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ABSTRACT

Standard automatic speech recognition (ASR) systems use phonemes
as subword units. Thus, one of the primary resource required to
build a good ASR system is a well developed phoneme pronunci-
ation lexicon. However, under-resourced languages typically lack
such lexical resources. In this paper, we investigate recently pro-
posed grapheme-based ASR in the framework of Kullback-Leibler
divergence based hidden Markov model (KL-HMM) for under-
resourced languages, particularly Scottish Gaelic which has no
lexical resources. More specifically, we study the use of grapheme
and multilingual phoneme class conditional probabilities (poste-
rior features) as feature observations in KL-HMM. ASR studies
conducted show that the proposed approach yields better system
compared to the conventional HMM/GMM approach using cepstral
features. Furthermore, grapheme posterior features estimated using
both auxiliary data and Gaelic data yield the best system.

Index Terms— Automatic speech recognition, Kullback-
Leibler divergence based hidden Markov model, grapheme, phoneme,
posterior feature, under-resourced speech recognition, Scottish
Gaelic

1. INTRODUCTION

Recently, there is a growing interest to use graphemes as subword
units for speech recognition [1, 2], [3, Chapter 4], [4, 5], especially
for under-resourced languages where well developed phoneme sets
and phoneme pronunciation dictionaries are usually not available [6,
7, 8, 9, 10]. Under-resourced languages also typically lack acoustic
resources. Therefore, research in this domain has focussed on the
efficient development of multilingual and crosslingual grapheme-
based ASR approaches that can leverage from resources available
in other languages. In [7, 6], the use of multilingual grapheme mod-
els for rapid bootstrapping of acoustic models to new languages was
studied. In [7], polyphone decision tree based tying for porting de-
cision tree to a new language was applied for grapheme models.
More specifically, porting of multilingual grapheme models to Ger-
man was studied and was found to be beneficial compared to mono-
lingual grapheme models when limited adaptation data is available.
In [6], data driven mapping of grapheme subword units across lan-
guages was studied when the alphabet set between the source and
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target languages was disjunct. In [8], grapheme-based acoustic mod-
eling was investigated and compared with phoneme-based acoustic
modeling for under-resourced language Vietnamese. For context-
independent grapheme modeling, word boundary detection based
initialization of grapheme acoustic models was proposed. However,
it was found that grapheme-based system could not reach the perfor-
mance of phoneme based system.

A novel grapheme-based ASR in the framework of Kullback-
Leibler divergence based HMM [11], which jointly models grapheme
and phoneme information, was recently proposed in [5]. More
specifically, in this approach, first the relationship between the
acoustic feature (e.g., cepstral features) and phoneme is modeled
through a posterior feature (phoneme class conditional probabil-
ities) estimator (more precisely, multilayer perceptron). Then,
soft/probabilistic correspondence between phonemes and graphemes
is modeled/learned through the state multinomial/categorical distri-
bution of KL-HMM system.

In this paper, we investigate the potential of the approach for
low-resourced and minority languages, in particular Scottish Gaelic,
where language resources are very sparse. With only 60,000 speak-
ers, Gaelic represents a genuinely under-resourced minority lan-
guage, and its endangered status makes low-cost speech technology
particularly important for language conservation efforts.

We study two novel approaches. The first approach exploits
the auxiliary acoustic and phonetic resources available in other
languages to develop a grapheme-based ASR system for Scottish
Gaelic. More specifically, the KL-HMM system models the re-
lation between Gaelic graphemes and multilingual phonemes by
using multilingual phoneme posterior features (extracted by MLP
trained on auxiliary data) as feature observation. The second ap-
proach exploits the flexibility to choose the posterior feature space
representation in KL-HMM system. More precisely, we investigate
the use of grapheme posterior features as feature observations. In
that regard, we investigate two different ways to estimate grapheme
posterior features: 1) using an MLP trained on Scottish Gaelic cor-
pus and 2) using hierarchical MLP [12] trained on both auxiliary
resources and Scottish Gaelic corpus. We study these KL-HMM
based approaches along with the traditional HMM/GMM approach
(using cepstral features). ASR studies show that KL-HMM sys-
tems outperform the HMM/GMM system and the KL-HMM system
modeling grapheme posterior features yields the best performance.

