, a bigram language
model was used for first-pass lattice generation. A trigram model was then used to rescore those lattices, with the first-best
path through the lattice being used as the recognition result.

B. Multi-layer Perceptrons
Training and classification were both performed with QuickNet [27]. The input to the MLP consists of the PLP coefficients at

the frame to be classified and at the adjacent four frames in either direction — a nine frame context window. At the beginning
of each utterance the left-hand context consists of some padding frames — the first frame repeated four times – with equivalent
padding at the end of each utterance.

4PLP_E_D_A_Z in HTK
5The number of dimensions is reduced such that 95% of the variance is still accounted for — this conveniently means that we can fairly compare systems

built using different numbers of sub-word units. A script to implement this heuristic was provided by Özgür Çetin.
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Language Frame error rate(%)
dev eval

Chinese 31.2(32.2) 34.6(35.6)
German 26.5(30.6) 25.2(29.2)
Portuguese 47.7(49.4) 41.1(42.4)
Russian 38.4(39.5) 37.5(38.6)
Spanish 31.8(32.6) 29.0(29.8)
Swedish 39.6(41.3) 37.4(39.2)

TABLE VI
FRAME ERROR RATES FOR ALL USED LANGUAGES ARE REPORTED HERE — IGNORING THE SILENCE CLASS GIVES THE FIGURES IN PARENTHESES.

1) Training: We use three-layer feed forward MLPs and train them in the conventional way, using back-propagation to
minimize errors on the training set. Training consists of two steps, jointly referred to as an epoch, that are iterated until the
frame error rate on a cross validation set (identical to the development set mentioned earlier) converges.
Propagation New training patterns are presented to the network. In a batch update setup as used here, multiple patterns are

presented before weights are updated (the exact number of patterns is discussed below).
Forward The input is passed forwards through the network and the current weights are used to give output activations

at each layer
Backward At the output layer, the activations are compared with the training targets, to give deltas

Update For each weight:
• Compute the gradient at that point using previously computed deltas
• Using the gradient to determine which direction would reduce error, update the weight in that direction by moving

an amount proportional to the learning rate
The initial learning rate used when training the MLPs was 0.005. The “newbob” learning rate schedule was used, meaning
that after starting with the initial learning rate we repeat epochs until the development set frame accuracy increases by less
than 0.5% over the previous epoch. After that, the learning rate is halved, to home-in with increasing precision on the local
optimum6.

The MLP input was normalised to have zero mean and unit variance. The number of units in the hidden layer is set such
that the number of free parameters in the net is equal to some percentage of the total number of data frames7. The number
of free parameters in a net with an I ×H ×O structure is I +H +O +H(I +O) where I is the product of the number of
features per frame (39 PLP coefficients) and the size of the context window (9 frames), H is the size of the hidden layer, and
O is the size of the output layer (i.e., the number of phonemes in the language being classified). The actual percentage used
was around 35–50% but was tuned for each language so as to maximize development set accuracy. A softmax output function
is used so that output nodes sum to one and can be treated as the posterior probability of their corresponding class.

All MLPs are gender-independent. The presentation order of the training data was randomized. A batch update of the
parameters is applied during training after each ‘chunk’ of data is processed. The chunk size is determined dynamically by a
simple heuristic which refers to the memory available on the executing machine. Chunk size is selected to be as large as can
be held in memory but also such that the final chunk is not small (a small final chunk would bias the estimated parameters
towards the data appearing in that less representative chunk).

The language-independent MLPs are trained in much the same way as the monolingual MLPs, with the same schedule used
in training. For both phoneme and AF MLPs we treated symbols (phonemes or articulator states) as being the same across
languages.

2) Classification: If we were using the MLPs as classifiers, the output unit with the highest activation — i.e., the one with
the greatest posterior probability — would be selected and the label corresponding to that unit would be taken to be the label
for the current frame. Classification accuracy is one way to evaluate the performance of the nets before proceeding to train
the full HMM-GMM Tandem system.

Table VI reports the classification performance of the language-specific MLPs described in Table VII (since silence is very
easy to classify and, at the same time, not very useful, all frames labelled as silent in the reference labelling are ignored).

C. Results

The results in Table VIII demonstrate a consistent improvement in recognition accuracy is obtained for Tandem features
when the source language is identical to the target language, consistent with results in the literature. A matched pairs sentence-
segment word error statistical significance test [28] tells us that, at a 95% confidence level, the tandem system performs
significantly better than baseline for all languages — statistically significant differences are shown in bold face.

