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ABSTRACT

We investigate the application of deep neural network (DNN)-
hidden Markov model (HMM) hybrid acoustic models for
far-field speech recognition of meetings recorded using mi-
crophone arrays. We show that the hybrid models achieve
significantly better accuracy than conventional systems based
on Gaussian mixture models (GMMs). We observe up to 8%
absolute word error rate (WER) reduction from a discrimina-
tively trained GMM baseline when using a single distant mi-
crophone, and between 4–6% absolute WER reduction when
using beamforming on various combinations of array chan-
nels. By training the networks on audio from multiple chan-
nels, we find the networks can recover significant part of ac-
curacy difference between the single distant microphone and
beamformed configurations. Finally, we show that the accu-
racy of a network recognising speech from a single distant
microphone can approach that of a multi-microphone setup
by training with data from other microphones.

Index Terms— Distant Speech Recognition, Deep Neural
Networks, Microphone Arrays, Beamforming, Meeting recognition

1. INTRODUCTION

Distant Speech Recognition (DSR) [1] remains a significant
open challenge. Recognition of speech captured using multi-
ple distant microphones, typically configured in a calibrated
array, is a difficult task since the speech signals to be recog-
nised are degraded by the presence of other acoustic sources
and by the effects of reverberation. However, there has been
progress in distant speech recognition over the past decade,
with a particular focus on the transcription of multiparty
meetings captured using tabletop or wall-mounted micro-
phones, stimulated by the NIST Rich Transcription (RT)
evaluation campaigns [2].

Most distant speech recognition systems have adopted a
two-part architecture in which a microphone array beamform-
ing algorithm is applied to the recorded multichannel speech,
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followed by conventional acoustic modelling approaches.
Good examples of such systems include the AMIDA [3]
and ICSI/SRI [4] systems for meeting transcription. Both
of these systems process the microphone array signals us-
ing a noise-reducing Wiener filter on each channel, followed
by delay-sum beamforming where the time delays of arrival
are estimated using generalized cross-correlation with phase
transform (GCC-PHAT) [5] and smoothed using a two-stage
Viterbi post-processing [6]. The beamformed audio may then
be processed in the same way as single channel speech, typ-
ically using speech activity detection (if the recording is not
already segmented), followed by a speech recogniser.

More sophisticated beamforming algorithms have been
proposed that take into account the correlation of the noise
on different channels under spherically isotropic or cylin-
drically isotropic noise field assumptions. Such approaches,
collectively referred to as superdirective beamforming [7],
work well for speech enhancement by improving directional
selectivity at lower frequencies. However, such techniques
are designed for generic sounds and as such they neither
take into account the unique characteristics of human speech,
nor are designed specifically to improve speech recognition
performance. There has been some work on designing a
beamformer specifically assuming that its output will be used
for speech recognition. For instance: the maximum negen-
tropy beamformer [8] exploits the fact that the distribution
of the subband samples of clean speech is super-Gaussian
whereas the distribution of noise-corrupted speech is closer
to Gaussian; LIMABEAM (likelihood maximising beam-
forming) [9] optimises the array processing parameters to
maximise the likelihood of the recognised hypothesis given
the filtered acoustic data. LIMABEAM may be thought of as
explicitly optimising the beamforming to maximise speech
recognition accuracy by taking acoustic model likelihood as
a surrogate for accuracy.

Extracting a single enhanced channel does not address the
problem of overlapped speech. Hori et al. [10] describe a
system which applies a dereverberation algorithm to the mul-
tichannel audio, followed by a source separation approach
comprising a speaker diarisation component based on clus-
tered direction-of-arrival estimates, which is then used to di-
rect a delay-sum beamformer.



