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Abstract
Speaker adaptation for TTS applications has been receiving
more attention in recent years for applications such as voice
customisation or voice banking. If these applications are of-
fered as an Internet service, there is no control on the quality
of the data that can be collected. It can be noisy with people
talking in the background or recorded in a reverberant environ-
ment. This makes the adaptation more difficult. This paper
explores the effect of different levels of additive and convolu-
tional noise on speaker adaptation techniques based on cluster
adaptive training (CAT) and average voice model (AVM). The
results indicate that although both techniques suffer degradation
to some extent, CAT is in general more robust than AVM.
Index Terms: speech synthesis, cluster adaptive training,
speaker adaptation, average voice models, noise robust adap-
tation

1. Introduction
With the arrival of smartphones and tablets, text-to-speech
(TTS) systems are becoming more and more ubiquitous. How-
ever, most are still limited in the number of voices and/or ex-
pressions they can provide. For users of TTS applications such
as Augmentative and Alternative Communication (AAC) de-
vices, the ability to be uniquely identified by their own voice
is an important aspect. For more casual users of TTS, too, per-
sonalisation can add value to the TTS system.

Building a good quality speaker-dependent TTS voice re-
quires a large database of recordings with good phonetic cov-
erage made in a controlled environment. This is not a realistic
scenario for personalisation with dysarthric patients or with a
casual user of TTS. Speaker adaptation techniques for Hidden
Markov model based TTS (HMM-TTS) have emerged in re-
cent years, which allow the creation of a target speaker’s voice
using a small amount of speech [1]. An average voice model
(AVM) is trained on a large corpus containing multiple speak-
ers. It is then adapted to a voice using the target speaker’s adap-
tation data. They found that six minutes of adaptation data was
enough to build a voice that sounds more natural than that of a
speaker-dependent system trained on thirty minutes of speech.

The ability to create one’s own voice with a small amount
of data opens up the possibility to offer voice personalisation
capabilities to a wider public. For example, an online custom
voice building service could be envisaged where users submit a
small number of sentences recorded at home, which are used to
adapt a pre-built model to create their voice. In that scenario,
the adaptation data is likely to be recorded in an uncontrolled
environment, so the data might contain background noise, re-
verberation, different channel effects due to the use of non-
professional recording equipment, and/or various signal pro-
cessing applied by the sound card. Each of these factors has
a strong impact on the quality of the models that can be ob-

tained. In order to deal with these problems, robustness to noise
is a requirement for speaker adaptation systems.

Noise robustness is a well known topic in the field of au-
tomatic speech recognition (ASR) but relatively new for TTS.
The effect of creating AVMs from ‘noisy’ ASR data was inves-
tigated in [2, 3]. The ultimate goal of that work was to produce
models that could be shared by the ASR and the TTS engine
of a speech-to-speech translation system. For that purpose, the
effect of training TTS models on noisy ASR data was investi-
gated. The results showed degradation with respect to training
models on clean speech. However, TTS and ASR models do not
need to be shared in most cases, which means that TTS systems
can be trained on reasonably good data. However, the problem
regarding the quality of adaptation data remains.

Some of the noise in the adaptation data can be reduced
by signal processing. For example, pops can be reduced with
a high-pass filter and background noise can be reduced using
spectral subtraction. More sophisticated techniques were ap-
plied in [4]. These techniques can be expected to improve the
adaptation outcome but there is a limit to the amount and type
of noise that can be removed. This poses a problem for AVMs
because the strong adaptation capability of CMLLR transforms
will treat the remaining noise as part of the speaker’s voice.

Multiple linear regressions systems, such as Cluster
Adaptive Training (CAT) [5], Multiple-regression HSMM
(MRHSMM) [6] or eigenvoices [7] also allow speaker adap-
tation. In these techniques, adaptation data is projected into
a linear space trained on clean data. The idea is similar to
the signal-subspace approach proposed for speech enhance-
ment [8]. As the number of parameters needed by these sys-
tems is much smaller than for AVM, their adaptation capability
is much weaker, especially with large amounts of adaptation
data. However, this also makes them more robust with sparse
adaptation data. Moreover, the speaker space corresponds to
clean speech so they may be more robust to noise.

