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Abstract

This paper describes the University of Edinburgh (UEDIN)
English ASR system for the IWSLT 2013 Evaluation.
Notable features of the system include deep neural network
acoustic models in both tandem and hybrid configuration,
cross-domain adaptation with multi-level adaptive networks,
and the use of a recurrent neural network language model.
Improvements to our system since the 2012 evaluation –
which include the use of a significantly improved n-gram lan-
guage model – result in a 19% relative WER reduction on the
tst2012 set.

1. Introduction

We report on experiments carried out for the development of
automatic speech recognition (ASR) systems on the English
datasets of the International Workshop on Spoken Language
Translation (IWSLT) 2013. We report our work on the new
TED German task in an accompanying paper [1] since the
development of the two systems was largely independent.
Work on our machine translation system may be found in
[2]. Significant changes to the English ASR system since
2012 include improvements to our baseline language mod-
els, described in Section 2.1, and the use of recurrent neu-
ral network language models, described in Section 2.2. The
acoustic models are described in Section 3 – the main ad-
dition is that we now use deep neural networks in a hybrid
configuration, and apply automatic voice activity detection
to the tst2013 test set.

2. Language modelling

The ASR system used Kneser-Ney smoothed N-gram lan-
guage models for decoding and lattice rescoring, and a recur-
rent neural network (RNN) language model for a final rescor-
ing stage based on N-best lists. These models are described
in the subsections below.
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2.1. N-gram models

The N-gram language models were obtained by interpolating
individual modified Kneser-Ney discounted LMs trained on
the small in-domain corpus of TED transcripts and the larger
out-of-domain (OOD) sources. The OOD sources were Eu-
roparl (v7), News Commentary (v7), News Crawl (2007 to
2011) and Gigaword (Fifth Edition).

The News Crawl and Gigaword sources in particular con-
tained a wide variety of phenomena such as money amounts
and other numerical expressions, abbreviations, and listed
and tabulated information, which required normalisation to
create data resembling spoken word sequences. Consider-
able effort was put into developing appropriate text normal-
isation scripts. Starting from the scripts used in LM train-
ing for the IWSLT 2012 evaluation, over 1000 lines of Perl
code and 1400 abbreviation entries were added (expanding
the original files by more than 50%). The processing applied
to the data can be summarised as follows.

1. Remove documents that are not of type story, strip out
markup and split text into sentences (required for Gi-
gaword only).

2. Eliminate duplicate lines (common in some newswire
sources, where multiple copies or variants of the same
story may occur).

3. Convert Unicode characters and encodings for frac-
tions, symbols etc into standard ASCII forms such as
“1/4” (for subsequent conversion to words).

4. Filter out newswire datelines, e.g. “LONDON, Nov
2”, and other extraneous material.

5. Normalise punctuation, abbreviations, units of mea-
surement etc.

6. Convert numerical expressions to words.

7. Remove punctuation and convert to lower-case without
diacritics.

8. Convert British to American English spellings and cor-
rect some common spelling errors.



The vocabulary for the ASR system was defined so as to
include all words occurring in the in-domain training corpus
(other than words which occurred only once and were not
in a standard dictionary) and all words exceeding specified
occurrence count thresholds in the OOD corpora, while re-
maining below the maximum of 64K words imposed by the
version of HDecode in use here. The vocabulary size was
62,522.

Initialisms included in the vocabulary were treated as sin-
gle words for LM purposes, e.g. “u.s.” (with the dots retained
to distinguish them from words such as “us”). Once the
vocabulary had been defined, out-of-vocabulary initialisms
were broken into single letters, e.g. “m. f. n.”, so as to be
modelled as sequences of in-vocabulary words (letter names)
rather than treated as OOV.

In view of the mismatch in content and style between the
target domain (TED talks) and the OOD data, a data selection
process [3, 4] was applied to the OOD corpora to obtain an
appropriate subset of data for LM training. The set of out-of-
domain data DS was chosen by computing a cross-entropy
difference (CED) score for each sentence s:

DS = {s|HI(s)−HO(s) < τ} (1)

where HI(s) is a cross-entropy of a sentence with a LM
trained on in-domain data,HO(s) is a cross-entropy of a sen-
tence with a LM trained on a random subset of the OOD data
of similar size to the TED corpus, and τ is a threshold to
control the size of DS

Language models were trained on the in-domain and
OOD data using the SRILM toolkit [5], and were interpo-
lated with weights optimised on the TED development set
(dev2010 and tst2010: total 44,456 words).