Several researchers have explored ways to perform recog-
nition from multiple distant microphones without performing
explicit beamforming. Wölfel et al. [11] have investigated
approaches in which each individual channel is separately
recognised, with the recognition hypotheses combined using
confusion network combination. A variant of this approach
also recognises an enhanced channel obtained by beamform-
ing, which is then added to the confusion network combina-
tion. Stolcke [12] has investigated this approach in detail on a
meeting recognition task, concluding that combining the indi-
vidual channels at the signal level by delay-sum beamforming
is superior (in terms of both accuracy and processing time)
compared to the individual channel approach. Marino and
Hain [13] have performed some initial investigations training
GMM-based systems on concatenated feature vectors from 2–
4 microphones. This produced encouraging word error rates,
similar to those obtained by beamforming the signals from the
same microphones.

In this paper we investigate the use of deep neural net-
works (DNN) for distant speech recognition. We do this in
the context of a meeting recognition task using the AMI cor-
pus1 [14], which is a collection of meetings recorded at three
sites in Europe (Edinburgh, UK; IDIAP, Switzerland; TNO,
Netherlands). In this paper we explore two novel alterna-
tives to conventional beamforming for speech recognition us-
ing multiple distant microphones:

1. Simple concatenation — the DNN performs feature-
level combination using a single input feature vector
from the concatenation of the individual feature vectors
from each microphone channel channel;

2. Multi-style training — the DNN is trained and tested
using a single distant microphone, but is trained on the
outputs of multiple array channels, taken one at a time.

We compare these approaches to conventional beamforming,
in which the DNN is trained on a single beamformed channel,
analogous to the systems discussed above [3, 4], and to sys-
tems that use a single distant microphone. We also compare
the DNN systems to a discriminatively trained conventional
GMM-based system.

The motivation for applying DNNs to recognition of
meetings recorded with distant microphones is twofold.
Firstly, DNNs are a powerful framework for learning rep-
resentations [15] from multiple sources of information, act-
ing as a cascade of nonlinear feature extractors (followed
by a log-linear classifier). This offers the possibility of a
less constrained feature-level combination compared with
beamforming. Secondly, DNNs have been shown to not only
provide significantly improved recognition accuracies over
GMM-based recognisers [16], they have also been found
to subsume the effects of different compensation schemes
commonly used in GMM-based systems [17]. Thus, using
DNNs for meeting recognition we envision to have a simple
yet accurate single system instead of the multi-pass decod-

1http://corpus.amiproject.org/

ing and re-estimation that is often applied for distant speech
recognition [3, 8, 18].

2. DNN-HMM HYBRIDS FOR SPEECH
RECOGNITION

In a deep neural network-hidden Markov model hybrid sys-
tem [19, 20, 16], the DNN is trained to classify the input
acoustics into classes corresponding to the HMM states. After
training, the output of the DNN is an estimate of the posterior
probability P (s|ot) of each state s given the acoustic observa-
tions ot at time t. The computation performed by the network
may be written as:

ul = σ(Wlul−1 + bl), for 1 ≤ l < L

aL = WLuL−1 + bL,

P (s|ot) =
exp{aL(s)}∑
s′ exp{aL(s′)}

,

where ul is the input to the l + 1-th layer, with u0 = ot; Wl

is the matrix of connection weights between l − 1-th and l-th
layers; bl is the additive bias vector at the l-th layer; aL is the
activation at the output layer; and σ(x) = 1/(1+exp(−x)) is
a sigmoid non-linearity, also known as the activation function.
The recogniser uses a pseudo log-likelihood of state s given
observation ot:

log p(ot|s) = logP (s|ot)− logP (s),

where P (s) is the prior probability of state s calculated from
the training data [19].

We use stochastic gradient descent (SGD) to train DNNs,
minimising a negative log posterior probability cost function
over the set of training examples O = {o1, . . . ,oT }:

θ∗ = arg min
θ
−

T∑
t=1

logP (st|ot),

where θ = {W1, . . . ,WL,b1, . . . ,bL} is the set of param-
eters of the network, and st is the most likely state at time t
obtained by a forced-alignment of the acoustics with the tran-
script. This is also the expected cross-entropy between the
distribution represented by the reference labels and the pre-
dicted distribution. We use an unsupervised pretraining phase
using greedy layer-wise training of RBMs [21] to initialise
the DNN parameters before training them using SGD.