6http://www.icsi.berkeley.edu/speech/faq/nn-train.html
7This heuristic was suggested by Joe Frankel
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Language
units in layer free params

as % of data
frames

Training
corpus
(hh:mm)

Training
time
(hh:mm)

hidden
(×103)

output

Chinese 12.1 44 50 25:50 24:48
German 4.85 44 35 14:35 04:48
Portuguese 8.35 48 40 22:23 12:40
Russian 8.07 45 45 18:38 13:53
Spanish 8.00 43 50 16:48 10:07
Swedish 7.11 52 45 17:02 08:07
German,
Portuguese &
Spanish 19.5 77 - 53:36 > 50

Portuguese,
Spanish &
Swedish

19.1 91 - 56:06 > 90

TABLE VII
INFORMATION ABOUT THE MLPS USED TO CLASSIFY PHONES IN OUR TANDEM SYSTEM AND THE CORPORA USED TO TRAIN THEM.

Word error rate (%)
Target
language

Source language BaselineCH GE PO RU SP SW
Chinese 17.9 22.7 22.5 23.4 24.0 23.6 23.3
German 25.3 23.5 24.5 25.2 24.9 24.6 26.1
Portuguese 22.4 21.0 18.4 20.4 20.2 21.3 23.5
Russian 34.2 33.9 32.5 30.5 33.1 33.2 34.7
Spanish 18.2 17.9 17.1 17.2 16.0 17.5 18.3

TABLE VIII
WORD ERROR RATES FOR VARIOUS CROSS-LINGUAL PHONEME TANDEM SYSTEMS.

Table IX shows the word error rates achieved when using MLPs trained on multiple languages to generate tandem features
either for a language in the training set, or a different language. The WERs are better than the MFCC baseline, although
generally significantly worse than when a matched monolingual MLP is used.

D. Analysis

The improvements in accuracy brought by tandem features can be explained by a number of factors, the main ones being
access to a wider time context (i.e. the 9-frame window input to the MLP) and the use of a discriminatively trained classifier.
Some general observations that can be made about the results presented here include:

• For both Romance languages, the second most effective source language (after the same language itself) is the other
Romance language. Those two languages also have a high degree of lexical similarity8.

• Looking at the two Germanic languages, a statistically significant improvement over baseline occurs when one of the
languages is used to generate tandem features for the other.

• Chinese belongs to a different language family to the others and does not receive any improvement from the use of tandem
features generated from nets trained on other languages.

8In places, Ethnologue provides lexical similarity figures. Lexical similarity is defined here as the percentage of overlap in the words appearing in each
language. The figures provided by Ethnologue are computed by taking a standardised word list and looking at the similarity of words with a shared meaning.
Spanish and Portuguese overlap by 89%, which is deemed by Ethnologue to be a high degree of similarity: comparable to that between dialects.

Target
Language

Word error rate (%)
Multi-language Mono-

lingual
Non-
tandem
baseline

{German,
Portuguese,
Spanish}

{Portuguese,
Spanish,
Swedish}

German 23.8 26.1 23.5 26.1
Portuguese 19.8 24.9 18.4 23.5
Spanish 16.7 17.2 16.0 18.3

TABLE IX
WORD ERROR RATES FOR SYSTEMS USING MLPS TRAINED ON MULTIPLE LANGUAGES – THE OUTPUT LAYER OF THESE NETS IS A SHARED PHONESET –

REPORTED ON THE EVALUATION SET. STATISTICALLY SIGNIFICANT DIFFERENCES (EITHER BETTER OR WORSE) RELATIVE TO THE MONOLINGUAL
TANDEM SYSTEM ARE SHOWN IN BOLD.
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Variable Mean correlation coefficient
Share factor 0.91
Triphone overlap 0.90
Mutual information 0.73
MLP FER 0.41

TABLE X
A COMPARISON OF VARIABLES PREDICTING CROSS-LINGUAL PERFORMANCE OF TANDEM FEATURES.

Whilst these observations may be useful, it could be more desirable to have a quantitive measure which can predict the potential
gains before a system is actually built. We now introduce some candidate measures and examine how well they correlate with
word error rate improvements.

1) Share Factor: In order to quantify the degree of overlap between different phoneme sets, [29, Section 2.3] defines the
phoneme share factor sfN for a set of N languages. The share factor can be interpreted as the average number of languages
sharing the phonemes of the global (pooled) phoneset.

Here, only a source and target language are involved (N = 2) so the share factor is simply the sum of the sizes of the
two monolingual phonesets, divided by the size of the shared phoneset. It will range between 1 and 2, indicating completely
distinct or completely overlapping phoneme sets respectively.