This paper studies the effect of adapting AVM and CAT
models to data with different levels of background noise and
reverberation. Section 2 reviews and compares CAT and AVM
adaptation. Section 3 describes the experiments. Section 4 anal-
yses speaker similarity. Section 5 concludes.

2. Cluster adaptive training
The main characteristic of CAT [9] is that the means of the dis-
tributions are linear combinations of the mean vectors of two or
more clusters. In such a model, the emission probability of an
observation vector for a given speaker s, and component m is

p(o(t) | m, s,M) = N
“
o(t);µ(s)

m ,Σv(m)

”
(1)
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Figure 1: CAT with cluster-dependent decision trees.
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µ(s)
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λ

(s)
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Mm =
ˆ
µc(m,2), . . . ,µc(m,P )

˜
(4)

where t ∈ {1, . . . , T}, m ∈ {1, . . . ,M} and s ∈ {1, . . . , S}
enumerate the frames, Gaussian components and speakers re-
spectively; q(m) ∈ {1, . . . , Q} and v(m) ∈ {1, . . . , V } are
respectively the mth component’s CAT regression classes and
leaf node in the covariance matrices’ decision tree; c(m, i) ∈
{1, . . . , N} is the leaf node for cluster i of component m in de-
cision trees for cluster mean vectors; P is the number of clus-
ters; o(t) is the observation vector at frame t; λ(s)

i,q and λ(s)
q are

respectively the ith cluster’s CAT weight and the weight vectors
for speaker s associated with CAT regression class q; µn is the
cluster mean vector associated with leaf node n; Mm is com-
ponent m’s matrix of cluster mean vectors; Σk is leaf node k’s
covariance matrix;M is the full set of model parameters.

When each cluster is allowed its own decision tree, the re-
sult is a multi-tree model with tree-intersection as depicted in
Figure 1. The main advantage of this model is its capacity to
model a large number of contexts with a reduced number of pa-
rameters. An important characteristic is that the weight of the
first (bias) cluster is always 1. The reason is that the goal of the
bias cluster is to model those attributes which are common to
all speakers. Covariance matrices and priors for the multi-space
distributions (MSD) [10] could have their own tying structures,
but usually they share the decision trees of the bias cluster.

The auxiliary function of the EM algorithm for the distribu-
tion of (1) is
Q(M;M̂) = −1

2

X
m,t,s

γm(t, s)

×
“
o(t)− µ(s)

m

”>
Σ−1
v(m)

“
o(t)− µ(s)

m

”

+ log
˛̨
Σv(m)

˛̨ff
+ C (5)

where C is a constant, M̂ is the current estimate of M, and
γm(t, s) is the posterior probability of componentm generating
o(t) given s and M̂. Maximising Q(M;M̂) w.r.t. µn yields

µ̂n = G−1
nn

0
@kn −

X

ν 6=n
Gnνµν

1
A (6)

where

Gnν =
X
m,i,j

c(m,i)=n
c(m,j)=ν

G
(m)
ij , kn =

X
m,i

c(m,i)=n

k
(m)
i (7)

andG(m)
ij and k(m)

i are accumulated statistics defined as

G
(m)
ij =

X
t,s

γm(t, s)λ
(s)

i,q(m)Σ
−1
v(m)λ

(s)

j,q(m) (8)

k
(m)
i =

X
t,s

γm(t, s)λ
(s)

i,q(m)Σ
−1
v(m)o(t). (9)

By combining (6) for all the mean vectors, the update equations
can be written as2

64
G11 . . . G1N

...
. . .