3. EXPERIMENTAL SETUP

For our experiments, we use the AMI corpus1, which con-
tains around 100 hours of meetings recorded in specifically
equipped instrumented meeting rooms at three sites in Europe
(Edinburgh, IDIAP, TNO). There are two types of meetings—
scenario based, where four speakers act out certain prede-
termined roles of a design team (project manager, designer,



etc.), as well as non-scenario-based which are natural spon-
taneous meetings on a range of topics. The scenario-based
meetings make up about 70% of the corpus. Each meeting
usually has four participants and the meetings are in English,
albeit with a large proportion of non-native speakers. Acous-
tic signal is captured by multiple microphones including indi-
vidual head microphones (IHM), lapel microphones, and one
or more microphone arrays. Each recording site uses a pri-
mary 8-microphone uniform circular array of 10 cm radius,
as well as a secondary array whose geometry varies between
sites. In this work we use the primary array and refer to it
as the multiple distant microphones (MDM) variant. Exper-
iments with single distant microphone (SDM) make use of
first microphone of the primary array.

Most previous research using the AMI corpus [3, 22] have
done so in the context of the NIST RT evaluations, where the
AMI data was used together with other meeting corpora. In
order to perform more controlled experiments with identical
microphone array configurations, we have defined a 3-way
partition of the AMI corpus into train, development, and test
sets2. This partition makes about 78 hours of speech available
for training, and holds out about 9 hours each for development
and test sets. All the three sets contain a mix of scenario-
and non-scenario-based meetings, and are designed such that
no speaker appears in more than one set. The definitions of
these sets have also been made available on the AMI corpus
website1. We use the segmentation provided with the AMI
corpus annotations (version 1.6). In this work, we consider all
segments ( including those with overlapping speech), and the
speech recognition outputs are scored by the asclite tool
[23] following the NIST RT3 recommendations for scoring
simultaneous speech.

3.1. Acoustic models

For the IHM configuration, 7 frames (3 on each side of
the current frame) of 13-dimensional MFCCs (C0-C12) are
spliced together and projected down to 40 dimensions using
linear discriminant analysis (LDA) and decorrelated using
a single semi-tied covariance (STC) transform [24]. These
features are referred to as LDA+STC. Both the GMM-HMM
and DNN-HMM acoustic models are speaker adaptively
trained (SAT) on these LDA+STC features using a single
feature-space maximum likelihood linear regression (FM-
LLR) transform estimated per speaker. The GMM-HMM
systems provide the state alignments for training the DNNs.
Additionally, the DNNs are trained on 40-dimensional log
Mel filterbank (FBANK) features appended with delta and
acceleration coefficients. The state alignments used for train-
ing the DNNs on FBANK features are the same as those

2http://www.cstr.inf.ed.ac.uk/
reproducibleResearch/Swietojanski-ASRU-2013/index.
html

3http://nist.gov/speech/tests/rt/2009

Fig. 1. Front-end for our setups with DNN in hybrid configu-
ration on the top.

used for the LDA+STC features. Through some initial pilot
experiments we found the DNNs trained on LDA+STC trans-
formed MFCCs to produce around 1.5-2% (absolute) lower
word error rates (WERs) when compared to those trained
on MFCCs and roughly the same results as those trained on
FBANK features.

For the audio captured using the distant microphones, a
Wiener filter-based noise cancellation is first applied using
the Qualcomm-ICSI-OGI front-end tools [25]. For the MDM
experiments, we follow the noise cancellation with a delay-
sum beamforming on either 2, 4, or 8 uniformly-spaced ar-
ray channels using the BeamformIt toolkit [6]. In both the
SDM and MDM case, the audio (noise-cancelled and beam-
formed, respectively) is then processed in a similar fashion
to the IHM configuration. The major difference between the
IHM and SDM/MDM configurations is that when audio is
captured with distant microphones, it is not realistically possi-
ble to ascribe a speech segment to a particular speaker without
using speaker diarisation. As such, the SDM/MDM experi-
ments do not use any form of speaker adaptation or adaptive
training. In our pilot experiments we did not see a consistent
advantage from adapting to the entire meeting.