The rest of the paper is organized as follows: Section 2 presents
a brief overview of grapheme-based ASR using KL-HMM and mo-
tivates the two approaches. Section 3 presents an overview of the
Scottish Gaelic with emphasis on alphabet and orthography. Sec-
tion 4 presents the corpus, experimental setup and ASR results.



2. GRAPHEME-BASED ASR USING KL-HMM

Kullback-Leibler divergence based HMM (KL-HMM) is a recently
proposed approach where a posteriori probabilities of phonemes are
directly used as feature observation [11]. In grapheme-based ASR
using KL-HMM, the HMM states represent grapheme subword units
and the feature observations areposterior featuresi.e., a posteriori
probabilities of phonemes [5]. Letzt denote the phoneme posterior
feature vector estimated at time framet,

zt = [z1t , · · · , z
d

t , · · · , z
D

t ]T

= [P (p1|xt), · · · , P (pd|xt), · · · , P (pD|xt)]
T

where xt is the acoustic feature (e.g., cepstral feature) at time
frame t, {p1, · · · pd, · · · pD} is the phoneme set,D is the number
of phonemes, andP (pd|xt) denotes the a posteriori probability of
phonemepd givenxt. In this workzt is estimated by a well trained
MLP.

Each HMM statei in the KL-HMM system is parameterized by
a categorical distributionyi = [y1
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score at each HMM state is estimated as Kullback-Leibler (KL) di-
vergence betweenyi andzt, i.e.,
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In this case,yi serves as the reference distribution andzt serves as
the test distribution. KL-divergence being an asymmetric measure,
there are also other ways to estimate the local score,

1. Reverse KL-divergence (RKL):

RKL(zt,yi) =
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2. Symmetric KL-divergence (SKL):

SKL(yi, zt) = KL(yi, zt) +RKL(zt,yi) (3)

The HMM state parameters i.e., categorical distributions are esti-
mated using Viterbi expectation maximization algorithm which min-
imizes a cost function based on one of the above local scores. During
testing, decoding is performed using standard Viterbi decoder [11].

Until now, this approach has been studied on English, where the
correspondence between graphemes and phonemes is weak/irregular [5,
13, 14]. These studies have revealed that,

• grapheme-based ASR system can yield performance similar
to phoneme-based ASR system. More precisely, the proposed
grapheme-based ASR approach can exploit the low complex-
ity of KL-HMM to model longer subword contexts, which in
turn helps to bridge the performance gap between grapheme
and phoneme based ASR systems.

• the MLP can be trained on auxiliary data. In [5], it was found
that the system benefits from MLP trained on large amount of
out-of-domain data. In [13], where the aim was to recognize
multi-accent non-native speech utterances with limited or no
training data, it was found that the system using multilingual
posterior features estimated using an MLP trained on multi-
ple languages yields a better system compared to the system
using monolingual posterior features.

• The categorical distribution of the HMM states capture
probabilistic relationship between the graphemes and the
phonemes [5]. This relationship can be exploited for grapheme-
to-phoneme conversion [14].

In this paper, we investigate the approach on under-resourced
minority language, particularly, Scottish Gaelic where no lexical re-
sources (i.e., phoneme set and phoneme pronunciation lexicon) are
available. More specifically, in this work we exploit the flexibility of
KL-HMM in terms of choice of posterior feature space representa-
tion and transfer learning to study three different posterior features,
namely,

1. multilingual posterior features: In this case, the aim is to
study how acoustic and lexical resources available in other
languages could be used to improve Scottish Gaelic ASR.
More specifically, multilingual posterior features estimated
by an MLP trained on auxiliary multilingual corpus are used
as feature observations. The states of KL-HMM capture the
relation between graphemes and multilingual phonemes.

2. grapheme posterior features: Grapheme-to-phoneme rela-
tionship in Scottish Gaelic is many-to-one, and is fairly
regular (see Section 3). So it may be possible to train an MLP
directly on Scottish Gaelic corpus with standard acoustic
features (which typically depict phoneme characteristics) as
input t classify graphemes. And, use the grapheme poste-
rior feature estimates from the output of the MLP as feature
observation.

3. hierarchical grapheme posterior features: In English, the rela-
tion between context-independent graphemes and phonemes
is irregular. However, in our previous studies, analysis of the
context-dependent grapheme models revealed that by model-
ing grapheme context the relationship becomes more regular
and one-to-one [5]. Similarly, it may be possible to learn
phoneme-to-grapheme relationship by modeling phoneme
context. Such an approach coupled with acoustics could
help in estimating better grapheme posterior features, while
leveraging from auxiliary data. More precisely, this could be
achieved using hierarchical MLP approach [12], where the
first MLP is trained on auxiliary corpus to estimate multilin-
gual phoneme posterior features, and the second MLP then
uses the multilingual posterior features with longer temporal
context as input to estimate grapheme posterior features.