...
GN1 . . . GNN

3
75

2
64
µ̂1

...
µ̂N

3
75 =

2
64
k1

...
kN

3
75 . (10)

The order of (10) can be very large but it is a sparse optimisa-
tion problem because for most leaves Gn,ν = 0. Furthermore,
if the covariances are diagonal, each dimension can be solved
independently. The update equations for Σk and λ(s)

q are

Σ̂k =

P
t,s,m
v(m)=k

γm(t, s)
`
o(t)− µ(s)

m

´`
o(t)− µ(s)

m

´>
P

t,s,m
v(m)=k

γm(t, s)

(11)

λ(s)
q =

“ X
t,m

q(m)=q

γm(t, s)M>
mΣ−1

v(m)Mm

”−1

X
t,m

q(m)=q

γm(t, s)M>
mΣ−1

v(m)o(t). (12)

2.1. Tree building

Tree building in a tree-intersection model is computationally ex-
pensive [11]. To solve this, a cluster by cluster approach is used
[12] in which the tree for one cluster is updated while the trees
of the other clusters and their canonical parameters are held
fixed. As usual, each tree is built to maximise the log-likelihood
given the training data. Following [13], the log-likelihood for
the nth node in the ith cluster can be computed as

L(n) =
1

2
µ̂>n

0
@ X

m∈S(n)

G
(m)
ii

1
A µ̂n (13)

with µ̂n the ML estimate of µn which is

µ̂n =

0
@ X

m∈S(n)

G
(m)
ii

1
A
−1

×
X

m∈S(n)

0
@k(m)

i −
X

j 6=i
G

(m)
ij µc(m,j)

1
A . (14)

For each node n, the optimum split question q is the one that
maximises the log-likelihood gain

L(n; q) = L(nq+) + L(nq−)− L(n). (15)

In this way, the best question to split the nth node can be se-
lected based on the log-likelihood gain. The splitting process
is stopped when a reasonable balance between complexity and
accuracy is achieved. In the experiments in Section 3, minimum
description length (MDL) [14] was used. After constructing the
decision trees for a cluster, decision trees for the next cluster
are re-built in the same manner. This process is repeated from
cluster 1 to P , and the whole process repeated as desired.
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2.2. CAT vs. AVM

In CAT, speaker variety is captured by the weight vector λ(s).
This vector may be interpreted as a point in eigenspace repre-
senting all possible speakers. The space is spanned by the bases
defined by the CAT clusters. Since the CAT model is trained
on clean speech, this speaker space is expected to be clean also.
Given that CAT adaptation estimates only the λ(s), there are in-
sufficient degrees of freedom to capture noise in the adaptation
data. Therefore CAT adaptation is constrained to yield (mostly)
clean synthesis.

In contrast, the emission probability for a given component
and speaker using CMLLR or CSMAPLR transforms is

p(o(t) | m, s,M) = |A(s)

r(m)|N
“
A

(s)

r(m)o(t) + b
(s)

r(m);µm,Σm

”

(16)
where r(m) ∈ {1, . . . , R} is the regression class associated
with componentm and {A(s)

r(m), b
(s)

r(m)} the CMLLR transform
associated with class r(m). Comparing (16) and (1) it is ob-
vious that a CMLLR transform is much more powerful than
the CAT weights, allowing not just translations but also rota-
tions of the acoustic space. This allows AVM to produce better
speaker similarity than CAT when there is sufficient adaptation
data. However, when the adaptation data is sparse, some of the
transforms can not be estimated robustly. Therefore, both the
similarity and the quality degrades [15]. In the case of adap-
tation with noisy data, this extra freedom might also be prob-
lematic. CMLLR has no mechanism to constrain the adapted
models within a sub-space of “clean” speech. Thus it is likely
to treat the noise as an attribute of the speaker.

3. Experiments
3.1. Data

Speech data from a variety of sources were used for training the
models. They consisted of a) high quality recordings of pho-
netically balanced sentences read by professional voice talents
with a neutral style in specialist recording studios; b) cheaper,
lower quality studio recordings made in less strictly controlled
conditions; and c) amateur-read audiobooks which were pub-
lished freely on the Internet. In total, 20 speakers provided just
under 30 hours of data and they all spoke US English with the
General American accent.