Perplexities on the development set with 3-gram and 4-
gram models trained on the TED corpus and selected OOD
data are shown in Table 1. Selecting 25% of the OOD sen-
tences yielded an OOD training set of 751M words; setting
the CED threshold to 0 gave a smaller but more targeted set
of 312M words, which gave a lower perplexity on the TED
data than the 751M word set when used alone to train the
LM, but a slightly higher perplexity after interpolation with
the TED LM. The perplexities obtained here are substantially
lower than the values of 160 (3-gram) and 159 (4-gram) with
the LMs used in our IWSLT 2012 system [6], which were
trained using a much smaller set of OOD data with no CED
filtering.

The LMs finally used in the ASR system were
the TED+312MW trigram model (for decoding) and the
TED+312MW 4-gram model (for lattice rescoring). The
amounts of data from the respective sources used in these
LMs are shown in the “Selected” column of Table 2. Com-
parison with the total sizes of the source corpora (after text
normalisation) given in the preceding column shows that the
proportion of data selected by the CED criterion ranged from
8% for the Gigaword corpus to 15% for News Commentary.

Language model Perplexity
TED 3-gram 183.2
OOD (312MW / 751MW) 3-gram 133.5 / 138.3
TED+OOD (312MW / 751MW) 3-gram 125.1 / 124.9
TED 4-gram 179.9
OOD (312MW / 751MW) 4-gram 123.9 / 126.4
TED+OOD (312MW / 751MW) 4-gram 114.9 / 113.4

Table 1: Perplexities of N-gram language models on TED
development set.

Corpus Total Selected
TED 2.4M 2.4M
Europarl 53.1M 6.3M
News Commentary 4.4M 0.7M
News Crawl 693.5M 72.9M
Gigaword 2915.6M 232.9M
OOD total 3666.6M 312.8M

Table 2: Numbers of words in LM training sets.

2.2. RNN models

Neural network language models have shown to consis-
tently improve the word error rates (WER) of LVSCR tasks
[7, 8, 9]. For this year’s evaluation, we investigated the effec-
tiveness of RNN LMs for TED lecture transcription. To study
the effectiveness of RNNs we rescored the n-best hypothesis
using RNNs trained on in-domain and different subsets of
out-of-domain (OOD) data, shown in Table 3, selecting ac-
cording to the CED score as in Section 2.1 In-domain data
consists of 2.4M tokens. Since it is very difficult to train the
RNNs on large amounts of OOD data, we restrict the maxi-
mum size of OOD data to 30M.

The number of hidden neurons ranged from 300 to 500
and number of classes in the output layer was 300. Models
are trained using RNN training tool of [10]. Table 4 shows
the perplexity (PPL) and WER on on development data pro-
vided by IWSLT evaluation campaign. We can observe that
rescoring the n-best hypothesis with the RNNs reduce the
WER by 0.8%. We choose the best model from this ex-
periments to rescore the n-best hypothesis from tst2011,
tst2012 and the tst2013 test sets. The interpolation
weight between n-gram and RNNLM is optimised on devel-

Table 3: Subsets of OOD data
#Words #Sentences Threshold(τ )

5M 664.2K -1.14
10M 1156.7K -0.963
15M 1596.7K -0.862
20M 2011.3K -0.79
25M 2412.6K -0.733
30M 2792.4K -0.687



Table 4: Perplexity and WER on development data
Tokens Vocabulary PPL WER(%)
n-gram - - 15.6
7.4M 47.7K 171.56 15.2

12.4M 54.8K 161.66 15.2
17.4M 61.7K 147.17 15.0
22.4M 68K 142.22 14.9
27.4M 74.3K 133.5 14.8
32.4M 80K 126.0 14.8

opment data, to minimise WER.