The GMM-HMM systems are trained on the speaker
adapted LDA+STC features for the IHM case, or on the un-
adapted features for the SDM/MDM case, using the boosted
maximum mutual information (BMMI) [26] criterion. The
number of tied-states are roughly 4000 in all configurations,



Table 1. Word error rates (%) for the GMM and DNN acoustic models for various microphone configurations.

System Microphone configurations
IHM MDM8 MDM4 MDM2 SDM

Development set
GMM BMMI on LDA+STC 29.4 (SAT) 54.8 56.5 58.0 63.2
DNN on LDA+STC 26.7 (SAT) 51.4 51.5 51.6 55.4
DNN on FBANK 28.3 51.1 - 52.9 55.8
Evaluation set
GMM BMMI on LDA+STC 31.6 (SAT) 59.4 61.2 62.9 67.6
DNN on LDA+STC 28.4 (SAT) 56.0 55.9 56.5 59.8
DNN on FBANK 31.5 55.6 - 57.9 60.8

and each of the GMM-HMM systems have a total of 80,000
Gaussians. These are then used to provide the state align-
ments for training the corresponding DNNs using either the
LDA+STC features or the FBANK features. The GMM-
HMM systems are trained using the Kaldi speech recognition
toolkit [27], while the DNNs are trained using in-house tools
based on the Theano library [28] and running on general-
purpose graphics processing units.

Following our previous experience and those reported by
others [17, 29, 16, 30, 31], the DNNs were configured to
have 6 hidden layers with 2048 neurons in each hidden layer.
The network parameters are initialised from stacked restricted
Boltzmann machines (RBMs) that are pretrained in a greedy
layer-wise fashion [21]. The networks are trained using SGD
following an exponentially decaying learning schedule. The
various hyper-parameters are same as those described in [30],
except the initial learning rate, which was tuned to 0.06.

3.2. Lexicon and language model

We use the same 50,000 word AMI pronunciation dictionary
used in [3]. An in-domain trigram language model (LM) is
estimated from the 801K words of the training transcripts,
which is then interpolated with two other trigram LMs—one
estimated from 3M words of the Switchboard training tran-
scripts, and the other from 22M words of the Fisher English
transcripts. The LMs are estimated using interpolated Kneser-
Ney smoothing. The in-domain AMI LM has an interpolation
weight of 0.73, the Fisher LM gets a weight of 0.22, while
the contribution from the Switchboard LM is negligible with
a weight of 0.05. The final interpolated LM has 1.6M tri-
grams and 1.5M bigrams, and achieves a perplexity of 78 on
the development set.

4. RESULTS

As described in Section 3.1, we use three MDM configura-
tions where beamforming is done on 2, 4, and 8 channels re-
spectively. The results obtained by both the BMMI-trained
GMM system and the DNN systems for these configurations,
as well as for the SDM and IHM conditions are shown in

Fig. 2. Development set WERs for segments with 1, 2, 3 and 4 over-
lapping speakers. AMs are trained on MFCC LDA+STC features.

Table 1. The WERs for the GMM-based systems are compa-
rable to the ones reported previously in [13, 3] on AMI-based
test sets, albeit using different training-test partitions.

We find the DNNs to greatly improve recognition accu-
racy for speech recorded with distant microphones. In fact,
the network trained on SDM data is only 0.6% absolute worse
than the best GMM-BMMI system built from beamformed
audio from 8 far-field microphones. Interestingly enough, the
DNNs are also found to be less sensitive to the number of
beamformed channels used, particularly with the LDA+STC
features. We attribute this to the fact that multiple layers
of non-linear transformations can better compensate against
small variabilities in feature space [32].