A separate test set consisting of 8 male and 8 female non-
professional speakers was recorded for adaptation. The record-
ings were of neutrally read sentences made in quiet office rooms
using a headset microphone on a laptop with all signal pro-
cessing effects turned off. Each speaker spoke the same set
of 100 sentences, amounting to about 7 minutes of speech per
speaker. All speakers spoke US English but not strictly the Gen-
eral American accent.

3.1.1. Simulation of noise

The clean data was corrupted with additive and convolutional
noise to simulate noisy adaptation data. Multi-speaker bab-
ble consisting of real world multi-talker non-stationary environ-
ment noise captured at a trade show was used as additive noise.
This was added to the adaptation data at signal-to-noise ratios
(SNRs) of 0dB (BAB00) and 5dB (BAB05).

Convolutional noise was simulated by adding reverberation
to the signal using the reverb effect in the digital audio editor,
SoX [16]. The data was corrupted with two levels of reverber-

ation: 30% (RVB30) and 60% (RVB60). The percentages indi-
cate the proportion of output signal occupied by reverberation.

3.1.2. Pre-processing

A way to overcome the problems of noisy adaptation data is to
apply signal pre-processing. In a standard custom voice build-
ing scenario, a certain amount of background noise is expected
in the adaptation data, as well as pops produced by record-
ing with the microphone directly in the airstream. Therefore a
pre-processing scheme of silence trimming, high-pass filtering,
spectral subtraction and amplitude normalisation was devised.

Pilot experiments showed that with babble and clean data,
pre-processing improved the quality of output speech for both
CAT and AVM-adapted models. However, with reverbera-
tion, there was no significant preference for CAT, and non pre-
processed data was preferred for AVM. This could be explained
by the fact that the type of pre-processing applied aims to re-
move additive noise and pops but does not deal with convo-
lutional noise. Therefore, in these experiments, pre-processing
was applied for the babble conditions but not for the reverb con-
ditions.

3.2. Parameterisation and label generation

Waveforms were down-sampled to 22050Hz. They were then
parameterised using 40 dimensional Mel-LSP coefficients with
deltas, log-F0 with first and second order deltas and 20 linear-
scale band aperiodicities with deltas. Context feature labels
were generated automatically on the clean data.

3.3. Models

3.3.1. AVM model build

The AVM model employs CMLLR and CSMAPLR trans-
forms [1]. A standard training procedure was used: A speaker-
independent monophone maximum likelihood model is built
and then CMLLR speaker adaptive training is applied. The
monophone models are cloned to full context models which
are clustered using decision trees. Speaker adaptive training
continues with block diagonal global CMLLR transforms for
speech, silence and pause. The decision trees, canonical model
and global CMLLR transforms are updated several times iter-
atively. Regression class CMLLR transforms are then trained
with the decision trees held fixed and the model parameters up-
dated. The state-duration distributions are treated similarly.

To synthesise a new voice, some samples of the target
speaker (adaptation data) are used to create an initial CMLLR
transform which is then refined using CSMAPLR followed by
a speaker-dependent MAP adaptation of the means so that

µ̂(s)
m =

τµm +
P
t∈t(s) γm(t, s)

`
Â

(s)

r(m)o(t) + b̂
(s)

r(m)

´

τ +
P
t∈t(s) γm(t, s)

(17)
where µm is the mean vector of the AVM; γm(t, s),
{Â(s)

r(m), b̂
(s)

r(m)} and t(s) are the state occupancy probability,
CSMAPLR transforms and data for speaker s respectively, and
τ the hyperparameter. The MAP adapted model is combined
with the CSMAPLR transform for synthesis.