3. SCOTTISH GAELIC

Scottish Gaelic is one of three primary Goidelic languages. Classi-
fied within the Indo-European language family, it is contained within
the group of Celtic languages, and as such is only distantly related
to any of the well-resourced major European languages. Scottish
Gaelic is derived from and is closely related to Irish Gaelic; it is
considered an endangered language, spoken by only around 60,000
speakers, mainly from the remote islands of Scotland. In this sec-
tion we first briefly describe the alphabet, orthography, grapheme-
to-phoneme relationship of Scottish Gaelic.

3.1. Language Characteristics

The Scottish Gaelic alphabet has 18 graphemes (A, B, C, D, E, F,
G, H, I, L, M, N, O, P, R, S, T, U) and long vowels are marked with
grave accents (̀A, È, Ì, Ò, Ù). The number of phonemes in Scottish
Gaelic are approximately 51 (9 vowels, 10 dipthongs and 32 con-
sonants) [15]. However, number of phonemes can vary depending
on the dialect. The language lacks proper speech and linguistic re-
sources (phoneme set and pronunciation lexicon).



3.2. Orthography

The number of graphemes in Gaelic words are usually significantly
greater than the number of phonemes in the word, for two primary
reasons: Firstly, in Gaelic, consonants are either broad (velarized)
or slender (palatalized). Broad consonants are surrounded by broad
vowels A, O or U on both sides and slender consonants are sur-
rounded by slender vowels I or E on both sides. This has the conse-
quence that many vowels are present in orthography only to denote
the broad or slender nature of consonant next to it. Secondly, conso-
nants of Gaelic words may be changed because of a process called
lenition. In the orthography, grapheme [H] is added next to the con-
sonant to mark this change, which typically results in aspiration of
the consonant.

Broadly, however, with the exception of some very common
function words, the grapheme-to-phoneme relationship of Gaelic is
regular, and many-to-one, making the task of pronunciation predic-
tion straightforward, at least in principle.

3.3. Resources for ASR

The corpus consists of six hours of talk radio from the BBC’sRadio
nan G̀aidheal, collected by the University of Edinburgh in 2010. The
broadcasts are from the morning news and discussion programme,
Aithris na Maidnerecorded in clean studio conditions and sampled
at 48kHz (any telephone speech from callers to the programme was
removed). Speech is transcribed by fluent Gaelic speakers at utter-
ance level. The speech data in the corpus can be categorized into
three broad genres: read news, reports from correspondents andin-
terviews. Due to the minority status of Gaelic within the UK, the
corpus also has a high proportion of English words (853). English
words present in the corpus are manually labelled. The corpus does
not define a phoneme set, phoneme pronunciation dictionary or lan-
guage model for ASR.

4. EXPERIMENTAL SETUP AND RESULTS

We use the Scottish Gaelic speech corpus collected by CSTR, Uni-
versity of Edinburgh for all the experiments.

4.1. Speech Data

The corpus consists of speech from 46 speakers. This includes 4818
utterances and 5083 unique words. The corpus did not have train,
and test set division for the purpose of ASR. Therefore in this work
we divided the database in to train, development and test sets in a
speaker independent way. The training set consists of 22 speakers,
2389 utterances amounting to 3 hours of speech, the development
set consists of 12 speakers, 1112 utterances amounting to 1 hour
of speech and the test set consists of 12 speakers, 1317 utterances
amounting to 1 hour of speech. The test data consists of 2246 unique
words which includes 772 words not seen during training.

4.2. Pronunciation Lexicon

The database does not contain phoneme pronunciation lexicon.
Also, the language lacks standard and well developed pronuncia-
tion dictionaries that can be used to develop grapheme-to-phoneme
conversion systems [15]. In this work, the grapheme pronuncia-
tion lexicon was created for the words in the database. During the
development of grapheme lexicon

• vowel graphemes (A, E, I, O, U) and long vowel graphemes
or grave accents (À, È, Ì, Ò, Ù) were treated as separate
graphemes.

• lenited consonants (BH, CH, DH, FH, GH, MH, PH, SH and
TH) were treated as separate graphemes.