3. Acoustic modelling
For the acoustic modelling components of the system, we
used a setup identical to that described in [11], where more
details may be found. Briefly, we used a combination of tan-
dem and hybrid deep neural network (DNN) systems trained
on a corpus of in-domain TED talks, incorporating out-of-
domain data of multi-party meetings from the AMI corpus
using the multi-level adaptive networks (MLAN) technique
[12]. Compared to our 2012 system, the main addition is
the use of DNNs with MLAN features in the hybrid frame-
work. We describe this further below. Additionally, unlike
earlier test sets from the IWSLT evaluation, the 2013 test set
was not provided with a manually derived segmentation; we
therefore employed an automatic segmentation system, de-
scribed in Section 3.3.

3.1. Training data

For in-domain training data, we used 813 TED talks recorded
prior to the end of 2010. The talks were segmented and
aligned to the crowd-sourced transcriptions available online
using a lightly-supervised technique described in [13]. This
produced 143 hours of labelled speech segments for use in
acoustic model training. Additionally, we used 127 hours
of out-of-domain data from the AMI Corpus of multi-party
meetings1 using a setup based on [14]. This data is not in
general well-matched to the TED-domain. The OOD data
was not used directly in acoustic model training, but used to
generate out-of-domain neural network features for the in-
domain data.

3.2. Deep neural network systems

For our 2012 system, we used neural networks within the tan-
dem framework [15, 16], using DNNs to generate log proba-
bilities over monophones. The monophone probabilities are
decorrelated and projected to 30 dimensions, then augmented
with the original acoustic features to give a total feature vec-
tor of 69 dimensions. These vectors are used for standard
HMM-GMM training. Additionally in this year’s system, we

1http://www.amiproject.org/
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Figure 1: Tandem and hybrid MLAN training

used DNNs in a hybrid configuration, generating posterior
probabilities over tied-state triphones, as proposed in [17].
These are converted to pseudo-likelihoods for use in the de-
coder.

Both tandem and hybrid nets used PLP input features
with 9 frames of temporal context. For the tandem systems,
the final nets used had four hidden layers with 1024 hidden
units per layer; the hybrid systems used six hidden layers
with 2048 hidden units per layer. The tandem nets had an
output layer of size 46; the size of the output layer of the
hybrid nets varies according to the number of tied states,
which resulting from clustering with a GMM; it was typi-
cally around 6,000. The nets were trained with a tool based
on the Theano library [18] on NVIDIA GeForce GTX 690
GPUs. For the tandem systems, we applied speaker adaptive
training of the GMMs using CMLLR [19] regression class
trees with 32 classes. For the hybrid systems, we performed
adaptation of the input feature space at training and test time
using a global CMLLR transform for each speaker. Tandem
systems were discriminatively trained with MPE.

As in the 2012 system, we incorporated out-of-domain
data using the MLAN technique. Neural networks were
trained on the AMI corpus and the resulting nets used to gen-
erate posterior features for each utterance in the TED corpus.
Th2ese neural net features are known to provide a degree
of domain-independence [20]. In the MLAN scheme, the
OOD features are augmented with the original acoustic fea-
tures and a further DNN is trained on these features, allowing
further adaptation to the target domain. This second adaptive
network may be used to generate tandem features, or used in
a hybrid system. The possible configurations are illustrated
in Figure 1.

3.3. Voice activity detection

The voice activity detection component of the system com-
prises a GMM-HMM based model which is used to per-
form a Viterbi decoding of the audio. The HMM has 2
classes: speech and non-speech. These are modelled with
diagonal-covariance GMMs with 12 and 5 mixtures respec-
tively. We allow more mixture components for speech to
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cover its greater variability. Features are calculated every
10ms from a 30ms analysis window and have a dimensional-
ity of 14 (13 PLPs and energy). Models were trained on 70
hours of scenario meetings data from the AMI corpus using
the provided manual segmentations as a reference. To avoid
over segmentation a minimum duration constraint of 50ms is
enforced by inserting a series of 50 states per class that each
have a transition weight of 1.0 to the next, the final state has
a self transition weight of 0.9.

4. Decoder architecture
Figure 2 shows the complete decoding architecture. After an
initial pass, used to generate transcripts to estimate speaker
transforms, we operate two parallel decoding sequences for
the tandem and hybrid acoustic models. For each model, the
complete process consists of a decoding with the trigram LM
using HTK’s HDecode2. Lattices output from the this pass
were rescored using the 4-gram LM, generating 100-best
lists, which were rescored with the final interpolated RNN
LM. Finally, the one-best outputs from tandem and hybrid
systems are combined at the hypothesis level using ROVER.