2) Triphone Overlap: [30, Table 3.6], somewhat like [29, Table 4.5], shows what proportion of source language triphones
are covered by target language triphones.

Unlike [29], the source language model in our work is used indirectly for target language recognition, so source language
triphones do not actually make an appearance in the target model. However, triphone overlap may still give some estimate of
linguistic similarity if we assume shared labels in different languages refer to the same sound.

3) MLP Accuracy: We can also examine the relationship between the accuracy of the MLP used to generate tandem features,
measured in terms of MLP classification frame error rate, and the improvement in WER that those features then provide to
the resulting tandem system. Section III-A has already discussed why it is not possible to measure MLP accuracy using target
language data, so we use the frame error rate (FER) on source language data as the measure.

4) Mutual Information: The final measure we considered is the mutual information between the tandem features and target
language phone labels — we can then correlate that to the tandem system accuracy. The transformed output of the MLP is
used here, rather than full tandem features with MFCCs appended (i.e. the output of step 4(c) in Section IV). Cepstral mean
and variance normalization is applied on a speaker-level.

5) Comparing Predictors: Correlation coefficients, averaged across each of the target languages, for each measure listed
above are shown in Table X. First of all, we can see that relatively simple measures have a high degree of correlation with
word error rate. Given a range of options for source language to use in a cross-lingual system, we can make an accurate
estimate of the best language to use by examining the monophone share factor or triphone overlap.

However, those measures do not take into account the amount or quality of data available and so can probably only be used
when the source corpora are similar to each other in size and type. In fact, these measures only perform so well here because
multiple systems from the same language were not included in the comparison. If tandem features generated using less training
data, different feature sets or less accurate reference labels were used when computing the correlation coefficient then these
measures probably would not perform as well.

Next we look at the mutual information between the tandem features and target language phone labels. Whilst the mean
correlation is weaker here than for the simpler measures, this method does have some advantages over them, the primary one
being that the acoustic features have some bearing on the measure. It also allows us to draw comparisons between different types
of tandem features created from the same MLP, such as features with or without cross-corpus normalization (Section III-A).

Surprisingly, the frame error rate of the source language MLP has the least correlation of all with word error rate reduction.
This could be explained by the fact that source language MLP error rates are independent of the choice of target language.
An MLP may accurately predict phonemes for the language it was trained for but whether it can be used to produce useful
tandem features for some other target language depends on the choice of source and target languages.

6) Language-independent Results: Table IX also showed results where language-independent MLPs performed significantly
worse than when a matched monolingual MLP is used. This can perhaps be because there is a mis-match between the MLP
training corpus and the data it was applied to. Training with different corpora in the same language might outperform a
monolingual MLP. This observation is paralleled by a similar result in [12, Section 3].

The results in this section have shown that monolingual tandem features provide a statistically significant improvement in
word error rate and that in many cases cross-lingual tandem features also give a similar improvement. However, the cross-
lingual example does raise the question, if you have access to target language data, why use tandem cross-lingually? One
circumstance where cross-lingual tandem makes sense is where we don’t know the target language in advance, and don’t have
the resources to train a target language MLP before recognition. Another, more realistic, circumstance is where the amount
of source language data is far greater than the amount of source language data available — Table XI shows how a language-
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Target lang. data
(hh:mm) Word error rate (%)

train dev Monolingual Language-independent
14:35 1:58 23.5 23.8

7:11 0:51 24.5 25.4
3:31 0:46 26.2 26.8
1:05 0:21 43.6 39.1

TABLE XI
WORD ERROR RATES FOR GERMAN RECOGNISERS USING PHONEME TANDEM TRAINED WITH VARYING AMOUNTS OF GERMAN DATA.

Feature Values Cardinality
Place labial, labio-dental, alveolar, post-alveolar,

velar, glottal, lateral, none
8

Manner vowel, approximant, fricative, closure, trill 5
Nasality +, - 2
Voicing voiced, voiceless 2
Rounding +, - 2
Vowel German: a, E, 5, e, 9, i, o, ø, u, y 10

Portuguese: a, 5, e, i, I, o, u, U, W 9
Spanish: a, e, i, o, u 5

Height very high, high, mid-high, mid, mid-low,
low, nil

7

Frontness back, central, front, mid, nil, reduced-back,
reduced-front

7

Stress +, - 2

TABLE XII
ARTICULATORY FEATURES AND THEIR VALUES.

independent cross-lingual system outperforms a monolingual system when less than around three hours of training data is
available. Experiments with limited data are covered in more detail in [30, p73].