• consonant graphemes can be broad or slender. However, if
the broad/slender assignment is ambiguous (i.e., they can be
preceded by a broad vowel and followed by a slender vowel),
the consonants are left as they are.

• word initial and final graphemes were treated as separate
graphemes

Table 1 presents the list of graphemes in the dictionary. The
graphemes J, K, Q, V, W, X, Y and Z, though not present in Gaelic
words are present in the grapheme set because of the English words
in the corpus. Each of the graphemes listed in the table can have
three different variations, grapheme at the begin of word, end of
word and middle of word. For example, the grapheme pronuncia-
tion of Gaelic word “CIAMAR” is [bsC] [I] [A] [b M] [A] [b Rl].
Where ‘bX ’ represents grapheme [X] is word begin grapheme, ‘X l’
represents grapheme [X] is word final grapheme, ‘bX ’ represents
[X] is a broad consonant and ‘sX ’ represents [X] is a slender con-
sonant. However, for English word “AIR” pronunciation is [bA] [I]
[Rl], i.e., there are no broad and slender consonants. This resulted in
total 248 context-independent graphemes.

Type Graphemes
Vowels A, E, I, O, U

Long Vowels À, È, Ì, Ò, Ù
Broad b B, b BH, b C, b CH, b D, b DH,

consonants b F, b FH, b G, b GH, b H, b L,
b M, b MH, b N, b P, b PH, b R,

b RR, b S, b SH, b T, b TH
Slender s B, s BH, s C, s CH, s D, s DH,

consonants s F, s FH, s G, s GH, s H s L,
s M, s MH, s N, s P, sPH, sR,

s RR, sS, sSH, sT, s TH
Consonants A, B, BH, C, CH, D, DH, E,

F, FH, G, GH, H, I, J, K, L,
M, MH, N, O, P, Q, R, S, T,

TH, U, V, W, X, Y, Z

Table 1. Graphemes in Gaelic dictionary. ‘bX ’ represents [X] is a
broad consonant and ‘sX ’ represents [X] is a slender consonant

4.3. Systems

As done in previous works on under-resourced ASR, we build a
HMM/GMM system with cepstral features to ascertain how well the
standard ASR approach performs. We then build KL-HMM systems
using the posterior features motivated earlier in Section 2.

All the systems use the grapheme lexicon presented earlier in
Section 4.2 and model either context-independent (mono) or context-
dependent (tri ) grapheme subword units. Each grapheme subword
unit was modeled by a 3 state left-to-right HMM. For context-
dependent systems, word internal context models were trained. In
the case of KL-HMM systems, the unseen contexts were backed-off
to a seen context. As mentioned earlier in Section 3, the corpus
does not include a language model. Therefore, we trained a bigram
language model using sentences from the test set1. The different
systems investigated in this work are

1In our future work we intend to build a language model.



1. HMM/GMM: The HMM/GMM system was trained with 39
dimensional perceptual linear prediction (PLP) cepstral co-
efficients (c0 − c12 + ∆ + ∆∆). Decision tree state trying
method was used to cluster context-dependent grapheme
models. Question set used for state tying is constructed by
grouping a grapheme, its word begin, word final, broad and
slender variants. Clustering resulted in 1934 tied states. State
emission distributions were modeled with a mixture of 8
Gaussians.

2. KL-HMM-MULTI: We use anof-the-shelfMLP trained on
SpeechDat(II) to estimate multilingual phoneme posterior
features (MLP-MULTI) [13, 16]. The multilingual MLP was
trained by pooling acoustic and lexical resources from five
different languages of SpeechDat(II) corpus, namely British
English, Italian, Spanish, Swiss French and Swiss German to
classify 117 phonemes. Approximately, 12 hours of speech
data from each language (totally amounting to 63 hours)
was used to train the MLP. The input to the MLP was 39
dimensional PLP cepstral feature with 4 frames preceding
context and 4 frames following context. For more details on
MLP-MULTI, the reader is referred to [16]. SpeechDat(II)
is a telephone speech corpus, hence, the Gaelic speech was
down sampled to 8kHz before extracting PLP cepstral fea-
tures. Gaelic PLP features were forward passed through
MLP-MULTI to obtain multilingual posterior features which
were then modeled by KL-HMM system.