Potentially, by adding extra freedom, a MAP update of the
means may be more susceptible to noisy adaptation data. In
initial tests, however, AVM synthesis with and without the final
MAP update did not produce noticeably different samples.
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3.3.2. CAT model build

A CAT model with six clusters and a bias was built as fol-
lows. The AVM canonical model was converted into a speaker-
independent model by running one update to remove the CM-
LLR transforms. This speaker-independent model is copied into
the bias cluster. The six additional clusters were initialised with
zero means. Each training speaker is assigned to one of the six
clusters by perceived similarity1. The initial CAT weights were
set to 1/0 values corresponding to the speaker’s assigned cluster
and a value of 1 for the bias. In this way, given (2), the initial
CAT model is effectively identical to the speaker-independent
model. MDL based decision tree context clustering was per-
formed for each cluster leaving the bias cluster until last. The
aim at this stage is to coax the model in such a way that each
cluster models speaker specific attributes while the bias cluster
models common attributes. Alternative initialisation schemes
may be envisaged (e.g. [15]). After context clustering is per-
formed for all CAT clusters, the model’s parameters (means and
variances) and CAT weights are updated iteratively. Note that
the weights are updated independently for each speaker in the
training set. The initial grouping of the speakers merely provide
a starting point and does not tie the weights of different speak-
ers. The context clustering and iterative model/CAT weight up-
dates are repeated once.

To synthesise a new speaker, an initial set of CAT weights
are copied from one of the training speakers. The weights are
updated iteratively to maximise the likelihood given the adapta-
tion data. It was observed that the weights converge to the same
values irrespective of the starting point.

3.4. Evaluation setup

In order to avoid a walkie-talkie effect resulting from noise
being modelled in the start and end silences, CAT weights,
CSMAPLR transforms and models for silence were replaced,
post-adaptation, with those obtained using clean data. Speech
waveforms were synthesised from the generated speech param-
eters with post-filtering.

Subjective listening tests were conducted via the crowd-
sourcing website CrowdFlower using Mechanical Turk workers
located in the US [17]. Listeners were asked to rate the qual-
ity of the synthetic speech on a five-point scale where 1 is very
bad and 5 is very good. The top end of the scale was anchored
with natural speech samples from the same speakers. To anchor
the bottom end of the scale, speaker-dependent models were
trained for each speaker, with the standard HMM-TTS flat-start
approach using the 100 adaptation sentences only.

3.5. Results

Synthesis of the CAT model adapted to noisy data still yielded
speech that was clean but with slightly degraded quality. In con-
trast the AVM’s synthesis was corrupted by noise with prop-
erties resembling the noise contained in the adaptation data.
These observations are consistent with the theory.

Results of the MOS tests are shown in Figure 2. CAT adap-
tation outperforms the AVM for CLEAN, as expected from pre-
vious studies [15]. In addition, it is more robust to noise than
AVM adaptation; it remains relatively unaffected with increas-
ing levels of noise. There is no significant difference between
AVM adapted to clean data and CAT adapted to BAB05, BAB00
or RVB60. CAT data adapted to moderate levels of noise can

1This was based on subjective judgements made by the authors.

phone type AVM BAB05 AVM BAB00
voiced obstruents 1.56 2.60
voiceless obstruents 1.21 1.61
nasals 1.37 1.64
other consonants 1.18 1.41
vowels 1.08 1.13
pause 1.26 1.70
silence 0.95 0.95

Table 1: Ratio of average duration per phone for BAB05/CLEAN
and BAB00/CLEAN, for samples synthesised from the AVM-
adapted models, analysed by phone type.

Figure 2: Distribution of mean MOS scores. Black points rep-
resent the mean of each distribution.

(a) Babble (b) Reverberation

even outperform AVM adapted on clean data, as was seen with
CAT RVB30.

In contrast, the AVM saw a significant drop in MOS scores
with increasing levels of noise, to the extent that AVM BAB00
is no better than speaker-dependent models trained on the noisy
100 sentences only (SD BAB00).