V. ARTICULATORY FEATURE TANDEM

Thus far, we have used a single MLP, classifying speech frames into phonemes. We now compare this to using multiple
MLPs, each of which provides posteriors for a different articulatory feature.

A. Articulatory Features

Articulatory features (AFs), as used in this work, are a multi-stream labelling of the speech signal that is loose representation
of the actions of the speech articulators. They are an abstraction, rather than a complete representation of the articulators’
precise physical positions. The articulatory features used here (based on [11]) and their values are shown in Table XII (“silence”
is another valid value for all features).

Our motivation for considering AFs is that they are less language-specific than phonemes: it is easier to devise a language-
independent AF set than a language-independent phoneme set. Furthermore, because AFs are a factorial representation, each
feature has fewer possible values and therefore will suffer less from data sparsity problems than a phoneme set.

B. Articulatory feature classification

Training the AF MLPs requires frame-level labels for each AF, which were derived from phoneme labels via the following
three steps:

1) Use the same forced-alignment as for training phoneme MLPs
2) Split phones that are composed of two parts (including diphthongs and plosives) into two different labels.
3) Map these new labels to their corresponding articulatory feature values. The mapping used is listed in [30, Table A.6]

Details of the AF MLPs are given in Table XIII and the performance of tandem recognisers using those MLPs is provided
in Tables XIV and XV. We can see that AF tandem recognisers perform at least as well as phoneme tandem recognisers for
each of the languages examined and in one case significantly better. Word error rates achieved with the language-independent
MLP are not as low as with the monolingual ones but a similar pattern of improvement over phoneme tandem is observed.
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Language
units in layer free params

as % of
data frames

Training
data
(hh:mm)

Training
time
(hh:mm)hidden output

German 5360±
51

6.44±
3.21

35 14:35 2:19–3:51

Portuguese 9312±
78

6.67±
3.08

40 22:23 6:08–9:41

Spanish 8841±
66

5.78±
2.77

50 16:48 3:38–7:01

Swedish 8007±
100

7.11±
4.65

45 17:01 3:00–5:43

German,
Portuguese &
Spanish

22.5±
0.27

7.67±
4.30

- 53:36 21.23–52:56

TABLE XIII
INFORMATION ABOUT THE MLPS USED TO CLASSIFY ARTICULATORY FEATURES IN OUR TANDEM SYSTEM, AND THE CORPORA USED TO TRAIN THEM.
THE NUMBER OF HIDDEN AND OUTPUT UNITS VARIES BETWEEN AFS: ONLY MEANS AND STANDARD DEVIATIONS ARE GIVEN HERE. LIKEWISE, FOR

TRAINING TIMES, THE RANGE FROM ONE STANDARD DEVIATION ABOVE AND BELOW THE MEAN TIME IS STATED.

Target
Language

Word error rate (%)
Articulatory Feature Phoneme Non-tandem baseline

German 23.1(22.5) 23.5(22.1) 26.1(26.9)
Portuguese 17.2(21.4) 18.4(21.8) 23.5(26.1)
Spanish 15.6(22.2) 16.0(23.2) 18.3(27.3)

TABLE XIV
WORD ERROR RATES WHEN AF MLPS ARE USED TO GENERATE TANDEM FEATURES, WITH PHONEME TANDEM AND NON-TANDEM SYSTEMS DISPLAYED

FOR COMPARISON. RESULTS ARE REPORTED ON THE EVALUATION SET WITH DEVELOPMENT SET FIGURES IN BRACKETS. AF TANDEM SYSTEMS THAT
ARE STATISTICALLY SIGNIFICANTLY DIFFERENT TO THEIR CORRESPONDING PHONEME TANDEM SYSTEM ARE SHOWN IN BOLD.

VI. CONCLUSIONS

We have shown that tandem features, using either phoneme MLPs or AF MLPs, can be used successfully in a cross-lingual
scenario — recognition accuracy is significantly better than in an MFCC-based baseline model. Articulatory feature MLPs work
at least as well as phoneme MLPs for this purpose, and are especially effective where data from multiple source languages
is used — AF tandem can sometimes be significantly better than phoneme tandem. An extended report of this work can be
found in [30].
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[15] A. Stolcke, F. Grézl, M.-Y. Hwang, X. Lei, N. Morgan, and D. Vergyri, “Cross-Domain and Cross-Language Portability of Acoustic Features Estimated

by Multilayer Perceptrons,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, Toulouse, France, May 2006, pp.
321–324.
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