3. KL-HMM-GRAPH: Grapheme posterior features were esti-
mated using an MLP trained on the Gaelic speech corpus
(MLP-GAELIC). The input to the MLP was 39 dimensional
PLP features with four preceding and four following frame
context. The frame level labeling (targets) for MLP training
were obtained by performing force alignment of the training
and development data using HMM/GMM system. Context-
independent graphemes with atleast 100 frames were cho-
sen as MLP targets. This resulted in 207 graphemes and
hence the MLP is trained to classify 207 context-independent
graphemes. The KL-HMM system was then trained with 207
dimensional grapheme posterior feature.

4. KL-HMM-HIER: As shown in Figure 1, the hierarchical MLP
(MLP-HIER) used for grapheme posterior feature estimation
consists of two MLPs. More specifically, grapheme posterior
features were estimated using an MLP trained on multilin-
gual posterior features (rather than traditional PLP features)
with eight preceding and eight following frame context. The
choice of the temporal context was based on previous stud-
ies [12]. The targets to train second MLP were obtained
from HMM/GMM system (same as the targets used to train
MLP-GRAPH). The KL-HMM system was trained using the
grapheme posterior features estimated by MLP-HIER.

For all the KL-HMM systems, categorical state distributions
were estimated by optimizing all the three local scores and the local
score which resulted in minimum KL-divergence on the training set
was selected, which in this case wasRKL.

4.4. Results

Table 2 presents the word error rates in percentage on the test set
of Gaelic corpus for different systems modeling contextsmonoand
tri . The results show that, a) all KL-HMM systems yield better per-
formance than HMM/GMM system for bothmonoandtri contexts,
b) SystemKL-HMM-MULTI which uses auxiliary acoustic and lex-
ical resources yields better performance than SystemHMM/GMM.

MLP−MULTI
(Trained on SpeechDat(II))

Multilingual posterior features (117)

(9 frame context)

Gaelic PLP features (39)

(17 frame context)

MLP−GRAPH2

Grapheme posterior features (207)

Fig. 1. Hierarchical MLP classifier to estimate grapheme posterior
features. Numbers in the brackets indicate dimension of the feature
vectors

This suggests that multilingual phoneme posterior features can be
effectively ported across languages, c) It is interesting to note that
SystemKL-HMM-GRAPHwhich uses grapheme posterior features
(estimated by MLP trained with acoustic feature as input) yields per-
formance comparable to SystemKL-HMM-MULTI, and d) System
KL-HMM-HIER which uses both auxiliary multilingual corpus and
Gaelic corpus to estimate the grapheme posterior features signifi-
cantly outperforms all the other systems. Thus, supporting the idea
that the estimation of grapheme posterior features could be effec-
tively improved by modeling phoneme context information in con-
junction with acoustics. This is not only interesting for under re-
sourced languages but also for resource rich and majority languages.

Table 2. Word error rate in percentage on the test of Gaelic corpus

System
Context

mono tri
HMM/GMM 42.7 35.2

KL-HMM-MULTI 41.8 27.2
KL-HMM-GRAPH 38.7 28.9
KL-HMM-HIER 29.8 22.6

5. CONCLUSIONS

In this paper, we studied the grapheme-based ASR using KL-HMM
for under-resourced language, Scottish Gaelic. We investigated
two different posterior features, namely multilingual posterior fea-
tures and grapheme posterior features. The ASR studies conducted
showed that irrespective of the type of the posterior feature used
the KL-HMM approach outperforms the traditional HMM/GMM
approach. Furthermore, the KL-HMM system using grapheme pos-
terior features estimated by an hierarchical MLP (trained on both
auxiliary data and Gaelic data) yields the best system. Some future
directions that are worth investigating are,

• improving grapheme posterior feature estimates using deep
neural networks [17], combining multiple feature streams [18].

• alternate posterior feature space representations. For exam-
ple, the MLP could be trained to estimate context-dependent
graphemes, or articulatory posterior features which are typi-
cally considered to be language independent [19].

• generation of lexical resources. The parameters of the System
KL-HMM-MULTI capture the relation between graphemes
and multilingual phonemes. The captured relationship could
be exploited to generate phoneme lexical resources for Scot-
tish Gaelic [14].



6. REFERENCES

[1] S. Kanthak and H. Ney, “Context-Dependent Acoustic Mod-
eling using Graphemes for Large Vocabulary Speech Recogni-
tion,” in Proc. of ICASSP, 2002, pp. 845–848.
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