AVM adaptation with noisy data caused the resulting syn-
thesised samples to slow down considerably. For example, the
speech of samples synthesised with AVM BAB00 were on aver-
age 51% longer than that synthesised with AVM CLEAN. This
was due to silent frames for noisy data looking more like speech
and thus being consumed by speech models instead of silence or
pause models. For example, the proportion of frames assigned
to speech (as opposed to silence/pause) during adaptation was
4.8% (relative) higher for BAB00 than for CLEAN.

This resulted in more frames being assigned to speech at
synthesis time. As shown in Table 1, different phone types
were affected with varying degrees2. Voiced obstruents were
affected the most (on average 2.6 times longer in BAB00 than in
CLEAN). The table shows that silence is the only category for
which more frames were allocated to it in the clean condition
than in the noisy conditions.

To eliminate any effect on the MOS scores due to the slow-
ing down of the speech, the AVM samples were synthesised us-
ing durations obtained from the CAT model and subjective tests
re-run. The same overall tendency may be observed in Figure 3:
the AVM degrades faster than CAT with increasing noise levels;
CAT outperforms the AVM in the presence of noise.

A more constrained form of AVM adaptation with global
CMLLR transforms led to less noisy output, compared to AVM
with regression class transforms. However, they were still much

2Other noises may affect the duration of each phone type differently.
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Figure 3: Distribution of mean MOS scores; AVM samples syn-
thesised with CAT duration.

(a) Babble (b) Reverberation

noisier than CAT output. In addition, using global transforms
led to more artefacts and decreased similarity.

4. Analysis of speaker similarity in CAT
When building a voice for a target speaker, it is important to
assess how similar the synthetic voice is to the original. Under
clean conditions, CAT and AVM have been found to perform
similarly in terms of speaker similarity [15]. With noisy data
for CAT, it was observed informally1 that speaker similarity de-
grades with increasing levels of noise, even though the speech
quality remained relatively unaffected. The noisier the adapta-
tion data, the more similar the output of different speakers.

It was hypothesised that only a small amount of signal
was available for estimating the point in space for the target
speaker, due to noise occupying a high proportion of the sig-
nal. Thus the speaker subspace was smaller for high levels of
noise. This hypothesis may be tested objectively without re-
course to subjective tests. In this section, a log-likelihood anal-
ysis of the adapted models is performed and multidimensional
scaling (MDS) is used to visualise the data.

4.1. Log-likelihood variance analysis

CAT weights for each target speaker were used to align clean
data from every other speaker and thus the pairwise log-
likelihood of alignment was obtained for each speaker pair. The
variance of log-likelihoods was then obtained for each condition
as shown in Table 2. It shows that there is less variance in the
babble noise conditions than for the clean condition, indicating
a smaller speaker subspace. In the reverberation condition, the
levels of reverb used in our experiments did not affect the size
of the overall subspace as much.

Interestingly, even in noisy conditions, the bimodality of
log-likelihoods is retained between male and female speak-
ers. This may be due to log-f0 being relatively unaffected by
noise. To test this hypothesis, CAT weights for log-f0 from male
speakers were transplanted to female speakers’ CAT weights
(and vice-versa) and these were used to align data from all the
test speakers, in a manner similar to above. This was done for
all combinations of speakers.

Analysis was performed by comparing two cases as fol-
lows: a) the gender of the data matches the gender of spectral
weights but log-f0 weights are of the opposite gender and b) the
gender of the data matches the gender of the log-f0 weights but
the spectral weights are of the opposite gender. For CLEAN the
log-likelihood for a) was higher. However, for BAB00, b) was
marginally higher, confirming our hypothesis that log-f0 plays a

condition CLEAN BAB05 BAB00
σ2 (all) 32.48 25.49 12.21
σ2 (male) 3.76 3.71 1.81
σ2 (female) 3.46 2.66 2.09
condition CLEAN RVB30 RVB60
σ2 (all) 27.84 26.67 24.31
σ2 (male) 4.05 4.19 3.94
σ2 (female) 3.78 3.85 4.71

Table 2: Variance of each log-likelihood matrix for CAT adapta-
tion. Note that the variances of the CLEAN conditions are differ-
ent because different pre-processing is applied (Section 3.1.2).

big role in determining whether the data aligns better with male
or female weights in noisy conditions, as it remains relatively
unaffected by noise.