5. Results
In this section we first present development results from indi-
vidual components of the complete system pipeline. Table 5
shows results using the manual segmentations provided for
earlier evaluations. The results may differ slightly from of-
ficial results due to variations in scoring procedure. It may
be observed that there is no clear winner out of the tandem
and hybrid systems; however, they are clearly complemen-
tary as system combination consistently yields improved per-
formance.

The trends are similar when the automatic segmentation
is used, shown in Table 6. When the automatic segmentation
is used there is a deterioration in performance of up to 3%
WER. Some of this may be attributed to an increase in inser-
tion and deletion errors of the result of segmentation errors;
however, an additional source of error, particularly affecting
the RNN LM, is that the automatic segmenter typically re-
sults in shorter segments, not divided along semantic lines as
the manual version is, resulting in reduced language mod-

2http://htk.eng.cam.ac.uk

System dev2010 tst2010 tst2011
Tandem MLAN 15.9 14.1 11.2
+ 4gram 15.6 13.6 10.8
+ RNN - - 10.4
Hybrid MLAN 15.6 13.9 11.5
+ 4gram 15.2 13.5 11.3
+ RNN - - 10.5
ROVER combination
4gram 14.7 12.6 10.3
+ RNN - - 9.9

Table 5: Development system results with manual segmenta-
tion (WER%)

System dev2010 tst2010 tst2011
Tandem MLAN 18.8 17.6 14.9
+ 4gram 18.4 17.2 14.5
+ RNN 17.6 16.6 -
Hybrid MLAN 18.6 17.4 14.6
+ 4gram 18.4 17.2 14.3
+ RNN 17.6 16.7 -
ROVER combination
4gram 17.6 16.2 13.2
+ RNN 17.0 16.1 -

Table 6: Development system results with automatic segmen-
tation (WER%)

elling power, since we do not propagate LM probabilities
across segment boundaries. Note that the results with the
RNN model are available only for a subset of experiments as
this component of the system was not fully automatic at the
time of system development.

Finally, we provide the official results from the 2013
evaluation in Table 7. Automatic segmentation is used only
for tst2013 set. It is notable that the WER is substantially
higher on this set than on the other development and evalu-
ation sets. A preliminary analysis suggests that this is prob-
ably not due to problems with the segmentation, as insertion
and deletion errors do not make up a noticeably higher pro-
portion of the total errors than for the other test sets. Over
the talks, the WER ranges from 9% to 48%, suggesting that



tst2011 tst2012 tst2013
Primary system 10.2 11.6 22.1

Table 7: Official system results from the 2013 evaluation
(WER%)

perhaps this year’s test set contains a more diverse range of
acoustic conditions.

6. Machine translation
We applied machine translation to the ASR output. Details
may be found in the accompanying paper [2]. Table 8 com-
pares MT performance for various inputs from the ASR sys-
tem. Note that performing translation from a confusion net-
work containing multiple ASR hypotheses resulted in worse
results that using the one-best output. We are investigating
the reasons for this – one theory is that, due to the gener-
ally low WER of the systems, the alternative hypotheses are
rarely correct, often simply indicating OOV errors when they
have high acoustic scores. Table 9 presents, for reference, the
official 2013 BLEU results comparing, as inputs, the use of
our best system, and the transcription by the IWSLT organ-
isers.

ASR input en-fr
1-best 22.9
1-best punctuated 24.1
Confusion net 18.4

Table 8: Cased BLEU results for models when tuned and
tested on ASR output in different formats.

en-fr
Edinburgh ASR system 22.45
IWSLT ASR system 23.00

Table 9: Official test 2013 cased BLEU results for 1Best SLT
input. The Edinburgh ASR system input was our primary
system.

7. Conclusions
We have described our ASR system for the English 2013
IWSLT evaluation Improvements to our system since the
2012 evaluation result in relative WER reductions of 17%
19% on the tst2011 and tst2012 sets respectively. The
use of RNN LMs does not give improved performance on
the tst2013 set, a result that is probably due to the shorter
utterances derived from the automatic segmentation.

Improvements planned for future systems include the use
of neural network based voice activity detection, and the

pooling of German and English audio data in multi-condition
DNN training, whereby both systems are trained simultane-
ously, sharing lower layers of the network. We also plan to
apply talk-level language model adaptation.
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