While Table 1 presents the WER for all segments, includ-
ing those with overlapped speech, Figure 2 shows the WERs
for segments with different numbers of overlapped speakers.
As one may expect, overlapped segments are harder to recog-
nise. In fact, even if a beamformer can select the dominant
source perfectly it still does not address the problem of recog-
nising overlapped speech. Figure 2 gives us a sense of the



Table 2. WER on channels 1 & 2 for the DNNs trained on multiple
channels (MFCC LDA/STC features). SDM models are trained on
channel 1.

Combining method Recog. Channel Devset Evalset
SDM (no combination) 1 55.4 59.8
SDM (no combination) 2 55.1 59.8
Concatenate 1+5 1 52.9 57.5
Concatenate 1+3+5+7 1 52.7 57.3
Multi-style 1+3+5+7 1 52.8 57.5
Multi-style 1+3+5+7 2 52.7 57.7

difficulty in recognising overlapped speech. We see a 8-12%
reduction in WER when only considering segments with non-
overlapping speech.

Through a second set of experiments, we evaluate the
extent to which a DNN is able to learn to do the front-end
processing—both noise-cancellation and beamforming—by
providing the features extracted from multiple microphones
as input to the networks. In these initial experiments the
networks still have 6 hidden layers like in the previous case4

except with a wider input layer. Note that this is not entirely
comparable to the setup where the DNNs are trained on fea-
tures extracted from beamformed audio, since the Wiener fil-
tering and beamforming are time domain operations, whereas
the DNNs trained on concatenated features are operating en-
tirely in cepstral or log-spectral domains. Nevertheless, the
results give us an indication of how complementary the in-
formation in different channels are. We see from Table 2 and
Figure 3 that the DNNs trained on concatenated inputs do in
fact work substantially better than the SDM case, and achieve
results approaching that of the beamformed configurations.
The important point to note here is that the DNNs trained
on concatenated features do not use any knowledge of the
array geometry. Consequently, the technique, just like the
approach of [13], is applicable to any arbitrary configuration
of microphones.

To further understand the nature of the compensation be-
ing learned by the DNNs with multi-channel inputs, we do an
additional control experiment. The input to the DNN is from
a single channel, and at test time this is identical to the SDM
case. However, during training the data from other channels
are also presented to the network, although not at the same
time. In other words, the DNN is presented with data from
channel 1, channel 3, and so on, in successive mini-batches
during training, while at test time it is only tested on a single
channel. We call this the multi-style training, and it is related
to our previous work [33], where the same basic concept was
used to train DNNs in a multilingual fashion. From Table 2
we see that this approach performs similarly to the DNNs with
concatenated input. Recognition results on channel 2, which
is not used in the multi-style training, show similar trends.

4However, since the networks are being tasked with additional processing,
deeper architectures may be more suitable.

Fig. 3. Comparison of DNNs trained on concatenated (C) channels
to the ones trained on noise-cancelled and beamformed (BF) signals
for segments with 1, 2, 3, and 4 overlapping speakers.

These results strongly suggest that there is information in a
single channel to have more accurate recognition. However,
extraneous factors in the data may confound a learner trained
only on data from a single channel. Being forced to classify
data from multiple channels using the same shared representa-
tion (i.e. the hidden layers) the network, almost by definition,
has to ignore the channel-specific covariates. To the best of
our knowledge, this is the first result to show that it is pos-
sible to improve recognition of audio captured with a single
distant microphone by guiding the training using data from
microphones at other spatial locations.

5. CONCLUSION

In this work we presented some promising results on using
hybrid DNN-HMM models for distant speech recognition
with a single distant microphone or multiple distant micro-
phones. We show that it is possible to improve recognition
results by concatenating the features extracted from multiple
channels and proving that as input to a DNN. This is appli-
cable in cases where the array geometry is unknown. More
interestingly, we show that it is possible to improve the recog-
nition with a single distant microphone to the same level as
that of multiple distant microphones by only constraining the
training with multi-microphone data.
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