4.2. MDS analysis

Another way to investigate the distribution of voices is to vi-
sualise them in a low dimensional space derived from the syn-
thesised speech parameters, using an MDS technique [18]. The
axes of the space output by MDS do not have any pre-defined
meaning, but MDS attempts to preserve the pairwise distances
between the speakers, thus placing similar-sounding speakers
close to each other in the space.

Parameters were generated from the adapted CAT model,
then mean Mel-LSP distances were calculated for each speaker
pair. In order to maintain the same number of frames across all
speakers, the generated parameters were constrained using the
initial duration CAT weights for all speakers. A distance matrix
was created for each noise condition and MDS analyses were
performed. Figure 4 shows how the speaker space, indicated by
the convex hull, shrinks with increasing levels of noise.

5. Conclusion
This paper studies the robustness of AVM and CAT adaptation
to noisy data. The results of subjective experiments show that
AVM suffers significant levels of degradation with noisy adap-
tation data corrupted with additive noise (babble) and convo-
lutional noise (reverberation). In contrast, in terms of speech
quality, CAT is relatively robust to adaptation data with these
kinds of corruption.

Pre-processing with spectral subtraction only helps for ad-
ditive noise and even then there is a limit to how much it can
help. While the results would depend on the type and degree
of signal processing applied, this indicates that a noise-robust
approach to adaptation is still required.

The results confirm the hypothesis that linear transforms
used to adapt AVMs are too powerful because noise in the adap-
tation data is modelled and synthesised in the output speech.
The CAT space, on the other hand, is much more constrained so
that there is not enough flexibility in the model to deviate much
from clean speech, even when the adaptation data is noisy.

This study investigated robustness from the perspective of
output speech quality but not speaker similarity. It is known
that AVM outperforms CAT in terms of speaker similarity when
a large amount of adaptation data is available [15]. With
CAT, the speaker subspace became smaller with noisy adapta-
tion data, indicating that speaker similarity is compromised by
noise. Subjective evaluation of speaker similarity is left for fu-
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Figure 4: MDS visualisation of CAT speaker space computed from Mel-LSP distances between each speaker. Red points represent
female speakers and blue points male. See note in Table 2 about pre-processing.

(a) CLEAN (b) BAB05 (c) BAB00

(d) CLEAN (e) RVB30 (f) RVB60

ture work. Future research will also include the evaluation of a
noise-robust approach to produce the context feature labels and
to investigate noise factorisation.

6. References
[1] J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata, and J. Iso-

gai, “Analysis of Speaker Adaptation Algorithms for HMM-Based
Speech Synthesis and a Constrained SMAPLR Adaptation Algo-
rithm,” IEEE Trans. Audio Speech Lang. Process., vol. 17, no. 6,
pp. 66–83, 2009.

[2] J. Yamagishi, T. Nose, H. Zen, Z.-H. Ling, T. Toda, K. Tokuda,
S. King, and S. Renals, “Robust speaker-adaptive HMM-based
text-to-speech synthesis,” IEEE Trans. Audio Speech Lang. Pro-
cess., vol. 17, no. 6, pp. 1208–1230, 2009.

[3] J. Yamagishi, M. Lincoln, S. King, J. Dines, M. Gibson, J. Tian,
and Y. Guan, “Analysis of unsupervised and noise-robust speaker-
adaptive HMM-based speech synthesis systems toward a unified
ASR and TTS framework,” in Proc. Blizzard Challenge Work-
shop, 2009.

[4] R. Karhila, U. Remes, and M. Kurimo, “HMM-based speech syn-
thesis adaptation using noisy data: analysis and evaluation meth-
ods,” in Proc. ICASSP, 2013.

[5] H. Zen, N. Braunschweiler, S. Buchholz, M. Gales, K. Knill,
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